Graphical Models and Bayesian Networks

Tutorial at useR! 2014 — Los Angeles

Sgren Hgjsgaard
Department of Mathematical Sciences

Aalborg University, Denmark

July 1, 2014

Printed: July 1, 2014 File: bayesnet-slides.tex

Contents

1

Outline of tutorial

1.1 Package versionso o Lo
1.2 A bitofhistory
1.3 Book: Graphical Modelswith R

The chest clinic narrative

2.1 DAG—based models Lo
2.2 DAG-based models (II)

Conditional probability tables (CPTs)
An introduction to the gRain package
Querying the network

Setting evidence

The curse of dimensionality

7.1 So what is the problem?

Message passing — a small example

8.1 Collect Evidence L.
8.2 Distribute Evidence
8.3 Setting evidenceo Lo oo

Message passing — the bigger picture

18
22
23
27
33
34
35
41
44
49

53

10 Conditional independence

11

12

13

Towards data
11.1 Extracting CPTs .
11.2 Extracting clique marglnaLs

Learning the model structure

12.1 Contingency tables

12.2 Log-Llinear models .

12.3 Hierarchical Log—Linear modeLs

12.4 Dependence graphs .o

12.5 The Global Markov property

12.6 Estimation — Likelihood equations .

12.7 Fitting Log—Linear models :
12.8 Graphical models and decomposabLe modeLs .
12.9 ML estimation in decomposable models

Decomposable models and Bayesian networks

14 Testing for conditional independence

15

14.1 What is a CI-test — stratification
14.2 Example: University admissions

Log—Linear models — the gRIim package
15.1 Model specification shortcuts

15.2 Altering graphical models .

15.3 Model comparison

15.4 Decomposable models — deLetmg edges
15.5 Decomposable models — adding edges
15.6 Test for adding and deleting edges

15.7 Model search in Log—Linear models using gle :

58

63
64
69

72
73
77
81
82
83
84
85
89
92

95

97
98

100

104

. 108
. 109
. 111
. 113
. 115
.. 117
. 119

16 From graph and data to network
17 Prediction
18 Other packages

19 Winding up

126

129

132

133

1

Outline of tutorial

Bayesian networks and the gRain package

Probability propagation; conditional independence restrictions
and dependency graphs

Learning structure with Log—Llinear, graphical and
decomposable models for contingency tables

Using the gRImM package for structural Learning.
Convert decomposable model to Bayesian network.

Other packages for structure Learning.

1.1 Package versions

We shall in this tutorial use the R—packages gRbase, gRain and
JgRIim.

Tutorial based on these development versions:

> packageVersion("gRbase")
[1] '1.7.0.2'

> packageVersion("gRain")
[1] '1.2.3.1'

> packageVersion("gRim")
[1] '0.1.17.1'

available at: http://people.math.aau.dk/~sorenh/software/gR

Before installing the packages above, packages from bioconductor
must be installed with:

> source("http://bioconductor.org/biocLite.R");
> biocLite(c("graph","RBGL","Rgraphviz"))

http://people.math.aau.dk/~sorenh/software/gR

1.2 A bit of history

In September 2002 a small group of people gathered in Vienna for
the brainstorming workshop ‘‘gR 2002 with the purpose of
initiating the development of facilities in R for graphical modelling.
T his was made in response to the facts that:

e graphical models have now been around for a Long time and
have shown to have a wide range of potential applications,

e software for graphical models is currently only available in a
large number of specialised packages, such as BUGS, CoCo,
DIGRAM, MIM, TETRAD and others.

See also: http://www.ci.tuwien.ac.at/gR/gR.html and
http://www.ci.tuwien.ac.at/Conferences/gR-2002/.

Todays workshop is one tangible result of this workshop.

http://www.ci.tuwien.ac.at/gR/gR.html
http://www.ci.tuwien.ac.at/Conferences/gR-2002/

1.3 Book: Graphical Models with R

Seren Hgjsgaarad
David Edwards
Steffen Lauritzen

Graphical Models
with R

The book, written by some of the people who Llaid the
foundations of work in this area, would be ideal for researchers
who had read up on the theory of graphical models and who
wanted to apply them in practice. It would also make excellent
supplementary material to accompany a course text on graphical
modelling. I shall certainly be recommending it for use in that
role...the book is neither a text on graphical models nor a
manual for the various packages, but rather has the more modest
aims of introducing the ideas of graphical modelling and the
capabilities of some of the most important packages. It succeeds
admirably in these aims. The simplicity of the commands of the
packages it uses to illustrate is apparent, as is the power of the
tools available.

International Statistical Review, Volume 31, Issue 2 review by
David J. Hand

2 The chest clinic narrative

xS
A
e s

10

Lauritzen and Spiegehalter (1988) present the following narrative:

® ‘‘Shortness—of—breath (dyspnoea) may be due to
tuberculosis, lung cancer or bronchitis, or none of
them, or more than one of them.

® A recent visit to Asia increases the chances of
tuberculosis, while smoking is known to be a risk
factor for both Lung cancer and bronchitis.

® [he results of a single chest X—ray do not discriminate
between Lung cancer and tuberculosis, as neither does
the presence or absence of dyspnoea.”

The narrative can be pictured as a DAG (Directed Acyclic Graph)

11

12

.\

® Each node v represents a random variable 2,
® [he nodes

v = {Asia, Tub, Smoke, Lung, Either, Bronc, Xray, Dysp}
{a,t, s, l,e b, x, d}

correspond to 8—dim random vector 2y = (Za, ..., Za).

e \We want to specify probability density

Dz,(2v) or shorter p(V)

oD
.\

e Each node v represents a random variable Z, (here binary with
Levels “yes” and “no”).

e For each combination of a node v and its parents pa(v) there
is a conditional distribution p(2y|2pa(v)), fOr example

Dz.12,.2,(Zeither | Ztub, Ziung) Or shorter p(elt, ()

e Specified as a conditional probability table (a CPT), for
example for p(e|t,l) the CPT is a 2 X 2 X 2—table

13

oD
.\

e Recall: Allow for informal notation: Write p(V) instead of
pv(2v); write p(v|pa(v)) instead of pP(2y|2Zpa(w))-

e [he DAG corresponds to a factorization of the joint probability
function as

p(V) = p(a)p(tla)p(s)p(l|s)p(b|s)p(elt, l)p(d|e, b)p(x|e).

14

15

2.2 DAG-based models (II)

® More generally, a DAG with nodes V allows us to construct a
joint distribution by combining univariate conditional
distributions, i.e.

(V) = | [p(vlpa(v))

short for p(zv) = Iy Pz, Zpaw) (z'v|zpa('u)>-

® T his is a powerful tool for constructing a multivariate
distribution from univariate components.

e Example: z1 ~ N(a1,0%), 22|21 ~ N(az + bsz1, 05),
23|22 ~ N(asz + b322, 03). Then

p((21, 22, 23)) = P(21)P(22|21)P(23]|22)

IS multivariate normal

16

3 Conditional probability tables (CPTs)

CPTs are just multiway arrays WITH dimnames attribute. For
example p(t|a):

> library(gRain)
S yn <- c("yes","no");
> x <- ¢(5,95,1,99)
> # Vanilla R
> t.a <- array(x, dim=c(2,2), dimnames=list(tub=yn,asia=yn))
> t.a
asila

tub yes no

yes 5 1

no 95 99

> # Alternative specification: parray() from gRbase
> t.a <- parray(c("tub","asia"), levels=list(yn,yn), values=x)
> t.a
asia
tub yes no
yes 5 1
no 95 99

> # with a formula interface
> t.a <- parray(~tub:asia, levels=list(yn,yn), values=x)
> t.a
asia
tub yes no
yes 5 1
no 95 99
> # Alternative (partial) specification
> t.a <- cptable(~tub | asia, values=c(5,95,1,99), levels=yn)
> t.a
{v,pa(v)} : chr [1:2] "tub" "asia"
<NA> <NA>
yes 5 1
no 95 99

Last case: Only names of v and pa(v) and Levels of v are definite;
the rest is inferred in the context; see Later.

