Graphical Models and Bayesian Networks —
useR!2015 tutorial

Therese Graversen

Department of Mathematical Sciences, University of Copenhagen

30 June 2015

Bayesian Networks

Models for discrete variables

Imagine that we are interested in the distribution of a set of
discrete random variables that each take a finite number of

values.

A Bayesian network is a convenient framework for
» Specifying the joint distribution (a model)
» efficiently computing marginal and conditional probabilities.

Example: Forensic identification using DNA

» Paternity cases
» Forensic identification in mass disasters
» Samples of poor quality or mixed from many people.

4/53

13 CODIS Core STR Loci
a with Chromosomal Positions

TPOX
=

E __ H nor B

D55818 51179 VWA
FeA ™ D75820
LCSFEPOE =

4 5 6 7 8 9 10 11 12

=}
AMEL

fEE
D138317 E E g E =
g D165539 s D18S51 D21S11 A""'E'-
O o U
19 20 21 22 X

13 14 15 16 17 18 Y

STR marker: An identifiable area (locus) on a chromosome
marker

[T T

r |
Illllllllllllllllilllll

Allele: The DNA sequence at a marker
AorB
(In practice there are 10-20 possible alleles for a
marker)

Genotype: Unordered pair of alleles
(A, A), (A, B), or (B, B).

The genotype of a person at a specific marker is a random
variable with state space {AA, AB, BB}.

We are interested in the joint distribution of genotypes for a
group of people.

The Bayesian network representation

A Bayesian Network represents the joint distribution by
1. a DAG, where each node corresponds to a variable
2. a collection of conditional probability tables (CPTs).

@@

The DAG specifies a factorisation of the joint distribution

p(m, £, ¢) = p(m)p(£)p(c |m, £).

Importantly,

» the joint distribution can be evaluated as the product of
CPTs

» each factor depends only on a subset of the variables

Inheritance

A child inherits one allele from each parent independently.

The parent’s two alleles have equal probability of being passed
on to the child.

Each combination has probability 1/4; some lead to the same
genotype for the child.

A A A A A B
A AA AA A AA AA A AA AB
A AA AA B AB BB B AB BB

Conditionally on the parents, the distribution of the child is

#4 mother AA AB BB

(23 father AA AB BB AA AB BB AA AB BB
child

AA 1.00 0.50 0.00 0.50 0.25 0.00 0.00 0.00 0.00
#4# AB 0.00 0.50 1.00 0.50 0.50 0.50 1.00 0.50 0.00

BB 0.00 0.00 0.00 0.00 0.25 0.50 0.00 0.50 1.00

Conditional probability tables (CPT) for a child

prob <- function(child, mother, father){
child <- strsplit(child, "")[[1]]

mother <- strsplit (mother, "")[[1l]]

father <- strsplit (father, "")[[1]]

Probability of inheriting allele a from genotype gt
P <- function(a, gt) ((a == gt[l]) + (a == gt[2]))/2

if (child[1] != child[2]){

P(child[1], mother)*P (child[2], father) +
P(child[1], father)*P(child[2], mother)
} else {
P(child[1], mother)*P(child[2], father)
}
}

gts <— c("AA", "AR", "BRB")

tab <- expand.grid(child=gts, mother = gts, father = gts,
stringsAsFactors=FALSE)

tab$prob <- mapply (prob, tab$child, tabS$Smother, tab$father)

We save the probabilities for use in CPTs

inheritance <- tab$prob

9/53

CPTs are arrays of probabilities

head (tab)

##
##
ki
##
##
ki
##

child mother father prob

o U1 W N

AA
AB
BB
AA
AB
BB

AA
AA
AA
AB
AB
AB

c.mf <- xtabs(prob ~

ftable (c.mf,

##
##
##
##
##
##

child
AA
AB
BB

mother
father

row.vars

AA
AA

.00
.00
.00

AA
AA
AA
AA
AA
AA

1.

o O O O
O U1 o O O O

., tab)

= "child")

