Datamining - Recursive partitioning trees

Søren Højsgaard
Department of Mathematical Sciences
Aalborg University, Denmark

August 22, 2012

Contents

1 Introduction 1
2 Example - wine data 1

1 Introduction

Data mining is an umbrella for a wide variety of techniques for exploring data.
We illustrate one particular technique: Recursive partitioning trees.

2 Example - wine data

The wine data has measurements on the chemical composition of samples of 3 different cultivars (varieties) of wine.

```
data(wine, package="gRbase")
head(wine)
    Cult Alch Mlca Ash Aloa Mgns Ttlp Flvn Nnfp Prnt Clri Hue Oodw Prln
1 v1 14.23 1.71 2.43 15.6 127 2.80 3.06 0.28 2.29 5.64 1.04 3.92 1065
2
3 v1 13.16 2.36 2.67 18.6 101 2.80 3.24 0.30 2.81 5.68 1.03 3.17 1185
4 v1 14.37 1.95 2.50 16.8 113 3.85 3.49 0.24 2.18 7.80}00.86 3.45 1480
5 v1 13.24 2.59 2.87 21.0 118 2.80 2.69 0.39 1.82 4.32 1.04 2.93 735
6 v1 14.20 1.76 2.45 15.2 112 3.27 3.39 0.34 1.97 6.75 1.05 2.85 1450
table(wine$Cult)
v1 v2 v3
597148
```

Question: Can we construct a model that will be good at classifying the variety from the
chemical measurements.
The general picture: We have a categorical response variable y (3 levels for the wine data) and a number of predictor variables $x_{1}, \ldots x_{p}$ (13 predictors for the wine data).
Idea:

- Split data into two subgroups according to the values of one of the predictors, say x_{1}.
- Split the first subgroup according to the values of one of the other predictors, say x_{2}.
- Split the second subgroup according to the values of one of the other predictors, say x_{3} (or possibly also x_{2}).
- and so on...

To get this to work we need

- Some rule for deciding on which variable to split
- A rule for deciding when to stop splitting

This is implemented in the rpart() function in the rpart package.
A simple usage where we allow one split only:

```
library(rpart)
f1<-rpart(Cult~., data=wine, control=rpart.control(maxdepth=1))
plot(f1, uniform=T,margin=0.2)
text(f1, use.n=TRUE)
```


Read this as:

- Split on whether Prln \geq 755. "Yes" is to the left, "no" to the right.
- $57+4+6=67$ cases appear on the leaf to the left. These cases are all given the label v1;
- 57 cases have variety v1, 4 are of variety v2 and 6 are of variety v3.

Alternatively, we can leave it to data to suggest the number of splits

```
f2<-rpart(Cult~., data=wine)
plot(f2, uniform=T,margin=0.2)
text(f2, use.n=TRUE)
```


Having done so, at natural question is to ask how good our classification is:

```
table(wine$Cult, predict(f1, type="class"))
    v1 v2 v3
    v1 57 2 0
    v2 467 0
    v3 6 42 0
table(wine$Cult, predict(f2, type="class"))
    v1 v2 v3
v1 57 2 0
v2 2 66 3
v3 0
```