17

18

4 An introduction to the gRain package

Specify chest clinic network. Can be done in many ways; one is
from a List of CPTs:

a

VVV VYV YVVYV
® T H ®n

VvV V
Q.

library(gRain)
yn <- C("yes" ; "IlO")

cptable(~asia, values=c(1,99), levels=yn)

cptable(~tub | asia, values=c(5,95,1,99), levels=yn)

cptable (~smoke, values=c(5,5), levels=yn)

cptable(~lung | smoke, values=c(1,9,1,99), levels=yn)

cptable(~bronc | smoke, values=c(6,4,3,7), levels=yn)

cptable(~either | lung:tub,values=c(1,0,1,0,1,0,0,1),
levels=yn)

cptable(~xray | either, values=c(98,2,5,95), levels=yn)

cptable(~dysp | bronc:either, values=c(9,1,7,3,8,2,1,9),
levels=yn)

19

> cpt.list <- compileCPT(list(a, t.a, s, l.s, b.s, e.lt, x.e, d.be))

> cpt.list

CPTspec with probabilities:
P(asia)

P(tub | asia)

P(smoke)

P(lung | smoke)

P(bronc | smoke)

P(either | lung tub)

P(xray | either)

P(dysp | bronc either)

> cpt.list$asia

asia
yes no
0.01 0.99
> cpt.list$tub
asia
tub yes no

yes 0.05 0.01
no 0.95 0.99

> ftable(cpt.list$either, row.vars=1) # Notice: logical variable

lung yes no

tub yes no yes no
either
yes

1 1 1 O
no O O O 1

> # Create network from CPT list:

> bnet <- grain(cpt.list)

> # Compile network (details follow)

> bnet <- compile(bnet)

> bnet

Independence network: Compiled: TRUE Propagated: FALSE
Nodes: chr [1:8] "asia" "tub" "smoke" "lung" "bronc"

21

5 Querying the network

> # Query network to find marginal probabilities of diseases
> querygrain(bnet, nodes=c("tub","lung","bronc"))

$tub
tub

yes no
0.0104 0.9896

$lung
lung

yes no
0.055 0.945

$bronc
bronc

yes no
0.45 0.55

23

6 Setting evidence

> # Set evidence and query network again
> bnet.ev<-setEvidence(bnet, nodes = c("asia","dysp"),
states = c("yes","yes"))
> querygrain(bnet.ev, nodes=c("tub","lung","bronc"))
$tub
tub
yes no
0.0878 0.9122

$lung
lung

yes no
0.0995 0.9005

$bronc
bronc

yes no
0.811 0.189

24

> # Set additional evidence and query again

> bnet.ev<-setEvidence(bnet.ev, nodes = "xray", states = "yes")
> querygrain(bnet.ev, nodes=c("tub","lung","bronc"))
$tub
tub
yes no
0.392 0.608
$1lung
lung
yes no
0.444 0.556
$bronc
bronc
yes no
0.629 0.371

> # Probability of observing the evidence (the normalizing constant)
> pEvidence(bnet.ev)

[1] 0.000988

> # Get joint dist of tub, lung, bronc given evidence

> x<-querygrain(bnet.ev, nodes=c("tub","lung","bronc"),
type="joint")

> ftable(x, row.vars=1)

lung yes no

bronc yes no yes no
tub
yes 0.01406 0.00816 0.18676 0.18274
no 0.26708 0.15497 0.16092 0.02531

> # Get distribution of tub given lung, bronc and evidence

> x<-querygrain(bnet.ev, nodes=c("tub","lung","bronc"),
type="conditional")

> ftable(x, row.vars=1)

lung yes no

bronc yes no yes no
tub
yes 0.050 0.050 0.537 0.878

no 0.950 0.950 0.463 0.122

> # Remove evidence
> bnet.ev<-retractEvidence(bnet.ev, nodes="asia"
> bnet.ev

Independence network: Compiled: TRUE Propagated: TRUE
Nodes: chr [1:8] "asia" "tub" "smoke" "lung" "bronc"
Findings: chr [1:2] "dysp" "xray"

26

7 The curse of dimensionality

In principle (and in practice in this small toy example) we can find
e.g. p(bla™, dt) by brute force calculations.

Recall: We have a collection of conditional probability tables
(CPTs) of the form p(v|pa(v)):

{p(a), (tla), p(s), p(l|s), p(bls), p(elt, 1), p(dle, b), p(zle) }
Brute force computations:
1) Form the joint distribution p(V) by multiplying the CPTs
p(V) = p(a)p(tla)p(s)p(t|s)p(bls)p(elt,)p(dle, b)p(x|e).

This gives p(V) represented by a table with giving a table with
28 = 256 entries.

27

2) Find the marginal distribution p(a, b, d) by marginalizing
(V) =p(a,t, s,k, e b, x,ad)

v(a, b, d) = Z o(t,s, k,e, b, x,d)
t,s,k,eb,x

This is table with 23 = 8 entries.
3) Lastly notice that p(bla™,d’) o< p(a™, b, dt).

Hence from p(a, b, d) we must extract those entries consistent with
a =a’ and d = dT and normalize the result.

Alternatively (and easier): Set all entries not consistent with
a=at and d = dT in p(a, b, d) equal to zero.

28

> ## collection of CPTs: p(v|pa(v))
> cpt.list

CPTspec with probabilities:

asia)

tub | asia)

smoke)

lung | smoke)

bronc | smoke)
either | lung tub)
xray | either)

dysp | bronc either)

> ## form joint p(V)= prod p(vipa(v))
> joint <- cpt.list$asia
> for (i in 2:length(cpt.list)){

+

joint <- tableMult(joint, cpt.list[[il])

> dim(joint)
dysp bronc either xray lung tub smoke

2 2 2 2 2 2 2

asia
2

29

> head(as.data.frame.table(joint))
tub smoke

dysp bronc either xray lung

1 yes yes yes
2 no yes yes
3 yes no yes
4 no no yes
5 yes yes no
6 no yes no

yes
yes
yes
yes
yes
yes

yes
yes
yes
yes
yes
yes

yes
yes
yes
yes
yes
yes

yes
yes
yes
yes
yes
yes

asia
yes
yes
yes
yes
yes
yes

QONOYHF -

Freq

.32e-05
.47e-06
.86e-06
.94e-06
.00e+00
.00e+00

30

> ## form marginal p(a,b,d) by marginalization
> marg <- tableMargin(joint, ~asiatbronc+dysp)
> dim(marg)
asia bronc dysp
2 2 2

> ftable(marg)
dysp yes no
asia bronc
yes yes 0.003652 0.000848
no 0.000849 0.004651
no yes 0.359933 0.085567
no 0.071536 0.472964

31

32

> ## Set entries not consistent with asia=yes and dysp=yes

> ## equal to zero

> marg <- tableSetSliceValue(marg, c("asia","dysp"), c("yes","yes"),
complement=T)

> ftable(marg)

dysp yes no

asia bronc
yes yes 0.003652 0.000000
no 0.000849 0.000000
no yes 0.000000 0.000000
no 0.000000 0.000000

> result <- tableMargin(marg, ~bronc);
> result <- result / sum(result); result
bronc

yes no
0.811 0.189

33

7.1 So what is the problem?

In chest clinic example the joint state space is 28 = 256.

If there are 80 variables each with 10 Levels, the joint state space is
1089 which is one of the estimates of the number of atoms in the
universel

Still, gRain has been succesfully used in a genetics network with
80.000 nodes... How can this happen?

34

7.2 So what is the solution

The trick is NOT to calculate the joint distribution

(V) = p(a)p(tla)p(s)p(t|s)r(bls)p(elt, L)p(dle, b)p(z|e).

explicitly because that Leads to working with high dimensional
tables.

Instead we work on Low dimensional tables and “send messages”
between them.

With such a message passing scheme, all computations can be
made Locally.

The challenge is to organize these Local computations.