AB

0.50
0.50
0.00

BB

0.00
1.00
0.00

AB
AA

.50
.50
.00

AB

0.25
0.50
0.25

BB
BB AA AB BB

0.00 0.00 0.00 0.00
0.50 1.00 0.50 0.00
0.50 0.00 0.50 1.00

10/53

Marginal distribution of a genotype

If alleles A and B occur in the population with frequencies
(0.3,0.7), then the distribution of genotypes AA, AB, and BB is

gtprobs <- dbinom(0:2, size = 2, prob = c(0.3, 0.7))

Assuming that the person’s 2 alleles are sampled
independently from the population.

Building the network

We can specify the Bayesian network via a list of CPTs.

Each CPT can be specified via e.g.
> array
» parray

» cptable

Building the network

mother <- cptable("mother, values = gtprobs, levels=gts)
(father <- cptable("father, values = gtprobs, levels=gts))

{v,pa(v)} : chr "father"
<NA>
AA 0.49
AB 0.42
BB 0.09

(child <- cptable("child | mother + father,
values = inheritance, levels = gts))

{v,pa(v)} : chr [1:3] "child" "mother" "father"

<NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA>
AA 1 0.5 0 0.50.25 0.0 0 0.0 0
AB 0 0.5 1 0.5 0.50 0.5 1 0.5 0

BB 0 0.0 0 0.0 0.25 0.5 0 0.5 1

13/53

Building the network

A list of CPTs
(cptlist <- compileCPT (list (child, mother, father)))

CPTspec with probabilities:
P(child | mother father)
P (mother)
P(father)

Bayesian Network
(trio <- grain(cptlist))

Independence network: Compiled: FALSE Propagated: FALSE
Nodes: chr [1:3] "child" "mother" "father"

14/53

Building the network

plot (trio)

15/53

Joint (marginal) distribution of a set of variables

Marginal distribution of the father's genotype
querygrain(trio, nodes = "father")

Sfather
father
AR AB BB
0.49 0.42 0.09

Joint distribution of mother and child

ftable (querygrain(trio, nodes = c("child", "mother™),
type = "Joint"),
col.vars = "child")
#4# child AA AB BB
mother
AA 0.343 0.147 0.000
AB 0.147 0.210 0.063

BB 0.000 0.063 0.027

16/53

Joint (conditional) distribution of a set of variables

Conditional distribution of the father given mother and chi
ftable (querygrain(trio, nodes=c("father", "child", "mother™"),

type = "conditional"),
col.vars = "father")

father AA AB BB
child mother

AA AA 0.70 0.30 0.00
AB 0.70 0.30 0.00
#4 BB NaN NaN NaN
AB AA 0.00 0.70 0.30
AB 0.49 0.42 0.09
BB 0.70 0.30 0.00
BB AA NaN NaN NaN
AB 0.00 0.70 0.30

BB 0.00 0.70 0.30

17/53

Evidence

If we observe a configuration of some of the variables, this can
be entered as evidence.

Then the network gives the
» conditional distribution given the evidence
» marginal probability of the evidence

Joint (conditional) distribution of a set of variables

Network with evidence entered

trio_ev <- setEvidence(trio, nodes=c("child", "mother™),
states = c("AB", "BR"))

p(father | child = AB, mother = BB)

querygrain(trio_ev, nodes="father")

Sfather
father
AA AB BB
0.7 0.3 0.0

Removing all entered evidence
trio_ev <- retractEvidence (trio_ev)
p(father)

querygrain (trio_ev, nodes="father'")

Sfather
father
#4# AA AB BB
0.49 0.42 0.09

19/53

Probability of a configuration of a set of variables

Method 1: Get the entire joint distribution and find your
configuration:

querygrain(trio, nodes=c("child", "mother"),
type = "Joint")

mother

child AA AB BB

AA 0.343 0.147 0.000
AB 0.147 0.210 0.063
BB 0.000 0.063 0.027

Method 2: Enter the configuration as evidence and get the
normalising constant.

