Graphical Models and Bayesian Networks – useR!2015 tutorial

Therese Graversen

Department of Mathematical Sciences, University of Copenhagen

30 June 2015

Bayesian Networks

Models for discrete variables

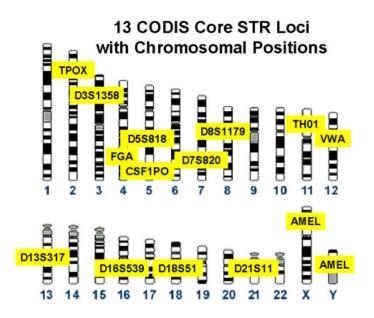
Imagine that we are interested in the distribution of a set of discrete random variables that each take a finite number of values.

A Bayesian network is a convenient framework for

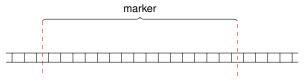
- Specifying the joint distribution (a model)
- efficiently computing marginal and conditional probabilities.

Example: Forensic identification using DNA

- ► Paternity cases
- ► Forensic identification in mass disasters
- ► Samples of poor quality or mixed from many people.



STR marker: An identifiable area (locus) on a chromosome



Allele: The DNA sequence at a marker

A or B

(In practice there are 10-20 possible alleles for a

marker)

Genotype: Unordered pair of alleles

(A, A), (A, B), or (B, B).

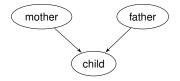
The genotype of a person at a specific marker is a random variable with state space $\{AA, AB, BB\}$.

We are interested in the joint distribution of genotypes for a group of people.

The Bayesian network representation

A Bayesian Network represents the joint distribution by

- 1. a *DAG*, where each node corresponds to a variable
- 2. a collection of *conditional probability tables (CPTs)*.



The DAG specifies a factorisation of the joint distribution

$$p(\mathbf{m}, \mathbf{f}, \mathbf{c}) = p(\mathbf{m})p(\mathbf{f})p(\mathbf{c} \mid \mathbf{m}, \mathbf{f}).$$

Importantly,

- the joint distribution can be evaluated as the product of CPTs
- each factor depends only on a subset of the variables

Inheritance

A child inherits one allele from each parent independently.

The parent's two alleles have equal probability of being passed on to the child.

Each combination has probability 1/4; some lead to the same genotype for the child.

Conditionally on the parents, the distribution of the child is

##		mother	AA			AB			BB		
##		father	AA	AB	BB	AA	AB	BB	AA	AB	BB
##	child										
##	AA		1.00	0.50	0.00	0.50	0.25	0.00	0.00	0.00	0.00
##	AB		0.00	0.50	1.00	0.50	0.50	0.50	1.00	0.50	0.00
##	BB		0.00	0.00	0.00	0.00	0.25	0.50	0.00	0.50	1.00

Conditional probability tables (CPT) for a child

```
prob <- function(child, mother, father){</pre>
      child <- strsplit(child, "")[[1]]</pre>
        mother <- strsplit(mother, "")[[1]]</pre>
        father <- strsplit(father, "")[[1]]</pre>
        ## Probability of inheriting allele a from genotype gt
        P \leftarrow function(a, gt)((a == gt[1]) + (a == gt[2]))/2
        if (child[1] != child[2]) {
               P(child[1], mother) *P(child[2], father) +
                     P(child[1], father) *P(child[2], mother)
             } else {
                   P(child[1], mother) *P(child[2], father)
gts <- c("AA", "AB", "BB")
tab <- expand.grid(child=gts, mother = gts, father = gts,
                      stringsAsFactors=FALSE)
tab$prob <- mapply(prob, tab$child, tab$mother, tab$father)
## We save the probabilities for use in CPTs
inheritance <- tab$prob
```