8 Message passing — a small example

> require(gRbase); require(Rgraphviz)
> d<-dag(~smoke + bronc|smoke + dysplbronc); plot(d)

35

library(gRain)

yn <- c("yes" , "1’10")

S <- parray("smoke", list(yn), c(.5, .5))

b.s <- parray(c("bronc","smoke"), list(yn,yn), c(6,4, 3,7))
d.b <- parray(c("dysp","bronc"), list(yn, yn), c(9,1, 2,8))
s; b.s; d.b

smoke

yes no
0.5 0.5

smoke
bronc yes no
yes 6 3
no 4 7

bronc
dysp yes no
yes 9 2
no 1 8

>
>
>
>
>
>

36

Recall that the joint distribution is
(s, b,d) = p(s)p(b|s)p(alb)
l.e.

> joint <- tableMult(tableMult(s, b.s), d.b) ; ftable(joint)
smoke yes no

dysp bronc

yes yes 27.0 13.5
no 4.0 7.0

no yes 3.0 1.5
no 16.0 28.0

but we really do not want to calculate this in general; here we just
do it as “proof of concept’.

37

From now on we no Longer need the DAG. Instead we use an
undirected graph to dictate the message passing:

The “moral graph” is obtained by 1) marrying parents and 2)
dropping directions. The moral graph is (in this case) triangulated
which means that the cliques can be organized in a tree called a

junction tree.

> dm <-moralize(d);
> jtree<-ug(~smoke.bronc:bronc.dysp);
> par (mfrow=c(1,3)); plot(d); plot(dm); plot(jtree)

simoke.bromc

@D

38

39

> par(mfrow=c(1,3)); plot(d); plot(dm); plot(jtree)

sinoke.bromc

Define g1 (s, b) = p(s)p(b|s) and g»(b, d) = p(d|b) and we have

p(s, b, d) = p(s)p(b|s)p(alb) = g1(s, 0)q2(b, d)

We see that the g—functions are defined on the cliques of the moral
graph or - equivalently - on the nodes of the junction tree.

The g—functions are called potentials; they are non—negative
functions but they are typically not probabilities and they are hence
difficult to interpret.

We can think of the g—functions as interactions.

> gql.sb <- tableMult(s, b.s); ql.sb

smoke
bronc yes no
yes 3 1.5
no 2 3.5
> gq2.bd <- d.b; g2.bd
bronc
dysp yes no
yes 9 2
no 1 8

The factorization

p(s,b,d) = q1(s, b)g2(b, @)

IS called a clique potential representation.

Goal: We shall operate on g—functions such that at the end they
will contain the marginal distributions, i.e.

q1(s,0) = p(s,0), q2(b,d) = p(b, a)

40

8.1 Collect Evidence

> plot(jtree)
@
@

We pick any node, say (b, d) as root in the junction tree, and work
inwards towards the root as follows.

First, define q1(b) < Xsg1(s, b).

41

> ql.b <- tableMargin(ql.sb, "bronc"); ql.b
bronc

yes no
4.5 5.5

We have

q:1(s, b)
q1(b)

(s, 0,d) = q1(s, b)g2(b, d) = |] [92(6, @)g1(b)]

Therefore, if we update potentials as

q1(s,0) < q1(s,0)/aq1(b), a2(b,ad) < q2(b, @)q1(b)

and we obtain new potentials defined on the cliques of the junction
tree. We still have

p(s,b,d) = q1(s, b)g2(b, @)

42

Updating of potentials
q1(s,b) < q1(s,6)/q1(b), g2(b,a) < q2(b,d)q1(b)

iIs done as follows:
> g2.bd <- tableMult(g2.bd, gql.b); g2.bd

dysp
bronc yes no
yes 40.5 4.5

no 11.0 44.0
> gql.sb <- tableDiv(ql.sb, gl.b); ql.sb
smoke
bronc yes no
yes 0.667 0.333
no 0.364 0.636

43

8.2 Distribute Evidence

Next work outwards from the root.

Set g>(b) <+ >492(b,d). We have

01(s, 0)a2(b)] 92(b, @)

p(s, b,d) = q1(s, b)g2(b, &) = 92 (b)

We set q1(s, b) + q1(s, b)g2(b) and have
q1(s, 0)q2(b, d)

(s, 0,d) = q1(s,0)q2(b,d) = q-(b)

> g2.b <- tableMargin(q2.bd, "bronc"); g2.b
bronc
yes no

45 55
> gql.sb <- tableMult(ql.sb, g2.b); ql.sb

smoke

bronc yes no

yes 30 15

no 20 35

44

The form

q1(s, 0)q2(b, d)
q2(b)

IS called the clique marginal representation and the main point is
now that

p(s,b,d) = q1(s,b)q2(b, @) =

qi1(s,) = n(s,b), q2(0,d) = p(b, ad)
and g1 and g» “fit on their marginals”’, i.e. g1(b) = g»(b)

45

Recall that the joint distribution is
> joint
, , Smoke = yes

bronc
dysp yes no
yes 27 4
no 3 16

, , Smoke = no

bronc
dysp yes no
yes 13.5 7

no 1.5 28

46

Claim: After these steps g:1(s, b) = p(s, b) and g-(b, d) = p(b,).

Proof:

> ql.sb
smoke
bronc yes no
yes 30 15
no 20 35
> tableMargin(joint, c("smoke","bronc"))
bronc
smoke yes no
yes 30 20
no 15 35
> g2.bd
dysp
bronc yes no
yes 40.5 4.5
no 11.0 44.0
> tableMargin(joint, c("bronc","dysp"))
dysp
bronc yes no
yes 40.5 4.5
no 11.0 44.0

Now we can obtain, e.g. p(b) as
> tableMargin(ql.sb, "bronc") # or

bronc
yes no
45 bb
> tableMargin(q2.bd, "bronc")
bronc
yes no
45 bb

And we NEVER calculated the full joint distribution!

48

49

8.3 Setting evidence

Next consider the case where we have the evidence that dysp=yes.

> gql.sb <- tableMult(s, b.s)
> gq2.bd <- d.b
> g2.bd <- tableSetSliceValue(q2.bd, "dysp", "yes", complement=T); qg2.
bronc
dysp yes no
yes 9 2
no 0O O
> # Repeat all the same steps as before
> gql.b <- tableMargin(ql.sb, "bronc"); ql.b

bronc
yes no
4.5 5.5
> g2.bd <- tableMult(g2.bd, gql.b); g2.bd
dysp
bronc yes no
yes 40.5 O
no 11.0 O
> gl.sb <- tableDiv(ql.sb, gl.b); ql.sb
smoke

bronc yes no

yes 0.667 0.333
no 0.364 0.636

> g2.b <- tableMargin(g2.bd, "bronc"); g2.b
bronc

yes no
40.5 11.0
> gql.sb <- tableMult(ql.sb, g2.b); ql.sb
smoke
bronc yes no
yes 27 13.5

no 4 7.0

50

Claim: After these steps gi(s, b) = p(s, b|dT) and
> joint <- tableSetSliceValue(joint, "dysp", "yes", complement=T);
> ftable(joint)
smoke yes no

dysp bronc
yes yes 27.0 1

no
no yes

3.
7.
0.
no 0.

5
0
0
0

O O W

.0
.0
.0

Proof:

> ql.sb
smoke
bronc yes no
yes 27 13.5
no 4 7.0
> tableMargin(joint, c("smoke","bronc"))

bronc
smoke yes no
yes 27.0 4
no 13.5 7

51

> g2.bd
dysp
bronc yes no
yes 40.5 O
no 11.0 O
> tableMargin(joint, c("bronc","dysp"))
dysp
bronc yes no
yes 40.5 O
no 11.0 O

And we NEVER calculated the full joint distribution!

52

O Message passing — the bigger picture

The DAG is only used in connection with specifying the network;
afterwards all computations are based on properties of a derived
undirected graph.

Recall goal: Avoid working with high dimensional tables.

Think of the CPTs as potentials/interactions (g-functions):

(V) = w»(a)p(tla)p(s)p(t|s)p(bls)p(elt, l)p(ale, b)p(z|e)
= q(a)q(t,a)q(s)a(l, s)q(b, s)q(e, t, t)q(d, e b)qg(x,e).

