
Graphical Models with R

Tutorial at UiO, Norway, November 2012

Søren Højsgaard

Department of Mathematical Sciences

Aalborg University, Denmark

November 25, 2012

Printed: November 25, 2012 File: GMwR-slides.tex

2

Contents

1 Outline of tutorial 5
1.1 Topics . 6
1.2 Book: Graphical Models with R . 7
1.3 R–packages . 8
1.4 The practicals: The coronary artery disease data . 9
1.5 Graphical models in a few words . 11

2 Conditional independence 12
2.1 Factorization criterion . 13

3 Undirected Graphs 15
3.1 Factorization and dependence graph . 26
3.2 Reading conditional independencies – global Markov property 28

4 Directed acyclic graphs (DAGs) 30
4.1 Factorization and dependence graph – DAGs . 35
4.2 Reading conditional independencies from DAGs (I) . 37
4.3 Moralization . 39
4.4 Ancestral sets and graphs* . 41
4.5 Reading conditional independences from DAG (II)* . 42

5 Bayesian Network (BN) basics 43

6 A small worked example BN 44
6.1 Specification of conditional probability tables . 46
6.2 Brute force computations . 47
6.3 Brute force computations will fail . 48

3

7 Decomposable graphs and junction trees 50
7.1 Decomposable graphs . 51
7.2 Junction tree . 52
7.3 The key to message passing . 53
7.4 Computations by message passing . 56
7.5 Clique potential representation . 58
7.6 Working inwards in junction tree . 59
7.7 Working outwards in junction tree . 61

8 Propagating findings 65

9 The chest clinic narrative 70
9.1 Findings and queries . 72

10 An introduction to the gRain package 73
10.1 Queries . 76
10.2 Setting findings and probability of findings . 77
10.3 Queries – II . 78
10.4 Dependence graph, moralization and triangulation . 80
10.5 Triangulation . 82
10.6 Fundamental operations in gRain . 84

11 Summary of the BN part 85

12 Contingency tables 86
12.1 Notation . 88
12.2 Log–linear models . 90
12.3 Graphical models and decomposable models . 95
12.4 ML estimation in decomposable models . 97
12.5 Connecting decomposable models and Bayesian networks . 100

13 Testing for conditional independence 101
13.1 What is a CI-test – stratification . 103

4

14 Log–linear models using the gRim package 105
14.1 Plotting the dependence graph . 110
14.2 Model specification shortcuts . 112
14.3 Altering graphical models . 114
14.4 Model comparison . 115
14.5 Decomposable models – deleting edges . 116
14.6 Decomposable models – adding edges . 118
14.7 Test for adding and deleting edges . 120
14.8 Model search in log–linear models using gRim . 122

15 From graph and data to network 125
15.1 Prediction . 129
15.2 Classification error . 131

16 Winding up 132

17 Practicals 133

5

1 Outline of tutorial

• Theoretical part: 3 lectures, each about 45 minutes.

• Practical part: 3 hours of computer exercises.

Goal: Establish a Bayesian network (BN) for diagnosing coronary artery

disease (CAD) from a contingency table.

6

1.1 Topics

• Bayesian networks and the gRain package

• Conditional independence restrictions and dependency graphs

• Probability propagation

• Log–linear, graphical and decomposable models for contingency tables

• Introduce the gRim package; use gRim for model selection

• Convert decomposable model to Bayesian network.

7

1.2 Book: Graphical Models with R

8

1.3 R–packages

• We shall in this tutorial use the R–packages gRbase, gRain and gRim.

• gRbase and gRain have been on CRAN for some years now and are fairly

stable.

• gRim is a recent package and is likely to undergo larger changes.

• If you discover bugs etc. in any of these 3 packages, please send me an e–mail;

preferably with a small reproducible example.

9

1.4 The practicals: The coronary artery disease data

Goal: Build BN for diagnosing coronary artery disease (CAD) from these data:

R> data(cad1)

R> head(cad1)

Sex AngPec AMI QWave QWavecode STcode STchange SuffHeartF

1 Male None NotCertain No Usable Usable No No

2 Male Atypical NotCertain No Usable Usable No No

3 Female None Definite No Usable Usable No No

4 Male None NotCertain No Usable Nonusable No No

5 Male None NotCertain No Usable Nonusable No No

6 Male None NotCertain No Usable Nonusable No No

Hypertrophi Hyperchol Smoker Inherit Heartfail CAD

1 No No No No No No

2 No No No No No No

3 No No No No No No

4 No No No No No No

5 No No No No No No

6 No No No No No No

10

Validate model by prediction of CAD using these data. Notice: incomplete

information.

R> data(cad2)

R> head(cad2)

Sex AngPec AMI QWave QWavecode STcode STchange SuffHeartF

1 Male None NotCertain No Usable Usable Yes Yes

2 Female None NotCertain No Usable Usable Yes Yes

3 Female None NotCertain No Nonusable Nonusable No No

4 Male Atypical Definite No Usable Usable No Yes

5 Male None NotCertain No Usable Usable Yes No

6 Male None Definite No Usable Nonusable No No

Hypertrophi Hyperchol Smoker Inherit Heartfail CAD

1 No No <NA> No No No

2 No No <NA> No No No

3 No Yes <NA> No No No

4 No Yes <NA> No No No

5 Yes Yes <NA> No No No

6 No No No <NA> No No

11

1.5 Graphical models in a few words

• The “language” of graphical models is conditional independence restrictions

among variables.

• Used for identifying direct associations and indirect associations among

random variables.

• Used for breaking a large complex stochastic model into smaller components.

• Used for very efficient calculation of conditional distributions via message

passing.

• Graphs provide tool for interpreting models

• Graphs provide terminology for organizing certain computations

12

2 Conditional independence

Let X, Y be random variables. X and Y are independent if

fX,Y (x, y) = fX(x)fY (y)

or, equivalently, if

fY |X(y|x) = fY (y)

Let X, Y , Z be random variables. X and Y are conditionally independent given Z

(written X⊥⊥Y |Z) if for each value z of Z, X and Y are independent in the

conditional distribution given Z = z. That is if

fX,Y |Z(x, y|z) = fX|Z(x|z)fY |Z(y|z)

– or equivalently

fY |X,Z(y|x, z) = fY |Z(y|z)

So if Z = z is known then knowledge of X will provide no additional knowledge of

Y .

13

2.1 Factorization criterion

A general condition is the factorization criterion : X⊥⊥Y |Z if

p(x, y, z) = g(x, z)h(y, z)

for non–negative functions g() and h().

Example 2.1

X = (X1, X2, X3)
> ∼ N3(0,Σ), Σ−1 = K =


k11 k12 0

k21 k22 k23

0 k32 k33


Then X1⊥⊥X3 |X2 because f(x) ∝ exp(x>Kx) becomes

f(x1, x2, x3) ∝ exp

(
x21k11 + 2x1x2k12 + x22k22 + 2x2x3k23 + x23k33

)
= g(x1, x2)h(x2, x3)

�

14

Example 2.2 Let X1, X2, X3 be discrete with

pijk = P (X1 = i,X2 = j,X3 = k)

In a log–linear model we may have, for example,

log pijk = α1
i + α2

j + α3
k + β12

ij + β23
jk

Exponentiating and collecting terms gives

pijk = g(i, j)h(j, k)

Hence X1⊥⊥X3 |X2. �

15

3 Undirected Graphs

Definition 1 An (undirected) graph as a mathematical object is a pair G = (V,E)

where V is a set of vertices (or nodes) and E is a set of edges (and edge is a pair

of vertices).

Definition 2 Given a set of vertices V , a collection A = {a1, . . . , aQ} of subsets

of V where ∪jaj = V . The graph generated by A is G(A) = (V,E) where E is

given as follows: {α, β} ∈ E iff {α, β} ⊂ aj for some j.