CPTs are arrays of probabilities

head (tab)

child mother father prob

##

BB

```
## 1
       AΑ
             AΑ
                    AA 1.0
                    AA 0.0
## 2
       AB
             AA
                    AA 0.0
##
      BB
             AA
## 4
       AΑ
             AB
                    AA 0.5
## 5
       AB
             AB
                    AA 0.5
## 6
             AΒ
                    AA 0.0
       BB
c.mf <- xtabs(prob ~ ., tab)</pre>
ftable(c.mf, row.vars = "child")
##
        mother
                AΑ
                              AB
                                            BB
##
        father
                AA
                     AB
                         ВВ
                              AA
                                  AB
                                       ВВ
                                            AA
                                                AB
                                                     BB
  child
              ##
  AA
              0.00 0.50 1.00 0.50 0.50 0.50 1.00 0.50 0.00
##
  AB
```

0.00 0.00 0.00 0.00 0.25 0.50 0.00 0.50 1.00

Marginal distribution of a genotype

If alleles A and B occur in the population with frequencies (0.3, 0.7), then the distribution of genotypes AA, AB, and BB is

```
gtprobs \leftarrow dbinom(0:2, size = 2, prob = c(0.3, 0.7))
```

Assuming that the person's 2 alleles are sampled independently from the population.

We can specify the Bayesian network via a list of CPTs.

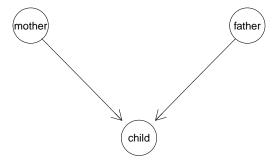
Each CPT can be specified via e.g.

- ► array
- ► parray
- ► cptable

```
mother <- cptable(~mother, values = gtprobs, levels=gts)</pre>
(father <- cptable(~father, values = gtprobs, levels=gts))</pre>
## {v,pa(v)} : chr "father"
## <NA>
## AA 0.49
## AB 0.42
## BB 0.09
(child <- cptable(~child | mother + father,</pre>
               values = inheritance, levels = qts))
## {v,pa(v)} : chr [1:3] "child" "mother" "father"
##
     ## AA 1 0.5 0 0.5 0.25 0.0 0 0.0 0
## AB 0 0.5 1 0.5 0.50 0.5 1 0.5 0
## BB 0 0.0 0 0.0 0.25 0.5 0 0.5 1
```

```
## A list of CPTs
(cptlist <- compileCPT(list(child, mother, father)))</pre>
## CPTspec with probabilities:
## P(child | mother father)
## P(mother)
## P(father)
## Bayesian Network
(trio <- grain(cptlist))
## Independence network: Compiled: FALSE Propagated: FALSE
     Nodes: chr [1:3] "child" "mother" "father"
##
```

plot(trio)



Joint (marginal) distribution of a set of variables

```
## Marginal distribution of the father's genotype
querygrain(trio, nodes = "father")
## $father
## father
## AA AB
            BB
## 0.49 0.42 0.09
## Joint distribution of mother and child
ftable(querygrain(trio, nodes = c("child", "mother"),
                   type = "joint"),
        col.vars = "child")
##
         child AA AB
                              BB
## mother
## AA
               0.343 0.147 0.000
## AB
               0.147 0.210 0.063
               0.000 0.063 0.027
## BB
```

Joint (conditional) distribution of a set of variables

```
## Conditional distribution of the father given mother and chi
ftable(querygrain(trio, nodes=c("father", "child", "mother"),
                    type = "conditional"),
         col.vars = "father")
##
                father AA
                              AB
                                   BB
## child mother
                       0.70 0.30 0.00
##
  AΑ
         AΑ
##
         AB
                       0.70 0.30 0.00
##
         ВВ
                       NaN NaN NaN
## AB
        AΑ
                       0.00 0.70 0.30
##
        AB
                       0.49 0.42 0.09
##
        BB
                       0.70 0.30 0.00
## BB
        AΑ
                       NaN NaN NaN
##
        AB
                       0.00 0.70 0.30
##
                       0.00 0.70 0.30
         BB
```

Evidence

If we observe a configuration of some of the variables, this can be entered as *evidence*.