tr <- setEvidence(trio, nodes=c("child", "mother'"),
evidence = c(child="AR", mother="BR"))

pEvidence (tr)

[1] 0.063

20/53

Simulation
We can simulate directly from the distribution that the Bayesian
network represents:

Prior distribution
simulate (trio, 3)

child mother father

#H 1 AA AB AA
#H 2 BB BB AB
3 AA AA AA

Posterior after observing child and mother
simulate (trio_ev, 3)

child mother father
1 BB BB BB
#4# 2 AB AB AB
3 AA AA AA

Example: Paternity testing

A mother with genotype BB has a child with genotype AB. She
claims that Mr X, who has genotype AB, is the father of her
child.

The evidence in this case could be the observed genotypes of
the mother and the child.

We compare the probability of the evidence under two
alternative hypotheses:

H,: Mr X is the father
VS.
H>: Some unknown man is the father

We need to compute

_ P(c =AB,m=BB|H;) P(c =AB,m=BB|f = AB)

LR = =
P(c = AB,m = BB | H>) P(c = AB,m = BB)

Example: Paternity testing

LR =P(c =AB,m =BB|f = AB)/P(c = AB,m = BB)

P(m = BB, ¢ = AB, f = AB)

p.fmc <- pEvidence (setEvidence (trio, evidence = list(
mother = "BR",
child = "AR",
father = "AB")))
P(f = AB)
p.f <- pEvidence (setEvidence (trio, evidence = list(
father = "AB")))

L.Hl <- p.fmc/p.f
P(m = BB, c = AB)

L.H2 <- pEvidence (setEvidence (trio, evidence = list (
mother = "BB",
child = "AB")))

Likelihood ratio comparing Mr X vs unknown person.

L.H1/L.H2

[1] 0.7142857

The likelihood ratio is smaller than 1, so the evidence does not
point to Mr X being the father.

23/53

Conditional independence
In a Bayesian Network, any variable is conditionally
independent of its non-descendants given its parents; e.g.

uncle Il (mother, father,child)|(grandma,grandpa)

mother 1l (grandma,grandpa, father,uncle)

We use that to construct the network.

p(c,m, £,un, gm,gf) = p(c|m, £)p(m)p(£f | gm, gf)p(un | gm, gf)p(gf)p(gm)

Missing father, but the uncle is available

p(child | mother, father)
c.mf <- parray(c("child", "mother", "father"),
levels = rep(list(gts), 3),
values = inheritance)
p(father | grandma, grandpa)
f.gmgf <- parray(c("father", "grandma", "grandpa"),
levels = rep(list(gts), 3),

values = inheritance)

p(uncle | grandma, grandpa)

u.gmgf <- parray(c("uncle", "grandma'", "grandpa"),
levels = rep(list(gts), 3),
values = inheritance)

p (mother)

m <- parray("mother", values = gtprobs, levels=list (gts))

p(grandpa)

gf <- parray("grandpa'", values = gtprobs, levels = list(gts))
p(grandma)

gm <- parray("grandma", values = gtprobs, levels = list (gts))

cpt.list <- compileCPT(list(c.mf, m, f.gmgf, u.gmgf, gm, gf))

extended.family <- grain(cpt.list) -

Practical exercises

. Build the network extended. family on your own
computer.

. A mother claims that Mr X is the father of her child.

Unfortunately it is not possible to get a DNA sample from
Mr X, but his brother (“uncle”) is willing to give a sample.

mother AB
child AB
uncle AA

What is the probability of observing this evidence, i.e. this
combination of genotypes?

. What is the conditional distribution of the father’s genotype
given the evidence?
. Ignoring the genotypes of the mother and the uncle, what

is the conditional distribution of the father’s genotype given
that the child is AB?