16

The function ug() from gRbase creates an undirected graph:

R> library(gRbase)

R> g1 <- ug(~a:b:e + a:c:e + b:d:e + c:d:e + c:g + d:f)

R> class(g1)

[1] "graphNEL"

attr(,"package")

[1] "graph"

R> as(g1, "matrix")

a b e c d g f

a 0 1 1 1 0 0 0

b 1 0 1 0 1 0 0

e 1 1 0 1 1 0 0

c 1 0 1 0 1 1 0

d 0 1 1 1 0 0 1

g 0 0 0 1 0 0 0

f 0 0 0 0 1 0 0

17

Graphs can be displayed with the plot() method

R> library(Rgraphviz)

R> plot(g1)

a

b

e

c

d g

f

18

Graphs can also be defined using adjacency matrices:

R> m <- matrix(c(0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0,

1, 1, 0, 1, 1, 1, 1, 1, 0), nrow = 5)

R> rownames(m) <- colnames(m) <- c("a", "b", "c", "d", "e")

R> m

a b c d e

a 0 1 1 0 1

b 1 0 0 1 1

c 1 0 0 1 1

d 0 1 1 0 1

e 1 1 1 1 0

R> as(m, "graphNEL")

A graphNEL graph with undirected edges

Number of Nodes = 5

Number of Edges = 8

19

Graphs can be altered using addEdge() and removeEdge()

R> g1a <- addEdge("a", "d", g1)

R> g1b <- removeEdge("c", "d", g1)

R> par(mfrow = c(1, 3))

R> plot(g1, main = "g1")

R> plot(g1a, main = "g1a")

R> plot(g1b, main = "g1b")

g1

a
b

e
c

d g
f

g1a

a
b

e
c

d g
f

g1b

a
b

e
cd
gf

20

Definition 3 The graph G0 = (V0;E0) is said to be a subgraph of G = (V,E) if

V0 ⊂ V and E0 ⊂ E.

For A ⊂ V , let EA denote the set of edges in E between vertices in A. Then

GA = (A,EA) is the subgraph induced by A.

For example

R> g1c <- subGraph(c("b", "c", "d", "e"), g1)

R> par(mfrow = c(1, 3))

R> plot(g1, main = "g1")

R> plot(g1c, main = "g1c")

21

g1

a
b

e
c

d g
f

g1c

b c
d
e

22

Definition 4 A set A ⊂ V of vertices in a graph G = (V,E) is complete if all

pairs of vertices in A are connected by an edge. A graph G = (V,E) is complete

if V is complete.

Definition 5 A clique is a maximal complete subset, that is a complete subset

which is not contained in a larger complete subset.

23

R> is.complete(g1,set=c("a","b","e"))

[1] TRUE

R> is.complete(g1)

[1] FALSE

R> str(maxClique(g1))

List of 1

$ maxCliques:List of 6

..$: chr [1:3] "e" "b" "a"

..$: chr [1:3] "e" "b" "d"

..$: chr [1:3] "e" "c" "a"

..$: chr [1:3] "e" "c" "d"

..$: chr [1:2] "g" "c"

..$: chr [1:2] "f" "d"

24

Definition 6 A path (of length n) between α and β in an undirected graph is a

set of vertices α = α0, α1, . . . , αn = β where {αi−1, αi} ∈ E for i = 1, . . . , n.

If a path has α = α0, α1, . . . , αn = β has α = β then the path is said to be a

cycle (of length n).

Definition 7 A subset S ⊂ V is said to separate A ⊂ V and B ⊂ V if every

path between a vertex in A and a vertex in B contains a vertex from S.

25

R> g2 <- ug(~a:b:e + a:c:e + b:d:e + c:d:e)

R> plot(g2)

R> separates("a", "d", c("b", "c", "e"), g2)

[1] TRUE

a

b

e

c

d

26

3.1 Factorization and dependence graph

Consider d–dimensional random vector X = (Xi; i ∈ V) where V = {1, . . . , d}.

For a ⊂ V define Xa = (Xi; i ∈ a).

Let A = {a1, . . . , aQ} be a collection of subset of V where ∪jaj = V .

Consider pmf’s/pdf’s of the form

p(x) =
∏
a∈A

φa(xa)

where φa() is a non–negative function of xa (equivalently: a function that depends

in x only through xa).

We shall often just write

p =
∏
a∈A

φa or p =
∏
a∈A

φ(a)

The dependence graph for p is the graph induced by A.

27

Suppose

p(x) = ψAB(xAB)ψBCD(xBCD)ψCE(xCE)ψDE(xDE)

Then the dependence graph for p is:

R> plot((g3 <- ug(~ A:B + B:C:D + C:E + D:E)))

A

B

C

D

E

28

3.2 Reading conditional independencies – global Markov property

Conditional independencies can be read off the dependence graph:

• Global Markov Property : If A ⊂ V and B ⊂ V are separated by S ⊂ V in

the dependence graph G then XA⊥⊥AB|XS .

• Follows from factorization criterion: X⊥⊥Y |Z if

p(x, y, z) = g(x, z)h(y, z)

• Example: With

p(x) = ψAB(xAB)ψBCD(xBCD)ψCE(xCE)ψDE(xDE)

we have (D,E)⊥⊥A|B:

p(x) =

[
ψAB(xAB)

](
ψBCD(xBCD)ψCE(xCE)ψDE(xDE)

)
= g(xAB)h(xBCDE)

Now integrate over xC and the result follows.

29

R> plot(g3)

R> separates(c("D","E"), "A", "B", g3)

[1] TRUE

A

B

C

D

E

30

4 Directed acyclic graphs (DAGs)

Definition 8 A directed graph as a mathematical object is a pair G = (V,E)

where V is a set of vertices and E is a set of directed edges, normally drawn as

arrows.

A directed graph is acyclic if it has no directed cycles, that is, cycles with the

arrows pointing in the same direction all the way around.

A DAG is a directed graph that is acyclic.

31

A DAG is created by the dag() function in gRbase. The graph can be specified by

a list of formulas or by a list of vectors. The following statements are equivalent:

R> dag0 <- dag(~a, ~b * a, ~c * a * b, ~d * c * e, ~e * a)

R> dag0 <- dag(~a + b:a + c:a:b + d:c:e + e:a)

R> dag0 <- dag("a", c("b", "a"), c("c", "a", "b"), c("d", "c", "e"), c("e", "a"))

R> dag0

A graphNEL graph with directed edges

Number of Nodes = 5

Number of Edges = 6

Note that d*b*c and d:b:c means that ”d” has parents ”b” and ”c”.

32

R> plot(dag0)

a

b

c

d

e

33

Directed graphs can also be created from matrices:

R> (m <- matrix(c(0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,

1, 0, 0, 0, 0, 0, 1, 1, 0), nrow = 5))

[,1] [,2] [,3] [,4] [,5]

[1,] 0 1 0 0 0

[2,] 0 0 1 1 0

[3,] 0 0 0 0 1

[4,] 0 0 0 0 1

[5,] 0 0 0 0 0

R> rownames(m) <- colnames(m) <- letters[1:5]

R> dg <- as(m, "graphNEL")

R> plot(dg)

a

b

c d

e

34

Definition 9 The parents of a vertex β are those nodes α for which α→ β.

Denote this set pa(β).

The children of α are those nodes β for which α→ β. Denote this set by ch(α).

R> parents("d", dag0)

[1] "c" "e"

R> children("c", dag0)

[1] "d"

35

4.1 Factorization and dependence graph – DAGs

Let D = (V,E) be a DAG, X = (Xv; v ∈ V) be random vector with density p().

If p() factorizes as

p(x) =
∏
v∈V

pXv|Xpa(v)
(xv|xpa(v))

then p factorizes according to D.

Often just write

p(x) =
∏
v∈V

pv|pa(v)(xv|xpa(v))

or

p =
∏
v∈V

p(v | pa(v))

36

R> plot(dag0)

a

b

c

d

e

Factorization for X = (Xa, Xb, . . . , Xe)

pX(x) = pa(xa)pb|a(xb|xa)pc|a,b(xc|xa, xb)pe|a(xe|xa)pd|c,e(xd|xc, xe)

In short form

pV (V) = p(a)p(b|a)p(c|a, b)p(e|a)p(d|c, e)

37

4.2 Reading conditional independencies from DAGs (I)

Reading conditional independencies is different:

R> par(mfrow=c(3,1),mar=c(3,1,2,1))

R> plot(dag(~a+b:a+c:b),"circo")

R> plot(dag(~c+b:c+a:b),"circo")

R> plot(dag(~b+a:b+c:b),"circo")

a b c
c b a

b ac
In all cases a⊥⊥ c | b:

p(a)p(b|a)p(c|b) = ψ1(a, b)ψ2(b, c)

p(c)p(b|c)p(a|b) = ψ1(a, b)ψ2(b, c)

p(b)p(c|b)p(a|b) = ψ1(a, b)ψ2(b, c)

38

But this one is different:

R> plot(dag(~a+c+b:a:c),"circo")

a cb

p(a)p(c)p(b|a, c)

• No factorization so no conditional independence.