Then the network gives the

- conditional distribution given the evidence
- marginal probability of the evidence

Joint (conditional) distribution of a set of variables

```
## Network with evidence entered
trio_ev <- setEvidence(trio, nodes=c("child", "mother"),</pre>
                    states = c("AB", "BB"))
## p(father | child = AB, mother = BB)
querygrain(trio_ev, nodes="father")
## Sfather
## father
## AA AB BB
## 0.7 0.3 0.0
## Removing all entered evidence
trio_ev <- retractEvidence(trio_ev)</pre>
## p(father)
querygrain(trio_ev, nodes="father")
## $father
## father
## AA AB BB
## 0.49 0.42 0.09
```

Probability of a configuration of a set of variables

Method 1: Get the entire joint distribution and find your configuration:

Method 2: Enter the configuration as evidence and get the normalising constant.

Simulation

We can simulate directly from the distribution that the Bayesian network represents:

```
## Prior distribution
simulate(trio, 3)
    child mother father
##
## 1
       AΑ
             AB
                    AΑ
## 2 BB
             BB
                    AB
## 3 AA
             AΑ
                    AΑ
## Posterior after observing child and mother
simulate(trio_ev, 3)
##
    child mother father
## 1
       BB
             BB
                    BB
    AB
             AB
                    AB
## 3
       AΑ
             AA
                    AΑ
```

Example: Paternity testing

A mother with genotype BB has a child with genotype AB. She claims that Mr X, who has genotype AB, is the father of her child.

The *evidence* in this case could be the observed genotypes of the mother and the child.

We compare the probability of the evidence under two alternative hypotheses:

$$H_1$$
: Mr X is the father vs.

 H_2 : Some unknown man is the father

We need to compute

$$LR = \frac{\mathsf{P}(\mathsf{c} = AB, \mathsf{m} = BB \,|\, H_1)}{\mathsf{P}(\mathsf{c} = AB, \mathsf{m} = BB \,|\, H_2)} = \frac{\mathsf{P}(\mathsf{c} = AB, \mathsf{m} = BB \,|\, \mathsf{f} = AB)}{\mathsf{P}(\mathsf{c} = AB, \mathsf{m} = BB)}$$

Example: Paternity testing

```
LR = P(c = AB, m = BB \mid f = AB) / P(c = AB, m = BB)
\#\# P(m = BB, c = AB, f = AB)
p.fmc <- pEvidence(setEvidence(trio, evidence = list(</pre>
                                            mother = "BB",
                                            child = "AB".
                                            father = "AB")))
## P(f = AB)
p.f <- pEvidence(setEvidence(trio, evidence = list(</pre>
                                          father = "AB")))
L.H1 \leftarrow p.fmc/p.f
## P (m = BB, c = AB)
L.H2 <- pEvidence(setEvidence(trio, evidence = list(
                                           mother = "BB".
                                           child = "AB")))
## Likelihood ratio comparing Mr X vs unknown person.
L.H1/L.H2
## [1] 0.7142857
```

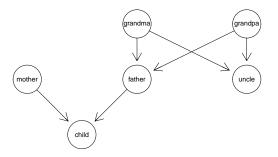
The likelihood ratio is smaller than 1, so the evidence does not point to Mr X being the father.

Conditional independence

In a Bayesian Network, any variable is conditionally independent of its non-descendants given its parents; e.g.

```
uncle \bot (mother, father, child) | (grandma, grandpa) mother \bot (grandma, grandpa, father, uncle)
```

We use that to construct the network.



$$p(\mathtt{c},\mathtt{m},\mathtt{f},\mathtt{un},\mathtt{gm},\mathtt{gf}) = p(\mathtt{c} \mid \mathtt{m},\mathtt{f}) p(\mathtt{m}) p(\mathtt{f} \mid \mathtt{gm},\mathtt{gf}) p(\mathtt{un} \mid \mathtt{gm},\mathtt{gf}) p(\mathtt{gf}) p(\mathtt{gm})$$