Behind the scenes: Local
computations on a junction

tree

Joint distribution of all variables
The 6 persons each has 3 possible genotypes, so the state

space has 3° = 729 states. This quickly grows!

joint <- tableListProd(cpt.list)

grandpa grandma uncle child mother father

AA
##
#4#
#4
#4
##
##
#4
#4
#4
##
#4#
#4
#4
##
##
#4#
#4
#4
##
##
#4#
#4

AA

AA

AA

AB

BB

AA

AB

BB

AB

BB

AB

AA
AB
BB
AA
AB
BB
AA
AB
BB
AA
AB
BB
AA
AB
BB
AA
AB
BB
AA
AB
BB
AA
AB

ftable (joint,

[eNeNoNeoNoN-NoNeNoX-NecNeNoNo N Ne =N NNl

row.vars

.11764900
.00000000
.00000000
.05042100
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.05042100
.00000000
.00000000
.02160900
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000

28/53

The Junction tree representation

The Bayesian network and CPTs are used for specification of
the model.

Computations are done using more convenient computational
structure; the junction tree

The distribution is now represented by

junction tree: a tree with subsets (cliques) of variables as
nodes

potentials: functions of the clique variables.

Junction tree for paternity case

plot (extended.family)

extfam <- compile (extended.family)
plot (extfam)

plot (JTree (extfam$ug))

The joint distribution is the product of the potentials,

p(f7m7 C,un, gm, gf) = ql(fa m, C)Q2(f, am, gf)q3(un7 gm, gf)

30/53

Initializing potentials

child, mother, father, grandma, uncle, grandma,
father grandpa grandpa

Initially we collect the CPTs according to the cliques
p(f7 m? C? un? gm? gf)

— (el () (ot amsop(am)) (pan | an. ae)p(as)

q1(c,£,m) ¢2(f,gm,gf) ¢3(un,gm,gf)

Initializing potentials

child, mother, father, grandma, uncle, grandma,
father grandpa grandpa
The shared variables between two neighbouring cliques is their
separator.

A slightly different factorisation also assigns a potential to each
separator:

QI(fa m, C)QZ(fa gm, gf)q3(un7 gm, gf)
s1(£)s2(gm, g£)

p(f7m7 c,un, gm, gf) =

Taking the clique potentials as before, and
si(f) =1 s2(gm,gf) =1
we clearly did not change anything.

Similarly we can always get back to the other factorisation by
“absorbing” the separator potentials into clique potentials.

q2

##
##
##
##
##

##
##
##
##
##

Initializing potentials

<- tabMult (m, c.mf); ftable(qgl)

father AA AB
child mother
AR AR 0.490 0.245
AB 0.210 0.105
BB 0.000 0.000
AB AR 0.000 0.245
AB 0.210 0.210
BB 0.090 0.045
BB AA 0.000 0.000
AB 0.000 0.105
BB 0.000 0.045
<- tabMult (f.gmgf, gm); ftable(
father AA

grandma grandpa
AR AR 0.490 0
AB 0.245 0
BB 0.000 0.
AB AR 0.210 0.
AB 0.105 0.
BB 0.000 O
BB AR 0.000 0
AB 0.000 0
BB 0.000 0

[eleloloBoNeol=ReoX=]

qz,

AB

.000
.245

490
210
210

.210
.090
.045
.000

.090

row.vars

[eNeNeoNoNeoNe NN R}

BB

.000
.000

000
105
210

.000
.045
.090

33/53

##

##
##
##
##
##
##
##
##

##
sl
s2

<- tabMult (u.gmgf,

grandma grandpa

AA
AB
BB
AA
AB
BB
AA
AB
BB

[eNeNeNeoNoNoNoNeR=}

ftable (g3,

AR

.490
.210
.000
.245
.105
.000
.000
.000
.000

values
gra

"

[eNeNeoNoNeNeNeNo R}

AB

.000
.210
.090
.245
.210
.045
.490
.210
.000

Separator potentials are constant 1
parray ("fat
parray (c

1,

.