• But marginally, p(a, b) = p(a)p(b) so a⊥⊥ b.

39

4.3 Moralization

An important operation on DAGs is to (i) add edges between the parents of each

node, and then (ii) replace all directed edges with undirected ones, thus returning

an undirected graph. This is known as moralization.

R> dag0m <- moralize(dag0)

R> par(mfrow=c(1,2))

R> plot(dag0)

R> plot(dag0m)

a

b

c

d

e

a

b

c

d

e

40

a

b

c

d

e

a

b

c

d

e

p(V) =

(
p(a)p(b|a)p(c|a, b)

)
p(e|a)p(d|c, e)

= ψ(c, a, b)ψ(e, a)ψ(d, c, e) = ψ(c, a, b)ψ(c, e, a)ψ(d, c, e)

• Hence, if p factorizes according to DAG then p also factorizes according to the

moral graph.

• Therefore the conditional indpendencies that can be read of the moral graph

holds – but there may be more: For example: c⊥⊥ e | a – but this can not be

seen from moral graph.

41

4.4 Ancestral sets and graphs*

Definition 10 If there is a path from α to β we write α 7→ β. The ancestors of a

node β are the nodes α such that α 7→ β. The ancestral set of a set A is the

union of A with its ancestors. The ancestral graph of a set A is the subgraph

induced by the ancestral set of A.

R> ancestralSet(c("a", "c", "e"), dag0)

[1] "a" "b" "c" "e"

R> plot(ancestralGraph(c("a", "c", "e"), dag0))

a

b

c

e

42

4.5 Reading conditional independences from DAG (II)*

To check if A⊥⊥B|S form the ancestral graph of A ∪B ∪ S. Moralize this

ancestral graph. If A and B are separated by S in this moral graph then A⊥⊥B|S.

R> par(mfrow=c(1,2))

R> plot(ancestralGraph(c("a", "c", "e"), dag0))

R> plot(moralize(ancestralGraph(c("a", "c", "e"), dag0)))

a

b

c

e

a

b

c

e

Why this works: Because we can integrate over the variables not in the ancestral

set of A ∪B ∪ S. Then we use the factorization structure in p(An(A ∪B ∪ S)).

43

5 Bayesian Network (BN) basics

• A Bayesian network is a often understood to be graphical model based on a

directed acyclic graph (a DAG).

• A BN typically will typically satisfy conditional independence restrictions

which enables computations of updated probabilities for states of unobserved

variables to be made very efficiently .

• The DAG only is used to give a simple and transparent way of specifying a

probability model.

• The computations are based on exploiting conditional independencies in an

undirected graph.

• Therefore, methods for building undirected graphical models can just as easily

be used for building BNs.

This is the main point when we come to linking BNs to statistical models and

data!!!

44

6 A small worked example BN

Consider the following narrative:

Having flu (F) may cause elevated temperature (T). Elevated tempearture

may cause a headache (H).

Illustrate this narrative by DAG :

R> plot((FTH<-dag(~ F + T:F + H:T)), "circo")

F T H

45

We define a joint pmf for X as

pX(x) = pXF (xF)pXH |XF
(xT |xF)pXH |XT

(xH |xT) (1)

In a less rigorous notation (1) may be written

p(V) = p(F)p(T |F)p(H|T)

Conditional independence assumption: headache is conditionally independent of

flu given temperature.

Conditional independence assumption: Flu does not directly cause headache; the

headache comes from the fever.

Given a finding or evidence that a person has headache we may want to calculate

P (F = yes|H = yes) or P (T = yes|H = yes)

In this small example we can compute everything in a brute force way using table

operation functions from gRbase.

46

6.1 Specification of conditional probability tables

We specify p(F), p(T |G) and p(H|T) as tables (1 =yes, 2 =no):

R> (p.F <- parray("F", levels=2, values=c(.01,.99)))

F

F1 F2

0.01 0.99

R> (p.TgF <- parray(c("T","F"), levels=c(2,2), values=c(.95,.05, .001,.999)))

F

T F1 F2

T1 0.95 0.001

T2 0.05 0.999

R> (p.HgT <- parray(c("H","T"), levels=c(2,2), values=c(.80,.20, .010,.990)))

T

H T1 T2

H1 0.8 0.01

H2 0.2 0.99

47

6.2 Brute force computations

1) Calculate joint distribution p(FTH)

R> p.FT <- tableMult(p.F, p.TgF)

R> p.FTH <- tableMult(p.FT, p.HgT)

R> as.data.frame.table(p.FTH)

H T F Freq

1 H1 T1 F1 0.0076000

2 H2 T1 F1 0.0019000

3 H1 T2 F1 0.0000050

4 H2 T2 F1 0.0004950

5 H1 T1 F2 0.0007920

6 H2 T1 F2 0.0001980

7 H1 T2 F2 0.0098901

8 H2 T2 F2 0.9791199

48

2) Calculate the marginal distribution p(FH)

R> p.FH <- tableMargin(p.FTH, margin=c('F','H'))
R> as.data.frame.table(p.FH)

F H Freq

1 F1 H1 0.0076050

2 F2 H1 0.0106821

3 F1 H2 0.0023950

4 F2 H2 0.9793179

3) calculate conditional distribution p(I|H)

R> p.H <- tableMargin(p.FH, margin='H')
R> (p.FgH <- tableDiv(p.FH, p.H))

F

H F1 F2

H1 0.415866923 0.5841331

H2 0.002439613 0.9975604

So p(F = 1(yes)|H = 1(yes)) = 0.42 while p(F = 1(yes)) = 0.01.

49

6.3 Brute force computations will fail

However, this scheme is computationally prohibitive in large models.

• If the model has 80 variables each with 10 levels, the joint distribution will

have 1080 states = the estimated number of atoms in the universe!

• In practice we a never interested in the joint distribution itself. We typically

want the conditional distribution of one (or a few) variables given some of the

other variables.

• We want to obtain this without calculating the joint distribution...

50

7 Decomposable graphs and junction trees

51

7.1 Decomposable graphs

Definition 11 A graph is decomposable (or triangulated) if it contains no cycles

of length ≥ 4.

Decomposable graphs play a central role.

R> par(mfrow=c(1,3))

R> plot(ug(~1:2+2:3:4+3:4:5:6+6:7), "circo") # decomposable

R> plot(ug(~1:2+2:3+3:4:5+4:1),"circo") # not decomposable

R> plot(ug(~1:2:5+2:3:5+3:4:5+4:1:5),"circo") # not decomposable

●1 ●2

●3

●4

●5

●6
●7

1
2

3
4

5

1
2

5
3

4

52

7.2 Junction tree

Result: A graph is decomposable iff it can be represented by a junction tree (not

unique).

AB BCD��
��

��
��

CDF��
��

��
��

��
��

��
��

��
��

��
��

��
��

A B C

D FE

B CD

D

��
��
DE

D

��
��
DE

-�

For any two cliques C and D, C ∩D is a subset of every node between them in

the junction tree.

53

7.3 The key to message passing

Suppose

p(x) =
∏

C:cliques

ψC(xC)

where C are the cliques of a decomposable graph (equivalently: nodes in the

junction tree)

We may write p in a clique potential representation

p(x) =

∏
C:cliques ψC(xC)∏

S:separators ψS(xS)

The terms are called potentials ; the representation is not unique.

54

Potential representation easy to obtain from DAG factorization:

• Set all ψC(xC) = 1 and all ψS(xS) = 1

• Assign each conditional p(xv|xpa(v)) to a potential ψC for a clique C

containing v ∪ pa(v) by

ψC(xC)← ψC(xC)p(xv|xpa(v))

55

Using local computations we can manipulate the potentials to obtain

clique marginal representation :

p(x) =

∏
C:cliques pC(xC)∏

S:separators pS(xS)

1. First until the potentials contain the clique and separator marginals, i.e.

ψC(xC) = pC(xC).

2. Next until the potentials contain the clique and separator marginals conditional

on a certain set of findings, i.e. ψC(xC , e∗) = pC(xC |e∗).

Done by message passing in junction tree .

Notice: We do not want to carry out the multiplication above. Better to think

about that we have a representation of p as

p ≡ {pC , pS;C : cliques, S : separators}

56

7.4 Computations by message passing

R> par(mfrow=c(1,2), oma=c(2,1,2,1))

R> plot(FTH)

R> plot(moralize(FTH))

F

T

H

F

T

H

The moral graph is decomposable (essential for what follows).