Notice: g—functions that are ‘‘contained’” in other g—functions can
be absorbed into these; we set q(t,a) < q(t,a)q(a) and

q(t, s) <= a(l, s)a(s):

p(V) = q(t, a)q(l, s)q(b, s)q(e, t, l)q(a, e, b)g(zx, e).

53

54

Moral graph: marry parents and drop directions:
> par (mfrow=c(1,2)); plot(bnet$dag); plot(moralize(bnet$dag))

p(V) = q(t,a)q(l, s)q(b, s)q(e, t, l)q(a, e, b)g(zx, e).

Notice: p(V) has interactions only among neighbours of the
undirected moral graph.

55

Efficient computations hinges on the undirected graph being
chordal. We make moral graph chordal by adding fill-ins.

> par(mfrow=c(1,2)); plot(moralize(bnet$dag));
> plot(triangulate(moralize(bnet$dag)))

M (D \ C
/.
@ ﬁ'

We have p(V') factoring according to this chordal graph as

020
@9’9/

(V) = q(t, a)q(l, s,b)q(e, t, l)q(a, e, b)a(x,e)q(l, b, e)

where q(t,s,b) = q(l, s)q(b,s) and q(t,b,e) = 1.

56

We have ’p(\/) = [Ic:cliques Q(C)-

We want to manipulate the g—functions such that »(C) = q(C)
without creating high—dimensional tables.

The manipulations are of the form (where S C C)

a(S) =) a(C), a(C) + a(C)a(S), a(C) + a(C)/a(s),
C\S

Cliques of chordal graph can be ordered such that
B = (C1iU, ..., UCk-1), Sk =BrxNCx C C; forsome 7 <k

so after computing g(Sk) = Xc,\s. 9(Ck) we can absorb q(Sk) into
a C; by g(C;)q(Sk) which will still be a function of C; only.

> par(mfrow=c(1,2)); plot(bnet$ug); plot(jTree(bnet$ug))
> str(jTree(bnet$ug)$cliques)

List of 6

: chr [1:2] "asia" "tub"

: chr [1:3] "either" "lung" "tub"

: chr [1:3] "either" "lung" "bronc"

: chr [1:3] "smoke" "lung" "bronc"

: chr [1:3] "either" "dysp" "bronc"

: chr [1:2] "either" "xray"

&S P P L LR H

10 Conditional independence

Consider again the toy example:
> plot(dag(~smoke+bronc|smoke+dysp|bronc))

p(s, b, d) = p(s)p(b|s)p(alb)

with

58

The factorization implies a conditional independence restriction:

p(s|b, d) = p(s]b)

Consider p(s|b, d):

p(s)p(bls)p(dlb) _ p(s)p(bls)
>s P(s)p(b|s)p(d|b) s p(s)p(b]s)

p(s|b,d) =

On the other hand:

P(s.b) _ Tap(s)p(bls)p(dle) _ _p(s)P(bls)
p(6) TasP(5)P(bls)D(dlb) x4 p(s)D(b]S)

p(s|b) =

We say that s is independent of d given &' or that ‘s and d are

conditionally independent given 6" and write s 1L d|b.

If we know b then getting to know also b provides no additional
information about s.

59

Conditional independence can often be deduced easier as follows:

Suppose that for non—negative functions g1() and g>(),
(s, b,d) = q1(s, 0)q2(b, d)

Then
q1(s,b)q2(b,d) qi(s,b)

>sq1(s,0)q2(b,d) Tsqi(s, b)
which is a function of s and b but not of d. So s _L d|b. This is
called the ‘‘factorisation criterion”

p(s|b,d) =

60

Clear that s 1L d|b under all these models:

> par(mfrow = c(1,4))

plot (dag(~smoke+bronc|smoke+dysp|bronc))
plot (dag(~bronc+smoke|bronc+dysp|bronc))
plot (dag(~dysp+smoke |bronc+bronc|dysp))
plot (ug (~smoke:bronc+bronc:dysp))

The general “rule” is therefore that separation in a graph
corresponds to conditional independence — but there is an exception

61

> plot(dag(~smoke + dysp + bronc|smoke:dysp))

p(s,0,d) = p(s)p(d)p(bls, d)

corresponding to

No factorization — and no conditional independence.

62

11 Towards data

Building CPTs from data:

> ## Example: Simulated data from chest network
> data(chestSim1000, package="gRbase")
> head(chestSim1000)

asia tub smoke lung bronc either xray dysp

1 no no no no yes no no yes
2 mno no yes no yes no no yes
3 mno no yes no no no no no
4 no no no no no no no no
5 no no yes no yes no no yes
6 no no yes yes yes yes yes yes

11.1 Extracting CPTs

> ## Extract empirical distributions
> s <- xtabs(~smoke, chestSim1000); s

smoke

yes no
465 535
> b.s <- xtabs(~bronc+smoke, chestSim1000); b.s
smoke
bronc yes no
yes 276 160
no 189 375
> d.b <- xtabs(~dysp+bronc, chestSim1000); d.b
bronc
dysp yes no
yes 360 68

no 76 496

> ## Normalize to CPTs if desired (not necessary because
> ## we can always normalize at the end)

> s <- as.parray(s, normalize="first"); s

smoke

yes no

0.465 0.535

> b.s <- as.parray(b.s, normalize="first"); b.s
smoke

bronc yes no

yes 0.594 0.299
no 0.406 0.701
> d.b <- as.parray(d.b, normalize="first"); d.b
bronc
dysp yes no
yes 0.826 0.121
no 0.174 0.879

65

> cpt.list <- compileCPT(list(s, b.s, d.b)); cpt.list

CPTspec with probabilities:

P(smoke)

P(bronc | smoke)

P(dysp | bronc)

> net <- grain(cpt.list); net

Independence network: Compiled: FALSE Propagated: FALSE
Nodes: chr [1:3] "smoke" "bronc" "dysp"

66

But we could just as well extract CPTs for this model,
> plot(dag(~bronc + smoke|bronc + dysplbronc))

in the sense that the joint distribution will become the same:

> ## Extract empirical distributions

> b <- xtabs(~bronc, chestSim1000) ;

> s.b <- xtabs(~smoke+bronc, chestSim1000);
> d.b <- xtabs(~dyspt+bronc, chestSim1000) ;

o7

Notice, that in this case
> plot(dag(~smoke + dysp + bronc|smoke:dysp))

the joint distribution will be different:

> ## Extract empirical distributions

> s <- xtabs(~smoke, chestSim1000) ;

> d <- xtabs(~dysp, chestSim1000) ;

> b.sd <- xtabs(~bronc+smoke+dysp, chestSim1000) ;

68

11.2 Extracting cligue marginals

Alternatively, we consider the undirected graph
> plot(ug(~smoke:bronc+bronc:dysp))

corresponding to the model

(s, b,d) = q1(s,b)g2(s, b)

69

We might as well extract clique marginals directly:

> ql.sb <- xtabs(~smoke+bronc, data=chestSim1000); ql.sb

bronc
smoke yes no
yes 276 189
no 160 375

> g2.db <- xtabs(~bronc+dysp, data=chestSim1000); g2.db

dysp
bronc yes no
yes 360 76

no 68 496

These are cliqgue marginals in the sense that p(s, b) = gi1(s, b) and
p(b,d) = g-(b,ad). Hence p(s,b,d) # g1(s,b)g>(b,d). But it is true
that p(b) = s 91(s,0) = X4 92(b, @).

70

To obtain equality we must condition:

q1(s, b)

p(s, 0, d) = p(s]|b)p(b, d) = 7.(0)

q2(b, d)

so we set q1(s,b) < q1(s,b)/q1(s):

> gql.sb <- tableDiv(ql.sb, tableMargin(ql.sb, ~smoke)); ql.sb
bronc
smoke yes no
yes 0.594 0.406
no 0.299 0.701

Now
’D(S, bv d) # Q1(Sv D)QQ(bv d)

and the machinery for setting evidence etc. works as before.

