## Datamining – Recursive partitioning trees

Søren Højsgaard Department of Mathematical Sciences Aalborg University, Denmark

August 22, 2012

1

1



- 1 Introduction
- 2 Example wine data

## 1 Introduction

Data mining is an umbrella for a wide variety of techniques for exploring data. We illustrate one particular technique: Recursive partitioning trees.

## 2 Example - wine data

The wine data has measurements on the chemical composition of samples of 3 different cultivars (varieties) of wine.

```
data(wine, package="gRbase")
head(wine)

Cult Alch Mlca Ash Aloa Mgns Ttlp Flvn Nnfp Prnt Clri Hue Oodw Prln
1 v1 14.23 1.71 2.43 15.6 127 2.80 3.06 0.28 2.29 5.64 1.04 3.92 1065
2 v1 13.20 1.78 2.14 11.2 100 2.65 2.76 0.26 1.28 4.38 1.05 3.40 1050
3 v1 13.16 2.36 2.67 18.6 101 2.80 3.24 0.30 2.81 5.68 1.03 3.17 1185
4 v1 14.37 1.95 2.50 16.8 113 3.85 3.49 0.24 2.18 7.80 0.86 3.45 1480
5 v1 13.24 2.59 2.87 21.0 118 2.80 2.69 0.39 1.82 4.32 1.04 2.93 735
6 v1 14.20 1.76 2.45 15.2 112 3.27 3.39 0.34 1.97 6.75 1.05 2.85 1450
table(wine$Cult)
v1 v2 v3
59 71 48
```

Question: Can we construct a model that will be good at classifying the variety from the

chemical measurements.

The general picture: We have a categorical response variable y (3 levels for the wine data) and a number of predictor variables  $x_1, \ldots x_p$  (13 predictors for the wine data). Idea:

- Split data into two subgroups according to the values of one of the predictors, say  $x_1$ .
- Split the first subgroup according to the values of one of the other predictors, say  $x_2$ .
- Split the second subgroup according to the values of one of the other predictors, say  $x_3$  (or possibly also  $x_2$ ).
- and so on...

| 1               | x                  |                 | x    |      | x       |
|-----------------|--------------------|-----------------|------|------|---------|
| x               | x                  | x               | x    | x    | x       |
|                 | 0                  | 1.5             | 0    |      | 0       |
| x <sup>xx</sup> | 00 0               | x <sup>xx</sup> | 00 0 | x XX | 00 0    |
| x x             | 100                | x x             |      | X X  |         |
| x               | 0 <sup>0</sup> 0 0 | x               | 0    | x    | 0 0 0 0 |
| ^ o             | 0 0                | 0               | 0 0  | 0    | 0 0     |
| 0               | 0 0                | 0               | 0 0  | 0    | 0 0     |

To get this to work we need

- Some rule for deciding on which variable to split
- A rule for deciding when to stop splitting

This is implemented in the **rpart()** function in the **rpart** package.

A simple usage where we allow one split only:

```
library(rpart)
f1<-rpart(Cult~., data=wine, control=rpart.control(maxdepth=1))
plot(f1, uniform=T,margin=0.2)
text(f1, use.n=TRUE)</pre>
```

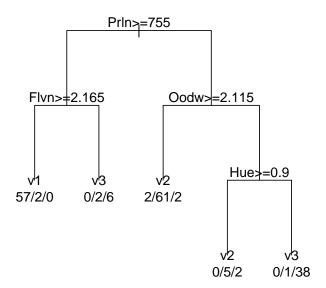


Read this as:

- Split on whether  $Prln \ge 755$ . "Yes" is to the left, "no" to the right.
- 57 + 4 + 6 = 67 cases appear on the leaf to the left. These cases are all given the label v1;
- 57 cases have variety v1, 4 are of variety v2 and 6 are of variety v3.

Alternatively, we can leave it to data to suggest the number of splits

```
f2<-rpart(Cult~., data=wine)
plot(f2, uniform=T,margin=0.2)
text(f2, use.n=TRUE)</pre>
```



Having done so, at natural question is to ask how good our classification is:

```
table(wine$Cult, predict(f1, type="class"))
    v1 v2 v3
    v1 57 2 0
    v2 4 67 0
    v3 6 42 0
table(wine$Cult, predict(f2, type="class"))
    v1 v2 v3
    v1 57 2 0
    v2 2 66 3
    v3 0 4 44
```