Missing father, but the uncle is available

```
## p(child | mother, father)
c.mf <- parray( c("child", "mother", "father"),</pre>
                  levels = rep(list(gts), 3),
                  values = inheritance)
## p(father | grandma, grandpa)
f.gmgf <- parray( c("father", "grandma", "grandpa"),</pre>
                    levels = rep(list(qts), 3),
                    values = inheritance)
## p(uncle | grandma, grandpa)
u.gmgf <- parray(c("uncle", "grandma", "grandpa"),</pre>
                    levels = rep(list(gts), 3),
                    values = inheritance)
## p(mother)
m <- parray("mother", values = gtprobs, levels=list(gts))</pre>
## p(grandpa)
qf <- parray("grandpa", values = gtprobs, levels = list(gts))</pre>
## p(grandma)
qm <- parray("grandma", values = gtprobs, levels = list(gts))</pre>
cpt.list <- compileCPT(list(c.mf, m, f.gmgf, u.gmgf, gm, gf))</pre>
extended.family <- grain(cpt.list)</pre>
                                                                25/53
```

Practical exercises

- Build the network extended.family on your own computer.
- A mother claims that Mr X is the father of her child.
 Unfortunately it is not possible to get a DNA sample from Mr X, but his brother ("uncle") is willing to give a sample.

	mother	AB
ĺ	child	AΒ
	uncle	AA

What is the probability of observing this evidence, i.e. this combination of genotypes?

- 3. What is the conditional distribution of the father's genotype given the evidence?
- 4. Ignoring the genotypes of the mother and the uncle, what is the conditional distribution of the father's genotype given that the child is AB?

Behind the scenes: Local computations on a junction tree

Joint distribution of all variables

The 6 persons each has 3 possible genotypes, so the state space has $3^6 = 729$ states. This quickly grows!

```
joint <- tableListProd(cpt.list) ; ftable(joint, row.vars = 1:6)</pre>
## grandpa grandma uncle child mother father
## AA
            AA
                     AΑ
                           AA
                                  AΑ
                                          AΑ
                                                   0.11764900
##
                                                   0.00000000
                                          AB
##
                                          BB
                                                   0.00000000
##
                                  AB
                                          AΑ
                                                   0.05042100
##
                                          AB
                                                   0.00000000
##
                                          BB
                                                   0.00000000
##
                                  ВВ
                                          AA
                                                   0.00000000
##
                                          AB
                                                   0.00000000
##
                                          BB
                                                   0.00000000
##
                                                   0.00000000
                           AB
                                  AA
                                          AA
##
                                          AB
                                                   0.00000000
##
                                          BB
                                                   0.00000000
##
                                  AB
                                          AA
                                                   0.05042100
##
                                          AB
                                                   0.00000000
##
                                          ВВ
                                                   0.00000000
##
                                          AA
                                                   0.02160900
                                  BB
                                                   0.00000000
##
                                          AB
##
                                                   0.00000000
                                          BB
##
                           BB
                                  AΑ
                                          AΑ
                                                   0.00000000
                                          AB
                                                   0.00000000
                                          BB
                                                   0.00000000
                                  AB
                                          AA
                                                   0.00000000
                                          AB
                                                   0.00000000
```

The Junction tree representation

The Bayesian network and CPTs are used for specification of the model.

Computations are done using more convenient computational structure; the *junction tree*

The distribution is now represented by

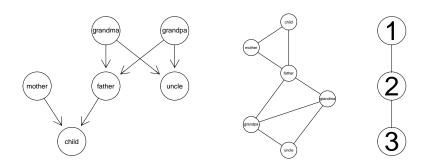
junction tree: a tree with subsets (cliques) of variables as

nodes

potentials: functions of the clique variables.