71

12 Learning the model structure

The next step is to ‘“learn” the structure of association between the
variables.

By this we mean Learn the conditional independencies among the
variables from data.

Once we have this structure, we have seen how to turn this
structure and data into a Bayesian network.

72

73

12.1 Contingency tables

Characteristics of 409 Llizards were recorded, namely species (S),
perch diameter (D) and perch height (H).

> data(lizardRAW, package="gRbase")

> dim(lizardRAW)

[1] 409 3

> head(lizardRAW, 4)

diam height species
1 >4 >4.75 dist
2 >4 >4.75 dist
3 <=4 <=4.75 anoli
4 >4 <=4.75 anoli

Let V ={D, H, S}. We have 409 observations of
discrete random vectors Z = Zv = (Zp, ZH, ZsS) where each
component is binary.

A configuration of Z is denoted by 2 = (2p = d,2y = h,2s = S)
(which we shall also write as (d, h, s)).

It is common to organize such data in a contingency table

> lizard<-xtabs(~., data=lizardRAW)
> dim(lizard)

[1] 2 2 2
> ftable(lizard)
species anoli dist

diam height

<=4 <=4.75 86 73
>4.75 32 61

>4 <=4.75 35 70
>4.75 11 41

A configuration z is also a cell in a contingency table. The counts
in cell z is denoted by n(2) or by n(d, h, s).

75

The probability of a configuration z = (a, h, s) is denoted p(z) and
this is also the probability of a lizard falling in the (d, h, s) cell.

One estimate of the probabilities is by the relative frquencies:

> lizardProb <- lizard/sum(lizard); ftable(lizardProb)
species anoli dist

diam height

<=4 <=4.75 0.2103 0.1785
>4.75 0.0782 0.1491

>4 <=4.75 0.0856 0.1711

>4.75 0.0269 0.1002

For A C V we have a marginal table with counts n(za), for

example

> tableMargin(lizard, ~height+species)
species
height anoli dist
<=4.75 121 143
>4.75 43 102

The probability of an observation in a marginal cell z4 is
P(Z2a) = Xziz, =2, P(2'). FOr example

> tableMargin(lizardProb, ~height+species)
species
height anoli dist
<=4.75 0.296 0.350
>4.75 0.105 0.249

76

7’

12.2 Log—Linear models

We are interested in modelling the cell probabilities Pgns.

Commonly done by a hierarchical expansion of Log Pgns iNtO
interaction terms

log Dans = a® + b + all + az + 827 + 60> + B2 + 0

Structure on the model is obtained by setting terms to zero.

If no terms are set to zero we have the saturated model:

LOg DPahs = o’ + Olé) + afl_LI + Otf + :Bc?nH + :6595 + 5;;/35 + ’Yc?nl_sls

If all interaction terms are set to zero we have the
independence model:

log Pans = a® + af + aj + o3

If an interaction term is set to zero then all higher order terms
containing that interaction terms must also be set to zero.

For example, if we set 82" = 0 then we must also set v2/°> = 0.

log Pans = a® + ag + oy +ai + By + Brs +

The non—zero interaction terms are the generators of the model.

Setting B2 = vD/?> = 0 the generators are

{D,H, S, DS, HS}

78

79

Generators contained in higher order generators can be omitted so
the generators become

{DS, HS}
corresponding to

— DS HS

Because of this Log—Linear expansions, the models are called
Llog—Llinear models.

Instead of taking Logs we may write Drqs in product form
Pans = q°°(d, $)a"°(h, s)

and this is in some connections useful.

For example, the factorization criterion gives directly that
D1 H|S.

In the context of these data, D 1L H| S means there there is
independence between D and H in each slice defined by species S.

Just Looking at data, this Looks reasonable.

> lizard
, » Species = anoli

height
diam <=4.75 >4.75
<=4 36 32
>4 35 11

, , Species = dist

height
diam <=4.75 >4.75
<=4 73 61

>4 70 41

12.3 Hierarchical Log—Linear models

More generally the generating class of a Log—Linear model is a set
A= {Ai1, ..., Ag} where A; C V.

T his corresponds to

p(z) = |]| qa(za)

AEA
where g4 is a potential, a function that depends on z only through
ZA.

81

12.4 Dependence graphs

The dependence graph for the model has nodes V and undirected
edges E given as follows: {vi1,v2} is in E iff {v1, v} C A, for
some A; € A.

Example: {DS, HS}, {DS, HS, DH}, {DHS}, {D, HS} have these
dependence graphs:

> par (mfrow=c(1,4))
plot(ug(~D:S + H:S))

plot(ug(~D:S + H:S + D:H))
plot(ug(~D:H:S))
plot(ug(~D + H:S))

>
>
>
>

D

12.5 The Global Markov property

There is a general rule reading conditional independencies from a
graph: If two sets of nodes U and V are separated by a third set W

then U 1L V|W.

Example: {E, F} 1L A|{B, C}.
> plot(ug(~A:B:C+B:C:D+D:E+E:F))

A

O-@-Q

83

84

12.6 Estimation — Likelihood equations

Under multinomial sampling the Likelihood is

L= I »@" = T] [aaz)™*

all states -z AEA Za

The MLE p(z) for p(z) is the (unique) solution to the Likelihood
equations

p(za) = n(za)/n, A€A

Typically MLE must be found by iterative methods, e.g. iterative
proportional scaling (IPS).

However, for some Log—Linear models (called decomposable
models) the MLE can be found in closed form. In this case IPS
converges in 2 iterations.

12.7 Fitting Log—Linear models

Iterative proportional scaling is implemented in Loglin():

> 111 <- loglin(lizard, list(c("species","diam"),
c("species","height")))
2 iterations: deviation O

> str(111)

List of 4
$ 1rt : num 2.03
$ pearson: num 2.02
$ df : num 2

$ margin :List of 2
..$: chr [1:2] "species" "diam"
..$: chr [1:2] "species" "height"

A formula based interface to Lloglin() is provided by Loglm/():

> library(MASS)

> 112 <- loglm(~species:diam + species:height, data=lizard); 112
Call:

loglm(formula = ~species:diam + species:height, data = lizard)

Statistics:

X~2 df P(> X~2)
Likelihood Ratio 2.03 2 0.363
Pearson 2.02 2 0.365
> coef(112)

$ (Intercept)

[1] 3.79
$diam

<=4 >4
0.283 -0.283
$height

<=4.75 >4.75
0.343 -0.343

$species
anoli dist
-0.309 0.309

$diam. species
species
diam anoli dist
<=4 0.188 -0.188
>4 -0.188 0.188

$height.species
species
height anoli dist
<=4.75 0.174 -0.174
>4.75 -0.174 0.174

87

88

The dmod() function also provides an interface to Loglin(), and
dmod() offers much more; see Later.

> library(gRim)
> 113 <- dmod(~species:diam + species:height, data=lizard); 113
Model: A dModel with 3 variables
graphical : TRUE decomposable : TRUE
—-2logL : 1604 .43 mdim : 5 aic : 1614.43
ideviance : 23.01 idf 2 bic : 1634.49
deviance 2.03 df : 2

12.8 Graphical models and decomposable models

Let Z7 = (Zy,v € V) be a random vector and Let
A={A;, ..., Ag} where A, C V be a generating class for a Log
Linear model corresponding to

p(z) = || ga(za)

AcA

89

90

Definition 1 A hierarchical log—Llinear model with generating class
A = {ai1,...ag} is graphical if A are the cliques of the
dependence graph.

> par (mfrow=c(1,4))

> plot(ug(~D:S + H:S)) ## graphical

> plot(ug(~D:S + H:S + D:H)) ## not graphical
> plot(ug(~D:H:S)) ## graphical

> plot(ug(~D + H:S)) ## graphical

D

91

Definition 2 A graphical log—Linear model is decomposable if its
dependence graph is triangulated (has no > 4—cycles). Only
graphical models can be decomposable.