Rewrite p(V) as

p(V) =
(
p(F)p(T |F)

)
p(H|T) =

ψFTψTH

ψT

where ψT ≡ 1.

57

Junction tree:

FT T TH��
��

��
��

Setting ψFT = p(F)p(T |F), ψTH = p(H|T) and ψT = 1 gives

p(F, T, T) =
ψFTψTH

ψT

58

7.5 Clique potential representation

p(F, T,H) =
ψFTψTH

ψT

R> (qFT <- tableMult(p.F, p.TgF))

F

T F1 F2

T1 0.0095 0.00099

T2 0.0005 0.98901

R> (qTH <- p.HgT)

T

H T1 T2

H1 0.8 0.01

H2 0.2 0.99

R> (qT <- parray("T",levels=2, values=1))

T

T1 T2

1 1

59

7.6 Working inwards in junction tree

Work inwards towards root (i.e. from FT towards TH):

Set ψ∗T =
∑

F ψFT .

Set ψ∗TH = ψTH
ψ∗T
ψT

Then

p(F,H, T) = ψFT
1

ψ∗T

[
ψ∗T
ψT

ψTH

]
=
ψFTψ∗TH
ψ∗T

Now we have ψ∗TH is the marginal probability p(T,H):

ψ∗TH =
∑
F

p(F, T,H) = p(T,H) X

60

R> (qTs <- tableMargin(qFT, "T"))

T

T1 T2

0.01049 0.98951

R> (qTHs <- tableMult(qTH, tableDiv(qTs, qT)))

H

T H1 H2

T1 0.0083920 0.0020980

T2 0.0098951 0.9796149

61

7.7 Working outwards in junction tree

Work outwards from root (i.e. from TH towards FT):

Set ψ∗∗T =
∑

H ψ
∗
TH . Since ψ∗TH = p(T,H) we have

ψ∗∗T = p(T) X

R> (qTss <- tableMargin(qTHs, "T"))

T

T1 T2

0.01049 0.98951

62

Set ψ∗FT = ψFT
ψ∗∗T
ψ∗T

. Then

p(F, T,H) =

[
ψFT

ψ∗∗T
ψ∗T

]
1

ψ∗∗T
ψ∗TH = ψ∗FT

1

ψ∗∗T
ψ∗TH

and

ψ∗FT = p(F, T) X

R> (qFTs <- tableMult(qFT, tableDiv(qTss, qTs)))

F

T F1 F2

T1 0.0095 0.00099

T2 0.0005 0.98901

63

This leaves us with marginal distributions on all cliques and separators

R> qFTs

F

T F1 F2

T1 0.0095 0.00099

T2 0.0005 0.98901

R> qTHs

H

T H1 H2

T1 0.0083920 0.0020980

T2 0.0098951 0.9796149

R> qTs

T

T1 T2

0.01049 0.98951

64

From this we get:

R> qTs # probability of temperature

T

T1 T2

0.01049 0.98951

R> tableMargin(qFT, "F") # probability of fever

F

F1 F2

0.01 0.99

R> tableMargin(qTH, "H") # probability of headache

H

H1 H2

0.81 1.19

– and we never calculated the joint distribution!!

65

8 Propagating findings

Suppose we have the finding H = yes(= H1).

Set any entry in ψTH which is inconsistent with H = H1 equal to 0. This yields a

new potential, say ψ̃TH and we have

p(F, T |H = H1) ∝ P (F, T,H = H1) =
ψFT ψ̃TH

ψT

Repeat the computations above...

66

R> qTH

T

H T1 T2

H1 0.8 0.01

H2 0.2 0.99

R> ## Set finding H=H1

R> qTH[c(2,4)] <- 0

R> qTH

T

H T1 T2

H1 0.8 0.01

H2 0.0 0.00

67

R> ## Repeat everything

R> (qTs <- tableMargin(qFT, "T"))

T

T1 T2

0.01049 0.98951

R> (qTHs <- tableMult(qTH, tableDiv(qTs, qT)))

H

T H1 H2

T1 0.0083920 0

T2 0.0098951 0

R> (qTss <- tableMargin(qTHs, "T"))

T

T1 T2

0.0083920 0.0098951

R> (qFTs <- tableMult(qFT, tableDiv(qTss, qTs)))

F

T F1 F2

T1 7.6e-03 0.0007920

T2 5.0e-06 0.0098901

68

After these operations, the tables only contain the clique probabilities up to a

normalizing constant, i.e. ψC(xC) ∝ p(xC):

R> sum(qFTs)

[1] 0.0182871

To get probability of fever we must normalize:

R> tableMargin(qFTs, "F")/sum(qFTs)

F

F1 F2

0.4158669 0.5841331

69

The important point of the computations: After working inwards and outwards in

the junction tree, the clique potentials are consistent: They match on their

separators:

R> tableMargin(qFTs, "T")

T

T1 T2

0.0083920 0.0098951

R> tableMargin(qTHs, "T")

T

T1 T2

0.0083920 0.0098951

R> qTss

T

T1 T2

0.0083920 0.0098951

70

9 The chest clinic narrative

Lauritzen and Spiegehalter (1988) presents the following narrative:

“Shortness–of–breath (dyspnoea) may be due to tuberculosis, lung cancer

or bronchitis, or none of them, or more than one of them.

A recent visit to Asia increases the chances of tuberculosis, while smoking

is known to be a risk factor for both lung cancer and bronchitis.

The results of a single chest X–ray do not discriminate between lung cancer

and tuberculosis, as neither does the presence or absence of dyspnoea.”

71

A formalization of this narrative is as follows:

The DAG in Figure 1 now corresponds to a factorization of the joint probability

function as

p(V) = p(A)p(T |A)p(S)p(L|S)p(B|S)p(E|T, L)p(D|E,B)p(X|E). (2)

asia

tub

smoke

lung

bronceither

xray dysp

Figure 1: The directed acyclic graph corresponding to the chest clinic example.

72

9.1 Findings and queries

• Suppose we are given the finding that a person has recently visited Asia and

suffers from dyspnoea, i.e. A = yes and D = yes. Generally denote findings as

E = e∗

• Interest may be in the conditional distributions p(L | e∗), p(T | e∗) and

p(B | e∗), or possibly in the joint (conditional) distribution p(L, T,B | e∗).

• Interest might also be in calculating the probability of a specific event, e.g. the

probability of seeing a specific evidence, i.e. p(E = e∗).

• A brute–force approach is to calculate the joint distribution by carrying out the

table multiplications and then marginalizing.

• This is doable in this example (the joint distribution will have 28 = 256 states)

but with 100 binary variables the state space will have 2100 states. That is

prohibitive.

• The gRain package implements a computationally much more efficient scheme.

73

10 An introduction to the gRain package

Specify chest clinic network.

R> yn <- c("yes","no")

R> a <- cptable(~asia, values=c(1,99),levels=yn)

R> t.a <- cptable(~tub+asia, values=c(5,95,1,99),levels=yn)

R> s <- cptable(~smoke, values=c(5,5), levels=yn)

R> l.s <- cptable(~lung+smoke, values=c(1,9,1,99), levels=yn)

R> b.s <- cptable(~bronc+smoke, values=c(6,4,3,7), levels=yn)

R> e.lt <- cptable(~either+lung+tub,values=c(1,0,1,0,1,0,0,1),levels=yn)

R> x.e <- cptable(~xray+either, values=c(98,2,5,95), levels=yn)

R> d.be <- cptable(~dysp+bronc+either, values=c(9,1,7,3,8,2,1,9), levels=yn)

R> plist <- compileCPT(list(a, t.a, s, l.s, b.s, e.lt, x.e, d.be))

R> bnet <- grain(plist)

R> bnet

Independence network: Compiled: FALSE Propagated: FALSE

Nodes: chr [1:8] "asia" "tub" "smoke" "lung" "bronc" "either" ...

74

R> plist

CPTspec with probabilities:

P(asia)

P(tub | asia)

P(smoke)

P(lung | smoke)

P(bronc | smoke)

P(either | lung tub)

P(xray | either)

P(dysp | bronc either)

R> plist$tub

asia

tub yes no

yes 0.05 0.01

no 0.95 0.99

75

R> plot(bnet)

asia

tub

smoke

lung

bronceither

xray dysp

76

10.1 Queries

R> querygrain(bnet, nodes=c('lung', 'tub', 'bronc'))

$tub

tub

yes no

0.0104 0.9896

$lung

lung

yes no

0.055 0.945

$bronc

bronc

yes no

0.45 0.55

77

10.2 Setting findings and probability of findings

R> bnet.f <- setFinding(bnet, nodes=c('asia', 'dysp'), state=c('yes','yes'))
R> bnet.f

Independence network: Compiled: TRUE Propagated: TRUE

Nodes: chr [1:8] "asia" "tub" "smoke" "lung" "bronc" "either" ...