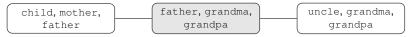
Junction tree for paternity case

```
plot(extended.family)
extfam <- compile(extended.family)
plot(extfam)
plot(jTree(extfam$ug))</pre>
```



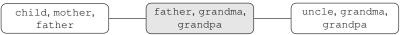
The joint distribution is the product of the potentials,

$$p(f, m, c, un, gm, gf) = q_1(f, m, c)q_2(f, gm, gf)q_3(un, gm, gf)$$



Initially we collect the CPTs according to the cliques

$$\begin{split} & p(\texttt{f},\texttt{m},\texttt{c},\texttt{un},\texttt{gm},\texttt{gf}) \\ &= \underbrace{\left(p(\texttt{c}\,|\,\texttt{m},\texttt{f})p(\texttt{m})\right)}_{q_1(\texttt{c},\texttt{f},\texttt{m})} \underbrace{\left(p(\texttt{f}\,|\,\texttt{gm},\texttt{gf})p(\texttt{gm})\right)}_{q_2(\texttt{f},\texttt{gm},\texttt{gf})} \underbrace{\left(p(\texttt{un}\,|\,\texttt{gm},\texttt{gf})p(\texttt{gf})\right)}_{q_3(\texttt{un},\texttt{gm},\texttt{gf})} \end{split}$$



The shared variables between two neighbouring cliques is their *separator*.

A slightly different factorisation also assigns a potential to each separator:

$$p(\texttt{f},\texttt{m},\texttt{c},\texttt{un},\texttt{gm},\texttt{gf}) = \frac{q_1(\texttt{f},\texttt{m},\texttt{c})q_2(\texttt{f},\texttt{gm},\texttt{gf})q_3(\texttt{un},\texttt{gm},\texttt{gf})}{s_1(\texttt{f})s_2(\texttt{gm},\texttt{gf})}$$

Taking the clique potentials as before, and

$$s_1(f) = 1$$
 $s_2(gm, gf) = 1$

we clearly did not change anything.

Similarly we can always get back to the other factorisation by "absorbing" the separator potentials into clique potentials.

```
g1 <- tabMult(m, c.mf); ftable(g1)</pre>
##
                father
                          AA
                              AB
                                       BB
## child mother
## AA
         AA
                       0.490 0.245 0.000
##
         AB
                       0.210 0.105 0.000
##
        BB
                       0.000 0.000 0.000
## AB
         AA
                       0.000 0.245 0.490
##
         AB
                       0.210 0.210 0.210
##
        BB
                       0.090 0.045 0.000
## BB
        AA
                       0.000 0.000 0.000
##
         AB
                      0.000 0.105 0.210
##
         BB
                       0.000 0.045 0.090
q2 <- tabMult(f.qmqf, qm); ftable(q2, row.vars = c("grandma", "grandpa"))
##
                   father
                           AA AB
                                         BB
## grandma grandpa
## AA
           AA
                          0.490 0.000 0.000
##
           AB
                          0.245 0.245 0.000
##
           ВВ
                          0.000 0.490 0.000
## AB
           AA
                          0.210 0.210 0.000
##
           AB
                          0.105 0.210 0.105
           BB
                          0.000 0.210 0.210
##
## BB
           AA
                          0.000 0.090 0.000
##
           AB
                          0.000 0.045 0.045
##
           ВВ
                          0.000 0.000 0.090
```

```
q3 <- tabMult(u.qmqf, qf); ftable(q3, row.vars = c("grandma", "grandpa"))
##
                  uncle AA AB
                                     BB
## grandma grandpa
## AA
          AA
                       0.490 0.000 0.000
##
          AB
                      0.210 0.210 0.000
##
         BB
                       0.000 0.090 0.000
## AB
          AA
                       0.245 0.245 0.000
                       0.105 0.210 0.105
##
          AB
##
         BB
                       0.000 0.045 0.045
## BB
     AA
                     0.000 0.490 0.000
##
          AB
                       0.000 0.210 0.210
##
          BB
                       0.000 0.000 0.090
## Separator potentials are constant 1
s1 <- parray("father", values = 1, levels = list(gts))</pre>
s2 <- parray(c("grandma", "grandpa"), values = 1, levels = list(gts, gts))
```

Probability propagation

Probability propagation modifies (clique- and separator-) potentials iteratively by *message passing* until they equal marginal distributions.