> par (mfrow=c(1,3))

> plot(ug(~A:B:C + B:C:D)) ## graphical, decomposable

> plot(ug(~A:B + A:C + B:C:D)) ## not graphical, not decomposable
> plot(ug(~A:B + A:C + B:D + C:D)) ## graphical, not decomposable

92

12.9 ML estimation in decomposable models

Major point: ML estimates in decomposable models can be found
in closed form (no iterations). Consider Llizard data:

The saturated model {DHS} (i.e. no restrictions on Pgps) is
decomposable, and the MLE is

Dans = n(d, h,s)/n

Next consider the decomposable model {DS, HS}. The term
interaction DS can also be seen as the saturated model for the

marginal table

> n.ds <- tableMargin(lizard, ~diamt+species); n.ds
species

diam anoli dist

<=4 118 134
>4 46 111

i.e. there is no restriction on pgs, and the MLE is 9gs = nn(d, s)/n.

Generally, for a decomposable model, the MLE can be found in

closed form as

B(z) = [Tc:cliques Pc(2c)
[Is:separators Ds(zs)

where Pe(zg) = n(zg)/mn for any clique or separator E.

So for {DS, HS} we have

_ _ PasPns _ [n(d, s)/n][n(h, s)/n]
Pans — y =
Ps n(s)/n

It is easy to see that we have the MLE: The MLE Pgns IS the
solution to the equation

Dgs = 'n(d1 5)/77'1 Dhs = ?’L(/’L, 3)/77'

93

n.ds <- tableMargin(lizard, c("diam", "species"))

n.hs <- tableMargin(lizard, c("height", "species"))

n.s <- tableMargin(lizard, c("species"))

ec <- tableDiv(tableMult(n.ds, n.hs), n.s) ## expected counts
ftable(ec)

V V V V YV

diam <=4 >4
species height

anoli <=4.75 87.1 33.9
>4.75 30.9 12.1
dist <=4.75 78.2 64.8
>4.75 55.8 46.2

> ftable(fitted(112))

Re-fitting to get fitted values
species anoli dist
diam height
<=4 <=4.75 87.1 78.
>4.75 30.9 b55.
>4 <=4.75 33.9 64.
46 .

2
3
3
>4.75 12.1 2

94

95

13 Decomposable models and Bayesian
networks

Now is the time to establish connections between decomposable
graphical models and Bayesian networks.

e For a decomposable model, the MLE is given as

B(2) = [lc:ctiques Dc(zc) _ [lc:cliques n(zc)/mn
HS:sepa'rators 'ﬁS(zS) HS:sepa'ratO'rs ?’L(ZS)/TL

e Major point: The above is IMPORTANT in connection with
Bayesian networks, it is a clique potential representation of p.

e Hence if we find a decomposable graphical model then we can
convert this to a Bayesian network.

e \We need not specify conditional probability tables (they are
only used for specifying the model anyway, the real
computations takes place in the junction tree).

96

e There are 2K»2 graphical models with n variables, so model
search is a challenge. The number of decomposable models is
smaller and these models can be fitted without iterations so
model search among decomposable models is faster.

97

14 Testing for conditional independence

Tests of general conditional independence hypotheses of the form
u 1L v | W can be performed with ciTest () (a wrapper for calling
ciTest_table()).

> library(gRim)

> args(ciTest_table)

function (x, set = NULL, statistic = "dev", method = "chisq",
adjust.df = TRUE, slice.info = TRUE, L = 20, B = 200, ...)

NULL

The general syntax of the set argument is of the form (u, v, W)
where 4 and v are variables and W is a set of variables.
> ciTest(lizard, set=c("diam","height","species"))

Testing diam _|_ height | species
Statistic (DEV): 2.026 df: 2 p-value: 0.3632 method: CHISQ

14.1 What is a CI-test — stratification

Conditional independence of w4 and v given W means independence
of w and v for each configuration w* of W.

In model terms, the test performed by ciTest () corresponds to the
test for removing the edge {u, v} from the saturated model with

variables {u, v} U W.

Conceptually form a factor S by crossing the factors in W. The
test can then be formulated as a test of the conditional
independence u 1L v | S in a three way table.

The deviance decomposes into independent contributions from each
stratum:

D = QansLog Tigs Z antog Tigs ZDS

7S

where the contribution Ds from the sth slice is the deviance for the
independence model of w and v in that slice.

98

99

> cit <- ciTest(lizard, set=~diamtheight+species, slice.info=T)
> cit

Testing diam _|_ height | species

Statistic (DEV): 2.026 df: 2 p-value: 0.3632 method: CHISQ
> names(cit)

[1] "statistic" "p.value" "df" "statname" "method"
[6] "adjust.df" "varNames" "slice"

> cit$slice
statistic p.value df species

1 0.178 0.673 1 anoli
2 1.848 0.174 1 dist
The sth slice is a |u| X |v|-table {Mijs}ti=1.. |u|j=1..|v|- T he degrees
of freedom corresponding to the test for independence in this slice
IS

dfs = (#F#{% :Nnys >0} — 1)(#F#{J :njs >0} — 1)

where n;.s and n.;s are the marginal totals.

100

14.2 Example: University admissions

Example: Admission to graduate school at UC at Berkley in 1973
for the six Largest departments classified by sex and gender.

> ftable(UCBAdmissions)
Dept A B C D E F

Admit Gender

Admitted Male 512 353 120 138 53 22
Female 89 17 202 131 94 24
Rejected Male 313 207 205 279 138 351
Female 19 8 391 244 299 317

Is there evidence of sexual discrimination?

> ag <- tableMargin(UCBAdmissions, ~Admit+Gender); ag
Gender
Admit Male Female
Admitted 1198 557
Rejected 1493 1278
> as.parray(ag, normalize="first")
Gender
Admit Male Female
Admitted 0.445 0.304
Rejected 0.555 0.696

101

> s<-ciTest (UCBAdmissions, ~Admit+Gender+Dept, slice.info=T); s

Testing Admit _|_ Gender | Dept
Statistic (DEV): 21.736 df: 6 p-value: 0.0014 method: CHISQ

Hence, admit and gender are not independent within each Dept.

However, most contribution to the deviance comes from
department A:

> s$slice

statistic p.value df Dept
1 19.054 1.27e-05 1 A
2 0.259 6.11e-01 1 B
3 0.751 3.86e-01 1 C
4 0.298 5.85e-01 1 D
5 0.990 3.20e-01 1 E
6 0.384 5.36e-01 1 F

102

So what happens in department A7
> x <- tableSlice(UCBAdmissions, margin="Dept", level="A"); x

Gender
Admit Male Female
Admitted 512 89
Rejected 313 19
> as.parray(x, normalize="first")
Gender
Admit Male Female

Admitted 0.621 0.824
Rejected 0.379 0.176

The discrimination is against men!

Why were we mislead at the beginning?

> x <- tableMargin(UCBAdmissions, ~Admit+Dept);

> X
Dept
Admit A B C D E F
Admitted 601 370 322 269 147 46
Rejected 332 215 596 523 437 668

> as.parray(x, norm="first")

Dept
Admit A B C D E F
Admitted 0.644 0.632 0.351 0.34 0.252 0.0644
Rejected 0.356 0.368 0.649 0.66 0.748 0.9356

103

104

15 Log—Linear models — the gRImMm package

Coronary artery disease data:
> data(cadl, package="gRbase")

> use <- c¢(1,2,3,9:14)
> cadl <- cadl[,use]
> head(cadl, 4)
Sex AngPec AMI Hypertrophi Hyperchol Smoker Inherit

1 Male None NotCertain No No No No
2 Male Atypical NotCertain No No No No
3 Female None Definite No No No No
4 Male None NotCertain No No No No

Heartfail CAD
1 No No
2 No No
3 No No
4 No No

CAD is the diseae; the other variables are risk factors and disease
manifestations/symptoms.