Findings: chr [1:2] "asia" "dysp"

R> pFinding(bnet.f)

[1] 0.004501375

78

10.3 Queries – II

R> querygrain(bnet.f, nodes=c('lung', 'tub', 'bronc'))

$tub

tub

yes no

0.08775096 0.91224904

$lung

lung

yes no

0.09952515 0.90047485

$bronc

bronc

yes no

0.8114021 0.1885979

79

R> querygrain(bnet.f, nodes=c('lung', 'tub', 'bronc'), type='joint')

, , bronc = yes

tub

lung yes no

yes 0.003149038 0.05983172

no 0.041837216 0.70658410

, , bronc = no

tub

lung yes no

yes 0.001827219 0.03471717

no 0.040937491 0.11111605

80

10.4 Dependence graph, moralization and triangulation

The computational scheme outlined above does not apply directly to the chest

clinic example.

An extra step is needed: Triangulation of the moral graph.

Recall chest clinic model

p(V) = p(A)p(T |A)p(S)p(L|S)p(B|S)p(E|T, L)p(D|E,B)p(X|E).

Absorb lower order terms into higher order terms:

p(V) = ψ(T,A)ψ(L, S)ψ(B,S)ψ(E, T, L)ψ(D,E,B)ψ(X,E).

81

The dependence graph corresponding to the factorization

p(V) = ψ(T,A)ψ(L, S)ψ(B,S)ψ(E, T, L)ψ(D,E,B)ψ(X,E).

is the moral graph - but this graph is NOT triangulated:

R> par(mfrow=c(1,2))

R> plot(bnet$dag)

R> plot(moralize(bnet$dag))

asia

tub

smoke

lung

bronceither

xray dysp

asia

tub smoke

lung bronc

either

xray dysp

82

10.5 Triangulation

We can add edges, so called fill–ins , to the dependence graph to make the graph

triangulated. This is called triangulation :

R> par(mfrow=c(1,2))

R> plot(moralize(bnet$dag))

R> plot(triangulate(moralize(bnet$dag)))

asia

tub smoke

lung bronc

either

xray dysp

asia

tub smoke

lung

bronc

either

xray dysp

83

DAG:

p(V) = p(A)p(T |A)p(S)p(L|S)p(B|S)p(D|E,B)p(E|T, L)p(X|E).

Dependence graph (moral graph):

p(V) = ψ(T,A)ψ(L, S)ψ(B,S)ψ(D,E,B)ψ(E, T, L)ψ(X,E).

Triangulated graph:

p(V) = ψ(T,A)ψ(L, S,B)ψ(L,E,B)ψ(D,E,B)ψ(E, T, L)ψ(X,E)

where

ψ(L, S,B) = ψ(L, S)ψ(B,S) φ(L,E,B) ≡ 1

Notice: We have not changed the fundamental model by these steps, but some

conditional independencies are concealed in the triangulated graph.

But the triangulated graph factorization allows efficient calculations. X

84

10.6 Fundamental operations in gRain

Fundamental operations in gRain so far:

• Network specification: grain() Create a network from list of conditional

probability tables; and do a few other things.

• Set findings: setFinding() : Set the values of some variables.

• Ask queries: querygrain() : Get updated beliefs (conditional probabilities

given findings) of some variables

Under the hood there are two additional operations:

• Compilation: compile() Create a clique potential representation (and a few

other steps)

• Propagation: propagate() Turn clique potentials into clique marginals.

These operations must be made before querygrain() can be called but querygrain()

will make these operations if necessary.

85

11 Summary of the BN part

We have used a DAG for specifying a complex stochastic model through simple

conditional probabilities

p(V) =
∏
v

p(v|pa(v))

Afterwards we transfer the model to a factorization over the cliques of a

decomposable undirected graph

p(V) = {
∏

C:cliques

ψC(C)}/{
∏

S:separators

ψS(S)}

It is through the decomposable graph the efficient computation of probabilities

takes place.

We then forget about the DAG part and the conditional probability tables.

Therefore, we may skip the DAG part and find the decomposable graph and

corresponding clique potentials from data.

86

12 Contingency tables

In a study of lizard behaviour, characteristics of 409 lizards were recorded, namely

species (S), perch diameter (D) and perch height (H). We have V = {D,H, S}.

R> data(lizardRAW, package="gRbase")

R> head(lizardRAW)

diam height species

1 >4 >4.75 dist

2 >4 >4.75 dist

3 <=4 <=4.75 anoli

4 >4 <=4.75 anoli

5 >4 <=4.75 dist

6 <=4 <=4.75 anoli

R> dim(lizardRAW)

[1] 409 3

87

We may summarize data in a contingency table with cells (dhs) and counts ndhs

given by:

R> data(lizard, package="gRbase")

R> lizard

, , species = anoli

height

diam >4.75 <=4.75

<=4 32 86

>4 11 35

, , species = dist

height

diam >4.75 <=4.75

<=4 61 73

>4 41 70

88

12.1 Notation

We consider a discrete random vector X = (Xv; v ∈ V) where each Xv has a

finite state space Xv

A configuration of X is denoted by x = (xv, v ∈ V).

A configuration x is also a cell in a contingency table . The counts in the cell is

denoted n(x) and the total number of observations in denoted n.

The probability of an observation in cell x is denoted p(x).

For A ⊂ V we correspondingly have XA = (Xv; v ∈ A).

A configuration of XA is denoted by xA.

For A ⊂ V we correspondingly have a marginal table with counts n(xA).

The probability of an observation in a marginal cell xA is denoted

p(xA) =
∑

x′:x′A=xA
p(x′).

89

R> lizard

, , species = anoli

height

diam >4.75 <=4.75

<=4 32 86

>4 11 35

, , species = dist

height

diam >4.75 <=4.75

<=4 61 73

>4 41 70

R> ## Marginal table

R> tableMargin(lizard, c("species","height"))

height

species >4.75 <=4.75

anoli 43 121

dist 102 143

90

12.2 Log–linear models

We are interested in modelling the cell probabilities pdhs.

Commonly done by a hierarchical expansion of log–cell–probabilities into

interaction terms

log pdhs = α0 + αDd + αHh + αSs + βDHdh + βDSds + βHShs + γDHSdhs

Structure on the model is obtained by setting interaction terms to zero following

the principle that if an interaction term is set to zero then all higher order terms

containing that interaction terms must also be set to zero.

For example, if we set βDHdh = 0 then we must also set γDHSdhs = 0.

The non–zero interaction terms are the generators of the model. Setting

βDHdh = γDHSdhs = 0 the generators are

{D,H, S,DS,HS}

If no interaction terms are set to zero we have the saturated model .

If all interaction models are set to zero we have the independence model

91

Generators contained in higher order generators can be omitted so the generators

become

{DS,HS}

corresponding to

log pdhs = αDSds + αHShs

Instead of taking logs we may write phds in product form

pdhs = ψDSds ψ
HS
hs

The factorization criterion gives directly that D⊥⊥H |S.

92

More generally the generating class of a log–linear model is a set

A = {A1, . . . , AQ} where Aq ⊂ V .

This corresponds to

p(x) =
∏
A∈A

φA(xA)

where φA is a potential, a function that depends on x only through xA.

Under multinomial sampling the likelihood is

L =
∏
x

p(x)n(x) =
∏
A∈A

∏
xA

ψA(xA)n(xA)

The MLE for p(x) is the (unique) solution to the likelihood equations

p̂(xA) = n(xA)/n, A ∈ A

Typically MLE must be found by iterative methods, e.g. iterative proportional

scaling (IPS)

93

Iterative proportional scaling is implemented in loglin() :

R> (ll1 <- loglin(lizard, list(c("species","diam"),c("species","height"))))

2 iterations: deviation 0

$lrt

[1] 2.025647

$pearson

[1] 2.017364

$df

[1] 2

$margin

$margin[[1]]

[1] "species" "diam"

$margin[[2]]

[1] "species" "height"

94

A formula based interface to loglin() is provided by loglm() :

R> (ll2 <- loglm(~species:diam+species:height, data=lizard))

Call:

loglm(formula = ~species:diam + species:height, data = lizard)

Statistics:

X^2 df P(> X^2)

Likelihood Ratio 2.025647 2 0.3631921

Pearson 2.017364 2 0.3646994

95

12.3 Graphical models and decomposable models

Definition 12 A hierarchical log–linear model with generating class

A = {a1, . . . aQ} is graphical if A are the cliques of the dependence graph.

