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Least squares versus weighted least squares

Consider general linear mixed model (vector-matrix form):

Y = Xβ + ZU + ϵ

Least squares estimate: β̂ = (XTX )−1XTY

Linear mixed effects model estimate is weighted least squares
estimate

β̂ = (XTV−1X )−1XTV−1Y

where V is matrix of variances and covariances.

If data has nice structure (balanced), least squares (OLS) and
weighted least squares (WLS) may coincide (e.g. orthodont data)
but this is generally not the case.

Weighted least squares is superior to least squares (more accurate)
because it takes into account correlations between observations.



Simple example: unbalanced one way ANOVA

Yij = µ+ Ui + ϵij i = 1, 2

Variances τ2 = 2 and σ2 = 1 so ICC is 2/3.

For subject i = 1 only 1 observation. For subject i = 2, 4
observations - these are correlated and hence to some extent
redundant.

Naive OLS estimate 1
5(Y11 + Y21 + Y22 + Y23 + Y24) - all

observations same weight 1/5.

Optimal WLS gives weight 3/7 to Y11 and weights 1/7 to
remaining 4 observations.

Variance of naive estimate: 1.56
Variance of optimal estimate: 1.28.



Case study: fraction test results for 4th grade students

Computing with fractions is a key obstacle for primary school
students

TRACK project is a randomized trial to test a new math teaching
system against current practice.

125 schools were randomly allocated to current practice or new
TRACK teaching system. 12717 students participate in the trial.

Currently we have data for Autumn 22 (baseline) and Spring 23
(one school year of treatment).



Fixed effects model

Parameters: main effect of teaching method (a) and main effect of
participating in school year (b) Expected values in two-way table:

A22 (baseline) S23

Current µ µ+ b
New µ µ+ b + a

Which parameter is the key parameter ?



Least squares analysis (ordinary two-way ANOVA)

#create custom variable for treatment effect

> Treateffect=as.numeric(scores$Test==2 & scores$treatmentlabel=="TRACK")

> fitbroklm=lm(Broker~Testlbl+Treateffect,data=scores,na.action=na.exclude)

> summary(fitbroklm)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 24.7092 0.1995 123.841 <2e-16 ***

TestlblF2023 11.3659 0.3491 32.559 <2e-16 ***

Treateffect -0.2957 0.4070 -0.727 0.468

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 14.33 on 10116 degrees of freedom

> 14.33^2 # residual variance

[1] 205.3489

Residual variance 205.3

Conclusions ? Any potential problems with this analysis ?



Mixed model analysis

> fitbrok=lmer(Broker~Testlbl+Treateffect+(1|instnr/Klasse)+(1|ID),data=scores,na.action=na.exclude)

> summary(fitbrok)

Random effects:

Groups Name Variance Std.Dev.

ID (Intercept) 126.401 11.243

Klasse:instnr (Intercept) 5.488 2.343

instnr (Intercept) 17.329 4.163

Residual 57.058 7.554

Number of obs: 10119, groups: ID, 5621; Klasse:instnr, 272; instnr, 119

Fixed effects:

Estimate Std. Error df t value Pr(>|t|)

(Intercept) 24.1797 0.4612 122.0087 52.425 < 2e-16 ***#mu

TestlblF2023 10.5816 0.2196 4845.3517 48.193 < 2e-16 ***#b

Treateffect 1.7166 0.3123 4866.3694 5.497 4.06e-08 ***#a

> 126.401+5.488+17.329+57.058#total variance

[1] 206.276

> (126.401+5.488+17.329)/206.276#Intra student correlation

[1] 0.72339 #correlation for two observations for same student

Same total variance (NB: does not make sense to add standard
deviations)

Large correlation 0.72 between two test for same student

Now positive significant effect of intervention



Analysis based on differences

Similar to paired t-test we may consider the difference between
spring and autumn test for each student.

This eliminates parameter µ and random effects !

Difference for student with current:

Yi2 − Yi1 =µ+ b + Ui + Uclass(i) + Uschool(i) + ϵi2

−(µ+ Ui + Uclass(i) + Uschool(i) + ϵi1) = b + ϵ̃i

Similarly, for student with new:

Yi2 − Yi1 = a+ b + ϵ̃i



Least squares analysis based on differences

> fitdiffbroklm=lm(diffbrok~treatment.x,data=scoresdiff)

> summary(fitdiffbroklm)

Call:

lm(formula = diffbrok ~ treatment.x, data = scoresdiff)

Residuals:

Min 1Q Median 3Q Max

-52.664 -6.664 -0.336 6.664 60.336

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 10.6640 0.2247 47.464 < 2e-16 *** #a

treatment.x 1.6723 0.3191 5.241 1.67e-07 *** #g

Now treatment is effect of TRACK teaching method (similar
estimate as in previous mixed model analysis.

Note: number of difference observations 4498 is less than half of
previous number of observations.



Issue with difference approach: loss of observations in cases where
one test is missing for a student.

Not so easy to generalize if more than two tests (if several
differences they will be correlated).



Mixed model analysis based on differences
We can still try adding random effect for class and school:

> fitdiffbrok=lmer(diffbrok~treatment.x+(1|instnr.x/Klasse.x),data=scoresdiff)

> summary(fitdiffbrok)

Random effects:

Groups Name Variance Std.Dev.

Klasse.x:instnr.x (Intercept) 12.454 3.529

instnr.x (Intercept) 3.262 1.806

Residual 99.305 9.965

Number of obs: 4498, groups: Klasse.x:instnr.x, 249; instnr.x, 115

Fixed effects:

Estimate Std. Error df t value Pr(>|t|)

(Intercept) 10.6798 0.4612 104.8952 23.155 <2e-16 *** #a

treatment.x 1.7133 0.6535 106.2772 2.622 0.01 * #g

Class and school variances rather minor compared to residual
variance

Standard errors higher than for linear regression due to estimated
correlation within classes and schools. p-value for treatment bigger
but still significant at 5% level.



Correlations at different level of hierarchy

Denote: σ2, σ2
student , σ

2
class and σ2

school variances for noise, student,
class and school.

Correlation between two tests for same student:

σ2
student + σ2

class + σ2
school

σ2
student + σ2

class + σ2
school + σ2

(tests share all random effects except noise)

Correlation between two test for two students within the same class

σ2
class + σ2

school

σ2
student + σ2

class + σ2
school + σ2

(tests only share class and school random effects)



Correlation between two test for two students in different classes
but same school

σ2
school

σ2
student + σ2

class + σ2
school + σ2

(tests only share school random effect)

For last mixed model analysis based on differences there is no
student effect. The two last correlations are

> (12.454+3.262)/(12.454+3.262+99.305)

[1] 0.1366359

> 3.262/(12.454+3.262+99.305)

[1] 0.02836004

Both correlations quite small - differencing may have worked.



Tests for variances ?

One may be interested in testing whether a variance is zero.

Unfortunately the theory for this is incomplete and it seems that
no both generally and easily applicable approach is available.