105

Some (random) model:

> ml <- dmod(~Sex:Smoker:CAD + CAD:Hyperchol:AMI, data=cadl); ml

Model: A dModel with 5 variables
graphical : TRUE decomposable : TRUE

-2logL : 1293.88 mdinm : 13 aic : 1319.88
ideviance : 112.54 idf 8 bic : 1364.91
deviance : 16.38 df : 18

> plot(ml)

106

Data must be a table or a dataframe (which will be converted
to a table).

Variable names may be abbreviated.
Instead of a formula, a List can be given.

The generating class as a List is retrieved with terms() and as a
formula with formula():

> str(terms(m1))
List of 2
$: chr [1:3] "Sex" "Smoker" "CAD"
$: chr [1:3] "CAD" "Hyperchol" "AMI"
> formula(ml)
~Sex * Smoker * CAD + CAD * Hyperchol *x AMI

107

Notice: No dependence graph in model object; must be generated
on the fly using ugList():

> # Default: a graphNEL object

> DG <- ugList(terms(m1)); DG

A graphNEL graph with undirected edges

Number of Nodes = 5

Number of Edges = 6

> # Alternative: an adjacency matrix

> a <- uglist(terms(ml1), result="matrix"); a
Sex Smoker CAD Hyperchol AMI

Sex 0 1 1 O O
Smoker 1 0 1 O O
CAD 1 1 0 1 1
Hyperchol O 0 1 0 1
AMI 0 o 1 1 0

> A <- uglist(terms(ml), result="dgCMatrix")

108

15.1 Model specification shortcuts

Shortcuts for specifying some models

> mar <- c("Sex","AngPec","AMI","CAD")
> str(terms(dmod(~."., data=cadl, margin=mar))) ## Saturated model

List of 1
$: chr [1:4] "Sex" "AngPec" "AMI" "CAD"
> str(terms(dmod(~."1, data=cadl, margin=mar))) ## Independence model
List of 4
: chr "Sex"
chr "AngPec"
: chr "AMI"
: chr "CAD"
> str(terms(dmod(~."3, data=cadl, margin=mar))) ## All 3-factor model

List of 4

: chr [1:3] "Sex" "AngPec" "AMI"
: chr [1:3] "Sex" "AngPec" "CAD"
chr [1:3] "Sex" "AMI" "CAD"
chr [1:3] "AngPec" "AMI" "CAD"

&L AP L &L

& A P B

109

15.2 Altering graphical models

Natural operations on graphical models: add and delete edges

> ml <- dmod(~Sex:Smoker:CAD + CAD:Hyperchol:AMI, data=cadl); ml

Model: A dModel with 5 variables
graphical : TRUE decomposable : TRUE

-2logL : 1293.88 mdim : 13 aic : 1319.88
ideviance : 112.54 idf 8 bic : 1364.91
deviance : 16.38 df : 18

> m2 <- update(ml,items =
list (dedge=~Hyperchol:CAD, # drop edge
aedge=~Smoker:AMI)) # add edge

> par(mfrow=c(1,2)); plot(ml); plot(m2)

Sex

Smoker

AMI

110

111

15.3 Model comparison

Models are compared with compareModels ().

> ml <- dmod(~Sex:Smoker:CAD + CAD:Hyperchol:AMI, data=cadl); ml

Model: A dModel with 5 variables
graphical : TRUE decomposable : TRUE

-2logL : 1293.88 mdim : 13 aic : 1319.88
ideviance : 112.54 idf : 8 bic : 1364.91
deviance : 16.38 df : 18

> m3 <- update(ml, items=list(dedge=~Sex:Smoker+Hyperchol:AMI))
> compareModels(ml, m3)
Large:
:"Sex" "Smoker" "CAD"
: "CAD" "Hyperchol" "AMI"
Small:
. IISeXII IICADII
: "Smoker" "CAD"
: "CAD" "Hyperchol"
. IICADII IIAMIII
-2logL: 8.93 df: 4 AIC(k= 2.0): 0.93 p.value: 0.346446

112

> par (mfrow=c(1,2)); plot(ml); plot(m3)

15.4 Decomposable models — deleting edges

Result: If A7 is a decompsable model and we remove an edge
e = {u, v} which is contained in one clique C only, then the new
model A, will also be decomposable.

> par (mfrow=c(1,3))

> plot(ug(~A:B:C+B:C:D))

> plot(ug(~A:C+B:C+B:C:D))

> plot(ug(~A:B+A:C+B:D+C:D))

Left: A; — decomposable; Center: dropping {A, B} gives
decomposable model; Right: dropping {B, C} gives
non—decomposable model.

113

114

Result: The test for removal of e = {wu, v} which is contained in
one clique C only can be made as a test for u 1L v|C \ {w, v} in

the C—marginal table.
This is done by ciTest (). Hence, no model fitting is necessary.

115

15.5 Decomposable models — adding edges

More tricky when adding edge to a decomposable model
> plot(ug(~A:B+B:C+C:D), "circo")

A—B—C D

Adding {A, D} gives non—decomposable model; adding {A, C}
gives decomposable model.

116

One solution: Try adding edge to graph and test if new graph is
decomposable. Can be tested with maximum cardinality search as
implemented in mes(). Runs in O(|edges| + |vertices]|).

> UG <- ug(~A:B+B:C+C:D)

> mcs (UG)

[1] mAn nBn o non npn

> UGl <- addEdge("A","D",UG)
> mcs (UG1)

character(0)

> UG2 <- addEdge("A","C",UG)
> mcs (UG2)

[1] AN ngn non npn

117

15.6 Test for adding and deleting edges

Done with testdelete() and testadd()
> ml <- dmod(~Sex:Smoker:CAD + CAD:Hyperchol:AMI, data=cadl)

> plot(ml)
> testdelete(ml, edge=c("Hyperchol", "AMI"))
dev: 4.981 df: 2 p.value: 0.08288 AIC(k=2.0): 1.0 edge: Hyperct

host: CAD Hyperchol AMI
Notice: Test performed in saturated marginal model

118

> ml <- dmod(~Sex:Smoker:CAD + CAD:Hyperchol:AMI, data=cadl)

> plot(ml)
> testadd(ml, edge=c("Smoker", "Hyperchol"))
dev: 1.6568 df: 2 p.value: 0.43654 AIC(k=2.0): 2.3 edge: Smoker:

host: CAD Smoker Hyperchol
Notice: Test performed in saturated marginal model

119

15.7 Model search in Llog—Linear models using gRImMm

Model selection implemented in stepwise() function.

e Backward / forward search (Default: backward)

e Select models based on p—values or AIC(k=2) (Default:
AIC(k=2))

® Model types can be "unsrestricted" or "decomposable".
(Default is decomposable if initial model is decompsable)

e Secarch method can be "all" or "headlong". (Default is all)

> args(stepwise.iModel)

function (object, criterion = "aic", alpha = NULL, type = "decomposabl
search = "all", steps = 1000, k = 2, direction = "backward",
fixinMAT = NULL, fixoutMAT = NULL, details = 0O, trace = 2,

cel)

NULL

120

> msat <- dmod(~.~., data=cadl)
> mnewl <- stepwise(msat, details=1, k=2) # use aic
STEPWISE:

criterion: aic (k=2)

direction: backward

type : decomposable
search : all
steps 1000

. BACKWARD: type=decomposable search=all, criterion=aic(2.00), alpha=(
Initial model: is graphical=TRUE is decomposable=TRUE

change . AIC -10.1543 Edge deleted: Sex CAD

change .AIC -10.8104 Edge deleted: Sex AngPec
change . AIC -18.3653 Edge deleted: AngPec Smoker
change . AIC -13.6019 Edge deleted: Hyperchol AngPec
change.AIC -10.1275 Edge deleted: Sex Heartfail
change . AIC -10.3829 Edge deleted: Hyperchol Heartfail
change.AIC -7.1000 Edge deleted: AMI Sex
change.AIC -9.2019 Edge deleted: Hyperchol Sex
change.AIC -9.0764 Edge deleted: Inherit Hyperchol
change.AIC -5.1589 Edge deleted: Heartfail Smoker
change.AIC -4.6758 Edge deleted: Inherit Heartfail
change.AIC -1.7378 Edge deleted: Sex Smoker
change.AIC -6.3261 Edge deleted: Smoker Inherit