Definition 13 A graphical log–linear model is decomposable if the models

dependence graph is triangulated.

96

Example 12.1 A1 = {ABC,BCD} is graphical but A2 = {AB,AC,BCD} is

not. (Both have dependence graph with cliques A1). A1 is also decomposable.

A3 = {AB,AC,BD,CD} is graphical but not decomposable.

R> par(mfrow=c(1,3))

R> plot(ug(~A:B:C + B:C:D))

R> plot(ug(~A:B + A:C + B:C:D))

R> plot(ug(~A:B + A:C + B:D + C:D))

A
B

C
D

A
B

C
D

A
B C

D
�

97

12.4 ML estimation in decomposable models

Consider model A1 = {ABC,BCD}. Index levels of A,B,C,D by i, j, k, l.

The MLE for this model is

p̂ijkl =

nijk+

n

n+jkl

n
n+jk+

n

• nijk+

n
is MLE p̂ijk under the marginal model {ABC} for ABC marginal table.

• n+jkl

n
is MLE p̂jkl under the marginal model {BCD} for the BCD marginal

table.

• n+jk+

n
is MLE p̂jk under the marginal model {BC} for the BC marginal table.

• Generally, for a decomposable model, the MLE can be found in closed form as

p̂(x) =

∏
C:cliques p̂C(xC)∏

S:separators p̂S(xS)

where p̂E(xE) = n(xE)/n for any clique or separator E.

98

Example 12.2 Consider the lizard data and the model A = {[DS][HS]}. The

MLE is

p̂dhs =
(nd+s/n)(n+hs/n)

n++s/n
=
nd+sn+hs

nn++s

R> n.ds <- tableMargin(lizard, c("diam", "species"))

R> n.hs <- tableMargin(lizard, c("height", "species"))

R> n.s <- tableMargin(lizard, c("species"))

R> ## Expected cell counts

R> (fv <- tableDiv(tableMult(n.ds, n.hs), n.s))

, , diam = <=4

height

species >4.75 <=4.75

anoli 30.93902 87.06098

dist 55.78776 78.21224

, , diam = >4

height

species >4.75 <=4.75

anoli 12.06098 33.93902

dist 46.21224 64.78776

99

R> as.data.frame.table(tablePerm(fv, c("diam","height","species")))

diam height species Freq

1 <=4 >4.75 anoli 30.93902

2 >4 >4.75 anoli 12.06098

3 <=4 <=4.75 anoli 87.06098

4 >4 <=4.75 anoli 33.93902

5 <=4 >4.75 dist 55.78776

6 >4 >4.75 dist 46.21224

7 <=4 <=4.75 dist 78.21224

8 >4 <=4.75 dist 64.78776

R> as.data.frame.table(fitted(ll2))

Re-fitting to get fitted values

diam height species Freq

1 <=4 >4.75 anoli 30.93902

2 >4 >4.75 anoli 12.06098

3 <=4 <=4.75 anoli 87.06098

4 >4 <=4.75 anoli 33.93902

5 <=4 >4.75 dist 55.78776

6 >4 >4.75 dist 46.21224

7 <=4 <=4.75 dist 78.21224

8 >4 <=4.75 dist 64.78776

�

100

12.5 Connecting decomposable models and Bayesian networks

For a decomposable model, the MLE is given as

p̂(x) =

∏
C:cliques p̂C(xC)∏

S:separators p̂S(xS)
(3)

• The result (3) is IMPORTANT in connection with Bayesian networks, because

(3) is a clique potential representation of p.

• Hence if we find a decomposable graphical model then we can convert this to a

Bayesian network.

• We need not specify conditional probability tables (they are only used for

specifying the model anyway, the real computations takes place in the junction

tree).

101

13 Testing for conditional independence

Tests of general conditional independence hypotheses of the form u⊥⊥ v |W can

be performed with ciTest() (a wrapper for calling ciTest_table()).

R> args(ciTest_table)

function (x, set = NULL, statistic = "dev", method = "chisq",

adjust.df = TRUE, slice.info = TRUE, L = 20, B = 200, ...)

NULL

The general syntax of the set argument is of the form (u, v,W) where u and v

are variables and W is a set of variables.

R> ciTest(lizard, set=c("diam","height","species"))

Testing diam _|_ height | species

Statistic (DEV): 2.026 df: 2 p-value: 0.3632 method: CHISQ

102

The set argument can be given in different forms:

Alternative forms are available:

R> ciTest(lizard, set=~diam+height+species)

R> ciTest(lizard, ~di+he+s)

R> ciTest(lizard, c("di","he","sp"))

R> ciTest(lizard, c(2,3,1))

103

13.1 What is a CI-test – stratification

Conditional independence of u and v given W means independence of u and v for

each configuration w∗ of W .

In model terms, the test performed by ciTest() corresponds to the test for

removing the edge {u, v} from the saturated model with variables {u, v} ∪W .

Conceptually form a factor S by crossing the factors in W . The test can then be

formulated as a test of the conditional independence u⊥⊥ v |S in a three way table.

The deviance decomposes into independent contributions from each stratum:

D = 2
∑
ijs

nijs log
nijs

m̂ijs

=
∑
s

2
∑
ij

nijs log
nijs

m̂ijs
=
∑
s

Ds

where the contribution Ds from the sth slice is the deviance for the independence

model of u and v in that slice.

104

R> cit <- ciTest(lizard, set=~diam+height+species, slice.info=T)

R> cit

Testing diam _|_ height | species

Statistic (DEV): 2.026 df: 2 p-value: 0.3632 method: CHISQ

R> names(cit)

[1] "statistic" "p.value" "df" "statname" "method" "adjust.df"

[7] "varNames" "slice"

R> cit$slice

statistic p.value df species

1 0.1779795 0.6731154 1 anoli

2 1.8476671 0.1740550 1 dist

The sth slice is a |u| × |v|–table {nijs}i=1...|u|,j=1...|v|. The degrees of freedom

corresponding to the test for independence in this slice is

dfs = (#{i : ni·s > 0} − 1)(#{j : n·js > 0} − 1)

where ni·s and n·js are the marginal totals.

105

14 Log–linear models using the gRim package

R> data(wine, package="gRbase")

R> head(wine,4)

Cult Alch Mlca Ash Aloa Mgns Ttlp Flvn Nnfp Prnt Clri Hue Oodw Prln

1 v1 14.23 1.71 2.43 15.6 127 2.80 3.06 0.28 2.29 5.64 1.04 3.92 1065

2 v1 13.20 1.78 2.14 11.2 100 2.65 2.76 0.26 1.28 4.38 1.05 3.40 1050

3 v1 13.16 2.36 2.67 18.6 101 2.80 3.24 0.30 2.81 5.68 1.03 3.17 1185

4 v1 14.37 1.95 2.50 16.8 113 3.85 3.49 0.24 2.18 7.80 0.86 3.45 1480

R> dim(wine)

[1] 178 14

Cult is grape variety (3 levels); all other variables are results of chemical analyses.

Comes from UCI Machine Learning Repository. ”Task” is to predict Cult from

chemical measurements.

106

Discretize data:

R> wine <- cbind(Cult=wine[,1],

as.data.frame(lapply(wine[-1], cut, 2, labels=c('L','H'))))
R> head(wine)

Cult Alch Mlca Ash Aloa Mgns Ttlp Flvn Nnfp Prnt Clri Hue Oodw Prln

1 v1 H L H L H H H L H L L H H

2 v1 H L L L L H H L L L L H H

3 v1 H L H L L H H L H L L H H

4 v1 H L H L L H H L H H L H H

5 v1 H L H H H H L L L L L H L

6 v1 H L H L L H H L L L L H H

R> dim(xtabs(~.,wine))

[1] 3 2 2 2 2 2 2 2 2 2 2 2 2 2

107

Just look at some variables

R> wine <- wine[,1:4]

R> head(wine)

Cult Alch Mlca Ash

1 v1 H L H

2 v1 H L L

3 v1 H L H

4 v1 H L H

5 v1 H L H

6 v1 H L H

R> dim(xtabs(~.,wine))

[1] 3 2 2 2

108

The function dmod() is used for specifying log–linear models.