O OO 00000 Oo

ba'y,

Initializing potentials

row.vars

BB

.000
.000
.000
.000
.105
.045
.000
.210
.090

levels
values

Probability propagation

Probability propagation modifies (clique- and separator-)
potentials iteratively by message passing until they equal
marginal distributions.

v

Start from an intitial set of potentials

Choose any clique to be the root

Pass messages along all edges — towards the root
Pass messages along all edges — away from the root
All potentials now equal the marginal distributions, i.e.

v

v

v

v

qi(f,m,c) =p(f,m,c)
q2(£, gm, gf) = p(£, gm, gf)
g3(un, gm, gf) = p(un, gm, gf)
s1(£) = p(£)
s2(gm, g£) = p(gm, g£)

Message passing

Passing a message modifies a single pair of potentials: The
potential for the receiving clique, and the potential for the
separator between the two cliques.

Passing a message from (£, m, c¢) to (£, gm, gf) entails:
Slﬁﬂd(f) %—-Sl(f)
s1(f) « qu(f,m, c)

Sl(f)

q2(f,gm,gf) < go(f,gm,gf) ———=
() ()SLOld(f)

The product of potentials is unchanged:

£ £ £) 210 £
a1 (,m,C)(c]z,ond(, gm, g).\.],Old(m ¢3(un, gm, gf) g1, m, S)ga,oa(£, am, 9E)gs (un, gm, g£)

s1(£)s2(gm, g£) s1,0ld (£)s2(gm, g£)

Example: probability propagation

child, mother, father, grandma, uncle, grandma,
father grandpa grandpa

37/53

Collect evidence

[

child, mother,
father

sl_old <- sl

(sl <- tabMarg(gl,

##
##
##

a2

—

father, grandma

uncle, grandma

"father"))

father
AA AB BB
1 1 1
<- tabMult (tabDiv (sl,
father
grandma grandpa
AA AN
AB
BB
AB AA
AB
BB
BB AA
AB
BB

grandpa

sl_old), g2); ftable(qg2)

AA AB BB
0.490 0.000 0.000
0.245 0.245 0.000
0.000 0.490 0.000
0.210 0.210 0.000
0.105 0.210 0.105
0.000 0.210 0.210
0.000 0.090 0.000
0.000 0.045 0.045
0.000 0.000 0.090

37/53

Collect evidence

[

child, mother,
father

s2_old <- s2

s2

##
##
##
##
##

q2

<- tabMarg (g3, c("grandm
grandpa AA AB
grandma
AR 0.49 0.42
AB 0.49 0.42
BB 0.49 0.42
<- tabMult (tabDiv (s2, s2_
father
grandma grandpa
AA AA 0
AB 0
BB 0
AB AN 0
AB 0
BB 0
BB AA 0
AB 0
BB 0

grandpa

father,grandma,l

BB

0.09
0.09
0.09

old),

AA

L2401
.1029
.0000
.1029
.0441
.0000
.0000
.0000
.0000

uncle, grandma

crandpa')); ftable(s2)

qa2);

AB

.0000
.1029
.0441
.1029
.0882
.0189
.0441
.0189
.0000

ftable (g2)

BB

.0000
.0000
.0000
.0000
.0441
.0189
.0000
.0189
.0081

38/53

Distribute evidence

[

child, mother,
father

—

father, grandma, |

grandpa

s2_old <- s2
s2 <- tabMarg(q2,

##
##
##
##
##

a3

grandma
AA
AB
BB

grandpa

c("grand

AA

0.2401
0.2058
0.0441

<- tabMult (tabDiv (s2,

grandpa
AA

AB

BB

grandma
AA
AB
BB
AN
AB
BB
AA
AB
BB

uncle

ma"
a",

AB

0.2058 0.0441
0.1764 0.0378
0.0378 0.0081

s2_old),

[eNeNeoNeoNoNeNeNeRel

BB

a3);

AB

.0000
.1029
.0441
.1029
.0882
.0189
.0441
.0189
.0000

uncle, grandma
grandpa

)

"grandpa™)); ftable(s2)

ftable (g3)