- Start from an intitial set of potentials
- ► Choose any clique to be the *root*
- Pass messages along all edges towards the root
- ► Pass messages along all edges away from the root
- ► All potentials now equal the marginal distributions, i.e.

$$q_1(exttt{f,m,c}) = p(exttt{f,m,c})$$
 $q_2(exttt{f,gm,gf}) = p(exttt{f,gm,gf})$
 $q_3(exttt{un,gm,gf}) = p(exttt{un,gm,gf})$
 $s_1(exttt{f}) = p(exttt{f})$
 $s_2(exttt{gm,gf}) = p(exttt{gm,gf})$

Message passing

Passing a message modifies a single pair of potentials: The potential for the receiving clique, and the potential for the separator between the two cliques.

Passing a message from (f, m, c) to (f, gm, gf) entails:

$$\begin{split} s_{1,\text{old}}(\texttt{f}) \leftarrow s_1(\texttt{f}) \\ s_1(\texttt{f}) \leftarrow \sum_{\texttt{m,c}} q_1(\texttt{f},\texttt{m,c}) \\ q_2(\texttt{f},\texttt{gm},\texttt{gf}) \leftarrow q_2(\texttt{f},\texttt{gm},\texttt{gf}) \frac{s_1(\texttt{f})}{s_{1,\text{old}}(\texttt{f})} \end{split}$$

The product of potentials is unchanged:

$$\frac{q_1(\texttt{f},\texttt{m},\texttt{c}) \bigg(q_{2,\text{old}}(\texttt{f},\texttt{gm},\texttt{gf}) \frac{s1(\texttt{f})}{s_{1,\text{old}}(\texttt{f})} \bigg) q_3(\texttt{un},\texttt{gm},\texttt{gf})}{s1(\texttt{f}) s_2(\texttt{gm},\texttt{gf})} = \frac{q_1(\texttt{f},\texttt{m},\texttt{c}) q_{2,\text{old}}(\texttt{f},\texttt{gm},\texttt{gf}) q_3(\texttt{un},\texttt{gm},\texttt{gf})}{s_{1,\text{old}}(\texttt{f}) s_2(\texttt{gm},\texttt{gf})}$$

Example: probability propagation

Collect evidence

```
father, grandma,
                                                       uncle, grandma,
  child, mother,
                                grandpa
                                                           grandpa
      father
s1 old <- s1
(s1 <- tabMarg(q1, "father"))
## father
## AA AB BB
## 1 1 1
q2 <- tabMult(tabDiv(s1, s1_old), q2); ftable(q2)
##
                   father
                             AA
                                 AB
                                          BB
## grandma grandpa
                          0.490 0.000 0.000
## AA
           AΑ
##
           AB
                          0.245 0.245 0.000
##
                          0.000 0.490 0.000
           BB
## AB
           AA
                          0.210 0.210 0.000
##
           AB
                          0.105 0.210 0.105
           BB
                          0.000 0.210 0.210
##
## BB
           AA
                          0.000 0.090 0.000
##
           AB
                          0.000 0.045 0.045
```

0.000 0.000 0.090

##

BB

Collect evidence

```
father, grandma,
                                                       uncle, grandma,
  child, mother,
                                grandpa
      father
                                                           grandpa
s2 old <- s2
s2 <- tabMarg(q3, c("grandma", "grandpa")); ftable(s2)</pre>
         grandpa AA AB BB
##
## grandma
## AA
                   0.49 0.42 0.09
                   0.49 0.42 0.09
## AB
## BB
                   0.49 0.42 0.09
q2 <- tabMult(tabDiv(s2, s2_old), q2); ftable(q2)</pre>
##
                   father AA AB
                                             BB
## grandma grandpa
## AA
                          0.2401 0.0000 0.0000
           AΑ
##
           AB
                          0.1029 0.1029 0.0000
##
           ВВ
                          0.0000 0.0441 0.0000
                          0.1029 0.1029 0.0000
## AB
           AA
##
           AB
                          0.0441 0.0882 0.0441
##
           BB
                          0.0000 0.0189 0.0189
## BB
           AΑ
                          0.0000 0.0441 0.0000
##
           AB
                          0.0000 0.0189 0.0189
##
           BB
                          0.0000 0.0000 0.0081
```