• Data must be a table or dataframe (which can be coerced to a table)

• Model given as generating class:

– A right–hand–sided formula or

– A list.

– Variable names may be abbreviated:

R> mm <- dmod(~Cult:Alch+Alch:Mlca:Ash, data=wine)

R> mm <- dmod(list(c("Cult","Alch"), c("Alch","Mlca","Ash")), data=wine)

R> mm <- dmod(~C:Alc+Alc:M:As, data=wine)

R> mm

Model: A dModel with 4 variables

graphical : TRUE decomposable : TRUE

-2logL : 926.33 mdim : 11 aic : 948.33

ideviance : 127.86 idf : 6 bic : 983.33

deviance : 48.08 df : 12

109

The generating class as a list is retrieved with terms() and as a formula with

formula() :

R> str(terms(mm))

List of 2

$: chr [1:2] "Cult" "Alch"

$: chr [1:3] "Alch" "Mlca" "Ash"

R> formula(mm)

~Cult * Alch + Alch * Mlca * Ash

110

14.1 Plotting the dependence graph

R> plot(mm)

Cult

Alch

Mlca

Ash

111

Notice: No dependence graph in model object; must be generated on the fly using

ugList() :

R> # Default: a graphNEL object

R> DG <- ugList(terms(mm))

R> DG

A graphNEL graph with undirected edges

Number of Nodes = 4

Number of Edges = 4

R> # Alternative: an adjacency matrix

R> ugList(terms(mm), result="matrix")

Cult Alch Mlca Ash

Cult 0 1 0 0

Alch 1 0 1 1

Mlca 0 1 0 1

Ash 0 1 1 0

112

14.2 Model specification shortcuts

Shortcuts for specifying some models

R> str(terms(dmod(~.^., data=wine))) ## Saturated model

List of 1

$: chr [1:4] "Cult" "Alch" "Mlca" "Ash"

R> str(terms(dmod(~.^1, data=wine))) ## Independence model

List of 4

$: chr "Cult"

$: chr "Alch"

$: chr "Mlca"

$: chr "Ash"

R> str(terms(dmod(~.^3, data=wine))) ## All 3-factor model

List of 4

$: chr [1:3] "Cult" "Alch" "Mlca"

$: chr [1:3] "Cult" "Alch" "Ash"

$: chr [1:3] "Cult" "Mlca" "Ash"

$: chr [1:3] "Alch" "Mlca" "Ash"

113

Useful to combine with specification of a marginal table:

R> marg <- c("Cult", "Alch", "Mlca")

R> str(terms(dmod(~.^., data=wine, margin=marg))) ## Saturated model

List of 1

$: chr [1:3] "Cult" "Alch" "Mlca"

R> str(terms(dmod(~.^1, data=wine, margin=marg))) ## Independence model

List of 3

$: chr "Cult"

$: chr "Alch"

$: chr "Mlca"

114

14.3 Altering graphical models

Natural operations on graphical models: add and delete edges

R> mm <- dmod(~Cult:Alch+Alch:Mlca:Ash, data=wine)

R> mm2 <- update(mm, list(dedge=~Alch:Ash, aedge=~Cult:Mlca)) # No abbreviations

R> par(mfrow=c(1,2)); plot(mm); plot(mm2)

Cult

Alch

Mlca

Ash

Mlca

Ash Cult

Alch

115

14.4 Model comparison

Models are compared with compareModels() .

R> mm <- dmod(~Cult:Alch+Alch:Mlca:Ash, data=wine)

R> mm2 <- update(mm, list(dedge=~Alch:Ash+Alch:Cult)) # No abbreviations

R> compareModels(mm,mm2)

Large:

:"Cult" "Alch"

:"Alch" "Mlca" "Ash"

Small:

:"Alch" "Mlca"

:"Mlca" "Ash"

:"Cult"

-2logL: 126.66 df: 4 AIC(k= 2.0): 118.66 p.value: 0.000000

116

14.5 Decomposable models – deleting edges

Result: If A1 is a decompsable model and we remove an edge e = {u, v} which is

contained in one clique C only, then the new model A2 will also be decomposable.

R> par(mfrow=c(1,3))

R> plot(ug(~A:B:C+B:C:D))

R> plot(ug(~A:C+B:C+B:C:D))

R> plot(ug(~A:B+A:C+B:D+C:D))

A
B

C
D

A
C

B
D

A
B C

D
Left: A1 – decomposable; Center: dropping {A,B} gives decomposable model;

Right: dropping {B,C} gives non–decomposable model.

117

Result: The test for removal of e = {u, v} which is contained in one clique C only

can be made as a test for u⊥⊥ v|C \ {u, v} in the C–marginal table.

This is done by ciTest() . Hence, no model fitting is necessary.

118

14.6 Decomposable models – adding edges

More tricky when adding edge to a decomposable model

R> plot(ug(~A:B+B:C+C:D), "circo")

A B C D

Adding {A,D} gives non–decomposable model; adding {A,C} gives

decomposable model.

One solution: Try adding edge to graph and test if new graph is decomposable.

119

Can be tested with maximum cardinality search as implemented in mcs() . Runs

in O(|edges|+ |vertices|).

R> UG <- ug(~A:B+B:C+C:D)

R> mcs(UG)

[1] "A" "B" "C" "D"

R> UG1 <- addEdge("A","D",UG)

R> mcs(UG1)

character(0)

R> UG2 <- addEdge("A","C",UG)

R> mcs(UG2)

[1] "A" "B" "C" "D"

120

14.7 Test for adding and deleting edges

Done with testdelete() and testadd()

R> mm <- dmod(~C:Alc+Alc:M:As, data=wine)

R> plot(mm)

R> testdelete(mm, edge=c("Mlca","Ash"))

dev: 7.710 df: 2 p.value: 0.02117 AIC(k=2.0): 3.7 edge: Mlca:Ash

host: Alch Mlca Ash

Notice: Test performed in saturated marginal model

Cult

Alch

Mlca

Ash

121

R> mm <- dmod(~C:Alc+Alc:M:As, data=wine)

R> plot(mm)

R> testadd(mm, edge=c("Mlca","Cult"))

dev: 29.388 df: 4 p.value: 0.00001 AIC(k=2.0): -21.4 edge: Mlca:Cult

host: Alch Mlca Cult

Notice: Test performed in saturated marginal model

Cult

Alch

Mlca

Ash

122

14.8 Model search in log–linear models using gRim

Model selection implemented in stepwise() function.

• Backward / forward search (Default: backward)

• Select models based on p–values or AIC(k=2) (Default: AIC(k=2))

• Model types can be ”unsrestricted” or ”decomposable”. (Default is

decomposable if initial model is decompsable)

• Search method can be ”all” or ”headlong”. (Default is all)

R> args(stepwise.iModel)

function (object, criterion = "aic", alpha = NULL, type = "decomposable",

search = "all", steps = 1000, k = 2, direction = "backward",

fixinMAT = NULL, fixoutMAT = NULL, details = 0, trace = 2,

...)

NULL

123

R> dm1 <- dmod(~.^., data=wine)

R> dm2 <- stepwise(dm1, details=1)

STEPWISE:

criterion: aic (k = 2)

direction: backward

type : decomposable

search : all

steps : 1000

. BACKWARD: type=decomposable search=all, criterion=aic(2.00), alpha=0.00

. Initial model: is graphical=TRUE is decomposable=TRUE

change.AIC -2.5140 Edge deleted: Ash Alch

change.AIC -1.7895 Edge deleted: Ash Mlca

change.AIC -0.8054 Edge deleted: Mlca Alch

R> formula(dm2)

~Cult * Ash + Cult * Alch + Cult * Mlca

R> terms(dm2)

[[1]]

[1] "Cult" "Ash"

[[2]]

[1] "Cult" "Alch"

[[3]]

[1] "Cult" "Mlca"

124

R> par(mfrow=c(1,2))

R> plot(dm1, "circo")

R> plot(dm2, "circo")

Cult

Alch

Mlca

Ash

Cult

Ash Alch Mlca

125

15 From graph and data to network

Create graphs from models:

R> uG2 <- ugList(terms(dm2))

R> uG2 <- ugList(list(c("Cult", "Ash"), c("Cult", "Alch"), c("Cult", "Mlca")))

R> uG1 <- ugList(terms(dm1))

Given a graph (either an undirected decomposable graph or a DAG) and data we

can construct BN’s on the fly (data can be a dataframe or a table)