BB

.0000
.0000
.0000
.0000
.0441
.0189
.0000
.0189
.0081

39/53

Distribute evidence

[

child, mother
father

J—

father, grandma
grandpa

sl_old <- sl

sl

##
##
##

<- tabMarg (g2, "father

father

AA

AB

BB

0.49 0.42 0.09

<- tabMult (tabDiv(sl,

child mother

AR

AB

BB

AA
AB
BB
AA
AB
BB
AA
AB
BB

father

[eNeNoNoNoNoNeE=R=

"); sl
sl_old), gl);
AR AB
.2401 0.1029 0
.1029 0.0441 0
.0000 0.0000 O
.0000 0.1029 0
.1029 0.0882 0
.0441 0.0189 0
.0000 0.0000 O
.0000 0.0441 0
.0000 0.0189 0

uncle, grandma,
grandpa

ftable (gl)

BB

.0000
.0000
.0000
.0441
.0189
.0000
.0000
.0189
.0081

40/53

Potentials are now marginal distributions

ftable (tabMarg (joint, c("father", "mother", "child")))
#4# child AA AB BB
father mother

AA AA 0.2401 0.0000 0.0000
AB 0.1029 0.1029 0.0000
#4# BB 0.0000 0.0441 0.0000
AB AA 0.1029 0.1029 0.0000
#4 AB 0.0441 0.0882 0.0441
#4 BB 0.0000 0.0189 0.0189
BB AA 0.0000 0.0441 0.0000
#4# AB 0.0000 0.0189 0.0189
#4# BB 0.0000 0.0000 0.0081

ftable(gl, row.vars=c("father", "mc

#4# child AA AB BB
father mother

AA AA 0.2401 0.0000 0.0000
#4# AB 0.1029 0.1029 0.0000
#4# BB 0.0000 0.0441 0.0000
AB AA 0.1029 0.1029 0.0000
AB 0.0441 0.0882 0.0441
#4# BB 0.0000 0.0189 0.0189
BB AA 0.0000 0.0441 0.0000
#4# AB 0.0000 0.0189 0.0189
#4# BB 0.0000 0.0000 0.0081

41/53

Example: propagation of evidence

The same junction tree is used for the representation of various
conditional distributions — we just modify the potentials by
entering evidence.

When entering evidence father = AA, we
» Choose a potential containing the variable father

» Set the value of the potential to 0 for all combinations
except where father == AA.

» The product of potentials is now p(family)l satner == an}
rather than p(family).

» propagation gives the (unnormalised) marginal potentials
for the conditional distribution given the evidence.

Modify the potential for a clique containing father
list (father

Enter the evidence

gl <- setSliceValue(ql,
ftable (ql,

ki
##
##
ki
##
##
ki
##
##
ki
##

child mother

AA

AB

BB

AA
AB
BB
AA
AB
BB
AA
AB
BB

father

O O O O O o o o o

col.vars="father")

AA

.2401
.1029
.0000
.0000
.1029
.0441
.0000
.0000
.0000

O O O O O o o o o

AB

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

O O O O O o o o o

u;_\n),

BB

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

43/53

Propagate the evidence

Run propagation again

sl_old <- sl

sl <- tabMarg(gl, "father™)

g2 <- tabMult (tabDiv(sl, sl_old), g2)
s2_old <- s2

s2 <- tabMarg (g3, c("grandma", "grandpa"))
g2 <- tabMult (tabDiv(s2, s2_old), g2)
s2_old <- s2

s2 <- tabMarg (g2, c("grandma", "grandpa"))
g3 <- tabMult (tabDiv(s2, s2_old), g3)
sl_old <- sl

sl <- tabMarg (g2, "father™)

gl <- tabMult (tabDiv(sl, sl_old), gl)

44/53

Potentials are now marginals

marg <- querygraln(net with_ev,
dma",

ftable (marg, row.vars=c("gra

##
##
#H
#H
##
#
#H
#i#
#i#
#i
#i

grandma
AA

AB

BB

ftable (g2,

grandma
AR

AB

BB

father
grandpa
AR
AB
BB
AA
AB
BB
AA
AB
BB

row.vars=c ("

father
grandpa
AA
AB
BB
AA
AB
BB
AA
AB
BB

yrandm

coooooo oo

cocooocoococooo

AR

o
©
oo oo ooooo

"granc

c(”\

AB BB
00 0.00
00 0.00
00 0.00
00 0.00
00 0.00
00 0.00
00 0.00
00 0.00
00 0.00

45/53

Normalise potentials

Because we started with an unnormalised probability mass
function, we need to normalise the potentials after propagation.