121

change .AIC -6.2579 Edge deleted: CAD Inherit

122

> plot(mnewl)

123

> msat <- dmod(~.~., data=cadl)
> mnew2 <- stepwise(msat, details=1, k=log(nrow(cadl))) # use bic
STEPWISE:

criterion: aic (k = 5.46)

direction: backward

type : decomposable
search : all
steps 1000

. BACKWARD: type=decomposable search=all, criterion=aic(5.46), alpha=(
Initial model: is graphical=TRUE is decomposable=TRUE

change .AIC -100.0382 Edge deleted: Sex AngPec
change . AIC -103.1520 Edge deleted: Hyperchol AngPec
change.AIC -74.2967 Edge deleted: Smoker AngPec
change.AIC -67.8590 Edge deleted: Sex Hyperchol
change.AIC -60.3907 Edge deleted: AngPec Hypertrophi
change .AIC -51.9489 Edge deleted: Heartfail Hyperchol
change.AIC -50.8580 Edge deleted: Sex CAD

change.AIC -43.8873 Edge deleted: AngPec Heartfail
change .AIC -41.3702 Edge deleted: AMI Sex

change.AIC -43.6158 Edge deleted: AMI Heartfail
change.AIC -40.2509 Edge deleted: Hyperchol Inherit
change .AIC -26.3511 Edge deleted: AngPec AMI

change .AIC -31.4947 Edge deleted: Inherit AMI

change
change
change
change
change
change
change
change
change
change
change
change
change
change
change
change

.AIC
.AIC
.AIC
.AIC
.AIC
.AIC
.AIC
.AIC
.AIC
.AIC
.AIC
.AIC
.AIC
.AIC
.AIC
.AIC

-25.
-31.
-22
-17.
-15
-15.
-18.
-13.
-12

5315
2732
. 9457
9850
. 7814
5931
5186
8092
.4648
-6.5068
-9.2031
-5.9470
-5.0227
-4.0234
-6.8882
-3.1347

Edge
Edge
Edge
Edge
Edge
Edge
Edge
Edge
Edge
Edge
Edge
Edge
Edge
Edge
Edge
Edge

deleted:
deleted:
deleted:
deleted:
deleted:
deleted:
deleted:
deleted:
deleted:
deleted:
deleted:
deleted:
deleted:
deleted:
deleted:
deleted:

124

Heartfail CAD

Inherit Heartfail

AMI Hypertrophi
Smoker AMI

Sex Heartfail

smoker Sex

Inherit Smoker
Hyperchol Smoker
AngPec Inherit

smoker Heartfail
Hypertrophi Smoker
AMI Hyperchol
Hypertrophi Hyperchol
Sex Inherit
Hypertrophi
Hypertrophi

Inherit
Sex

125

> plot(mnew2)

Hypertrophi

126

16 From graph and data to network

Create graphs from models:

> ugl <- uglist(terms(mnewl))
> ug2 <- uglist(terms(mnew2))
> par(mfrow=c(1,2)); plot(ugl); plot(ug2)

127

Create Bayesian networks from (graph, data):

> bnl <- compile(grain(ugl, data=cadl, smooth=0.1)); bnl

Independence network: Compiled: TRUE Propagated: FALSE
Nodes: chr [1:9] "Hypertrophi" "AMI" "CAD" "Smoker"

> bn2 <- compile(grain(ug2, data=cadl, smooth=0.1)); bn2

Independence network: Compiled: TRUE Propagated: FALSE
Nodes: chr [1:9] "CAD" "AngPec" "Hypertrophi" "Heartfail"

128

> querygrain(bnl, "CAD")

$CAD
CAD

No Yes
0.546 0.454

> z<-setEvidence(bnl, nodes=c("AngPec", "Hypertrophi"),
c("Typical","Yes"))

> # alternative form

> z<-setEvidence(bnl,
nslist=list (AngPec="Typical", Hypertrophi="Yes"))

> querygrain(z, "CAD")

$CAD

CAD

No Yes
0.599 0.401

129

17 Prediction

Dataset with missing values

> data(cad2, package="gRbase")
> dim(cad2)

[1] 67 14
> head(cad2, 4)
Sex AngPec AMI QWave QWavecode STcode STchange
1 Male None NotCertain No Usable Usable Yes
2 Female None NotCertain No Usable Usable Yes
3 Female None NotCertain No Nonusable Nonusable No
4 Male Atypical Definite No Usable Usable No
SuffHeartF Hypertrophi Hyperchol Smoker Inherit Heartfail CAD
1 Yes No No <NA> No No No
2 Yes No No <NA> No No No
3 No No Yes <NA> No No No
4 Yes No Yes <NA> No No No

130

> args(predict.grain)
function (object, response, predictors = setdiff (names(newdata),

response), newdata, type = "class", ...)
NULL

> pl <- predict(bnl, newdata=cad2, response="CAD")
> head(pl$pred$CAD)
[1] "NO" "NO" "NO" "NO" "NO" "Yes"

> z <- data.frame(CAD.obs=cad2$CAD, CAD.pred=pl$pred$CAD)
> head(z) # class assigned by highest probability

CAD.obs CAD.pred

1 No No
2 No No
3 No No
4 No No
5 No No
6 No Yes
> xtabs(~., data=z)
CAD.pred

CAD.obs No Yes

No 32 9

Yes 9 17

131

Can be more informative to Look at conditional probabilities:
> gl <- predict(bnl, newdata=cad2, response="CAD",

type="distribution")
> head(q1$pred$CAD)

No Yes
[1,] 0.974 0.0258
[2,] 0.974 0.0258
[3,] 0.898 0.1017
[4,] 0.535 0.4651
[6,] 0.787 0.2134

[6,] 0.451 0.5490

> head(p1$pred$CAD)

[1] llNoll IINOII IINOII "NO" llNOII llYeSII
> head(cad2$CAD)

[1] No No No No No No
Levels: No Yes

132

18 Other packages

Model search facilities in gRim are Limited but the bnlearn
package contains useful stuff, see http://www.bnlearn.com/.

> require(bnlearn)
> a =Dbn.fit(hc(cadl), cadl)

> bn = as.grain(a)
> plot(bn)

http://www.bnlearn.com/

133

19 Winding up

Brief summary:

e Ve have gone through aspects of the gRain package and seen
some of the mechanics of probability propagation.

® Propagation is based on factorization of a pmf according to a
decomposable graph.

® \We have gone through aspects of the gRim package and seen
how to search for decomposable graphical models.

® \We have seen how to create a Bayesian network from the
dependency graph of a decomposable graphical model.

® [he model search facilities in gRIm do not scale to Large
problems; instead it is more useful to consider other packages
for structural Learning, e.g. bnlearn.

	Outline of tutorial
	Package versions
	A bit of history
	Book: Graphical Models with R

	The chest clinic narrative
	DAG–based models
	DAG-based models (II)

	Conditional probability tables (CPTs)
	An introduction to the gRain package
	Querying the network
	Setting evidence
	The curse of dimensionality
	So what is the problem?
	So what is the solution

	Message passing – a small example
	Collect Evidence
	Distribute Evidence
	Setting evidence

	Message passing – the bigger picture
	Conditional independence
	Towards data
	Extracting CPTs
	Extracting clique marginals

	Learning the model structure
	Contingency tables
	Log–linear models
	Hierarchical log–linear models
	Dependence graphs
	The Global Markov property
	Estimation – likelihood equations
	Fitting log–linear models
	Graphical models and decomposable models
	ML estimation in decomposable models

	Decomposable models and Bayesian networks
	Testing for conditional independence
	What is a CI-test – stratification
	Example: University admissions

	Log–linear models – the gRim package
	Model specification shortcuts
	Altering graphical models
	Model comparison
	Decomposable models – deleting edges
	Decomposable models – adding edges
	Test for adding and deleting edges
	Model search in log–linear models using gRim

	From graph and data to network
	Prediction
	Other packages
	Winding up