R> (wine1 <- compile(grain(uG1, data=wine)))

Independence network: Compiled: TRUE Propagated: FALSE

Nodes: chr [1:4] "Ash" "Cult" "Alch" "Mlca"

R> (wine2 <- compile(grain(uG2, data=wine)))

Independence network: Compiled: TRUE Propagated: FALSE

Nodes: chr [1:4] "Ash" "Cult" "Alch" "Mlca"

126

R> querygrain(wine1, "Cult")

$Cult

Cult

v1 v2 v3

0.3314607 0.3988764 0.2696629

R> querygrain(wine2, "Cult")

$Cult

Cult

v1 v2 v3

0.3314607 0.3988764 0.2696629

R> querygrain(setFinding(wine1, c("Ash","Alch"), c("L","H")), "Cult")

$Cult

Cult

v1 v2 v3

0.5769231 0.1923077 0.2307692

R> querygrain(setFinding(wine2, c("Ash","Alch"), c("L","H")), "Cult")

$Cult

Cult

v1 v2 v3

0.5524341 0.2029550 0.2446109

127

Consider naive Bayesian model for CAD data: All risk factors/symptoms are

conditionally independent given the disease:

R> par(mfrow=c(1,2))

R> plot(UG <- ug(~Heartfail:CAD+Smoker:CAD+Hyperchol:CAD+AngPec:CAD))

R> plot(DAG <- dag(~Heartfail:CAD+Smoker:CAD+Hyperchol:CAD+AngPec:CAD))

Heartfail

CAD

Smoker Hyperchol AngPec

Heartfail

CAD

Smoker Hyperchol AngPec

From a statistical point of view these two models are equivalent.

128

Given either a DAG or an UG and data (either as a table or as a dataframe) we can

construct BN’s on the fly:

R> cadmod1 <- compile(grain(UG, cad1))

R> cadmod2 <- compile(grain(DAG, cad1))

R> querygrain(cadmod1, nodes="CAD")

$CAD

CAD

No Yes

0.5466102 0.4533898

R> querygrain(cadmod2, nodes="CAD")

$CAD

CAD

No Yes

0.5466102 0.4533898

129

15.1 Prediction

We shall try to predict CAD in the validation dataset cad2

R> data(cad2)

R> head(cad2,3)

Sex AngPec AMI QWave QWavecode STcode STchange SuffHeartF

1 Male None NotCertain No Usable Usable Yes Yes

2 Female None NotCertain No Usable Usable Yes Yes

3 Female None NotCertain No Nonusable Nonusable No No

Hypertrophi Hyperchol Smoker Inherit Heartfail CAD

1 No No <NA> No No No

2 No No <NA> No No No

3 No Yes <NA> No No No

using predict.grain() .

R> args(predict.grain)

function (object, response, predictors = setdiff(names(newdata),

response), newdata, type = "class", ...)

NULL

130

R> pred1 <- predict(cadmod1, resp="CAD", newdata=cad2, type="class")

R> str(pred1)

List of 2

$ pred :List of 1

..$ CAD: chr [1:67] "No" "No" "No" "No" ...

$ pFinding: num [1:67] 0.1382 0.1382 0.1102 0.0413 0.1102 ...

R> pred2 <- predict(cadmod1, resp="CAD", newdata=cad2, type="dist")

R> str(pred2)

List of 2

$ pred :List of 1

..$ CAD: num [1:67, 1:2] 0.914 0.914 0.679 0.604 0.679 ...

.. ..- attr(*, "dimnames")=List of 2

..$: NULL

..$: chr [1:2] "No" "Yes"

$ pFinding: num [1:67] 0.1382 0.1382 0.1102 0.0413 0.1102 ...

131

15.2 Classification error

R> table(cad2$CAD)

No Yes

41 26

R> table(cad2$CAD)/sum(table(cad2$CAD))

No Yes

0.6119403 0.3880597

R> tt <- table(cad2$CAD, pred1$pred$CAD)

R> tt

No Yes

No 34 7

Yes 14 12

R> sweep(tt, 1, apply(tt,1,sum), FUN="/")

No Yes

No 0.8292683 0.1707317

Yes 0.5384615 0.4615385

132

16 Winding up

Brief summary:

• We have gone through aspects of the gRain package and seen some of the

mechanics of probability propagation.

• Propagation is based on factorization of a pmf according to a decomposable

graph.

• We have gone through aspects of the gRbase package and seen how to search

for decomposable graphical models.

• We have seen how to create a Bayesian network from the dependency graph of

a decomposable graphical model.

133

17 Practicals

Goal: Build BN for diagnosing coronary artery disease (CAD) from these (training)

data

R> data(cad1)

R> head(cad1,5)

Sex AngPec AMI QWave QWavecode STcode STchange SuffHeartF

1 Male None NotCertain No Usable Usable No No

2 Male Atypical NotCertain No Usable Usable No No

3 Female None Definite No Usable Usable No No

4 Male None NotCertain No Usable Nonusable No No

5 Male None NotCertain No Usable Nonusable No No

Hypertrophi Hyperchol Smoker Inherit Heartfail CAD

1 No No No No No No

2 No No No No No No

3 No No No No No No

4 No No No No No No

5 No No No No No No

134

Validate model by prediction of CAD using these (validation) data. Notice:

incomplete information.

R> data(cad2)

R> head(cad2,5)

Sex AngPec AMI QWave QWavecode STcode STchange SuffHeartF

1 Male None NotCertain No Usable Usable Yes Yes

2 Female None NotCertain No Usable Usable Yes Yes

3 Female None NotCertain No Nonusable Nonusable No No

4 Male Atypical Definite No Usable Usable No Yes

5 Male None NotCertain No Usable Usable Yes No

Hypertrophi Hyperchol Smoker Inherit Heartfail CAD

1 No No <NA> No No No

2 No No <NA> No No No

3 No Yes <NA> No No No

4 No Yes <NA> No No No

5 Yes Yes <NA> No No No

135

• Start out from the saturated model; do stepwise backward model selection

among decomposable models to obtain “reduced” model.

• Start out from the independence model; do stepwise forward model selection

among decomposable models to obtain “expanded” model.

• Can you identify direct and indirect risk factors from these models?

• “Convert” these two models to a Bayesian nework.

• Predict the disease variable CAD in the validation dataset cad2 (which has

incomplete observations).

• How good prediction results can you obtain? Can you improve your result by

changing the model selection criterion, for example going from AIC to BIC?

• Create a “naive Bayes model”: All predictor variables are independent given

CAD. How does this model perform in predicting the validation cases?

136

• For the curious: Create a recursive partitioning tree using rpart (see

supplementary notes).

• Does such trees perform better than the graphical models?

• Discuss pros and cons of the approaches

	Outline of tutorial
	Topics
	Book: Graphical Models with R
	R–packages
	The practicals: The coronary artery disease data
	Graphical models in a few words

	Conditional independence
	Factorization criterion

	Undirected Graphs
	Factorization and dependence graph
	Reading conditional independencies – global Markov property

	Directed acyclic graphs (DAGs)
	Factorization and dependence graph – DAGs
	Reading conditional independencies from DAGs (I)
	Moralization
	Ancestral sets and graphs*
	Reading conditional independences from DAG (II)*

	Bayesian Network (BN) basics
	A small worked example BN
	Specification of conditional probability tables
	Brute force computations
	Brute force computations will fail

	Decomposable graphs and junction trees
	Decomposable graphs
	Junction tree
	The key to message passing
	Computations by message passing
	Clique potential representation
	Working inwards in junction tree
	Working outwards in junction tree

	Propagating findings
	The chest clinic narrative
	Findings and queries

	An introduction to the gRain package
	Queries
	Setting findings and probability of findings
	Queries – II
	Dependence graph, moralization and triangulation
	Triangulation
	Fundamental operations in gRain

	Summary of the BN part
	Contingency tables
	Notation
	Log–linear models
	Graphical models and decomposable models
	ML estimation in decomposable models
	Connecting decomposable models and Bayesian networks

	Testing for conditional independence
	What is a CI-test – stratification

	Log–linear models using the gRim package
	Plotting the dependence graph
	Model specification shortcuts
	Altering graphical models
	Model comparison
	Decomposable models – deleting edges
	Decomposable models – adding edges
	Test for adding and deleting edges
	Model search in log–linear models using gRim

	From graph and data to network
	Prediction
	Classification error

	Winding up
	Practicals