The normalising constant is exactly the probability of the
evidence.

sum (g2)
[1] 0.49
pEvidence (net_with_ev)

[1] 0.49

The junction tree representation

The junction tree representation allows local computations on
batches of variables: we never need to compute the joint
distribution!

In particular, we can easily
» marginalize
» get conditional distributions
» simulate

gRain has two convenience functions for setting up the
junction tree:

compile: sets up the junction tree and initialises potentials
propagate: modifies the potentials into marginal distributions

These steps are done implicitly when querygrain is called,
so it is more efficient to do it explicitly.

Including non-discrete
observed variables

Example: Hidden Markov Models

Xl @ X3

Discrete unobservable variables X; ~ bin(2,1/3) and
Xi | Xi—l ~ bin(2,Xi_1/3).

Continuous observable variables Y; with Y; | X; ~ N(X;, 1).

49/53

Build the network for X

HMM network
x1 <- parray("x1", 1list(0:2), dbinom(0:2, 2, 1/3))
x2 <- parray(c("x2", "x1"), 1list(0:2, 0:2),
outer (0:2, 0:2, function(x,y)dbinom(x, 2, y/3))
x3 <- parray(c("x3", "x2"), list(0:2, 0:2),
outer(0:2, 0:2, function(x,y)dbinom(x, 2, y/3))
hmm <- grain(compileCPT (list (x1, x2, x3)))
plot (hmm)
hmm <- propagate (hmm, compile = TRUE)

x3

50/53

Enter observations Y via likelihood evidence

Observations y = (0,4, 1) are entered into the network via
likelihood evidence:

The evidence is the vector p(y_1i | x_1i) for all
possible values of x_1

(evidence <- list(x1 = dnorm(0, mean = 0:2, sd = 1),
x2 = dnorm(4, mean = 0:2, sd = 1),
x3 = dnorm(l, mean = 0:2, sd = 1)))

Sx1

[1] 0.39894228 0.24197072 0.05399097

##

Sx2

[1] 0.0001338302 0.0044318484 0.0539909665

##

S$x3

[1]1 0.2419707 0.3989423 0.2419707

hmm_ev <- setEvidence (hmm, evidence = evidence)
hmm_ev <- propagate (hmm_ev)

51/53

Posterior distributions and likelihood

After propagating the likelihood evidence the network
represents p(x|y).

probability p(x2, x3 | y)

querygrain (hmm_ev, c("x2", "x3"), type = "joint")
X3
x2 0 1 2

0 0.02263374 0.0000000 0.00000000
1 0.07445755 0.1227597 0.01861439
2 0.06567849 0.4331421 0.26271397
We can get the likelihood p(y) as the normalising constant

p(y)
pEvidence (hmm_ev)

[1] 0.0003230195

52/53

How does it work?

Setting likelihood evidence for a variable corresponds to
multiplying one potential — and thus the entire distribution
p(x1,x2,x3) — by the likelihood evidence:

p(x1,x2,x3 | y1,¥2,¥3) o p(x1,x2,x3)p(y1 | x1)p(y2 | x2)p(y3 | x3)

The normalising constant (pEvidence) is exactly the likelihood
of the observations:

pOy2:y3) = D plxixa,x3)p([x)p(v2 [x2)p(ys [x3)

X1,X2,X3

	Bayesian Networks
	Behind the scenes: Local computations on a junction tree
	Including non-discrete observed variables