Distribute evidence

```
father, grandma,
                                                       uncle, grandma,
  child, mother,
                                grandpa
                                                          grandpa
      father
s2 old <- s2
s2 <- tabMarg(q2, c("grandma", "grandpa")); ftable(s2)</pre>
##
          grandpa AA AB
                                     BB
## grandma
## AA
                   0.2401 0.2058 0.0441
                   0.2058 0.1764 0.0378
## AB
## BB
                   0.0441 0.0378 0.0081
g3 <- tabMult(tabDiv(s2, s2 old), g3); ftable(g3)
##
                   uncle
                         AA
                                    AB
                                           BB
## grandpa grandma
## AA
                         0.2401 0.0000 0.0000
           AΑ
##
           AB
                         0.1029 0.1029 0.0000
##
           BB
                         0.0000 0.0441 0.0000
                         0.1029 0.1029 0.0000
## AB
           AΑ
##
           AB
                         0.0441 0.0882 0.0441
##
           BB
                        0.0000 0.0189 0.0189
## BB
           AΑ
                        0.0000 0.0441 0.0000
##
           AB
                        0.0000 0.0189 0.0189
##
           BB
                         0.0000 0.0000 0.0081
```

Distribute evidence

```
child, mother,
                            father, grandma,
                                                        uncle, grandma,
                                 grandpa
                                                            grandpa
      father
s1 old <- s1
s1 <- tabMarg(q2, "father"); s1
## father
    AA AR
              BB
## 0.49 0.42 0.09
g1 <- tabMult(tabDiv(s1, s1 old), g1); ftable(g1)</pre>
##
                father
                        AA
                                   AB
                                          ВВ
## child mother
## AA
         AΑ
                       0.2401 0.1029 0.0000
##
         AB
                       0.1029 0.0441 0.0000
##
         BB
                       0.0000 0.0000 0.0000
## AB
         AA
                       0.0000 0.1029 0.0441
##
         AB
                       0.1029 0.0882 0.0189
##
         BB
                       0.0441 0.0189 0.0000
## BB
         AA
                       0.0000 0.0000 0.0000
##
         AB
                       0.0000 0.0441 0.0189
##
         ВВ
                       0.0000 0.0189 0.0081
```

Potentials are now marginal distributions

```
ftable(tabMarg(joint, c("father", "mother", "child")))
##
                 child
                        AΑ
                                  AB
                                          BB
## father mother
## AA
          AA
                       0.2401 0.0000 0.0000
##
          AB
                       0.1029 0.1029 0.0000
##
          BB
                       0.0000 0.0441 0.0000
## AB
          AA
                       0.1029 0.1029 0.0000
##
          AB
                       0.0441 0.0882 0.0441
##
          BB
                       0.0000 0.0189 0.0189
                       0.0000 0.0441 0.0000
## BB
         AΑ
##
          AB
                      0.0000 0.0189 0.0189
##
          ВВ
                       0.0000 0.0000 0.0081
ftable(g1, row.vars=c("father", "mother"))
##
                 child
                         AA
                                 AB
                                          BB
## father mother
## AA
          AA
                       0.2401 0.0000 0.0000
                       0.1029 0.1029 0.0000
##
          AB
##
          BB
                       0.0000 0.0441 0.0000
## AB
          AA
                       0.1029 0.1029 0.0000
##
          AB
                       0.0441 0.0882 0.0441
          BB
                       0.0000 0.0189 0.0189
##
## BB
          AA
                       0.0000 0.0441 0.0000
##
          AB
                       0.0000 0.0189 0.0189
```

0.0000 0.0000 0.0081

##

ВВ

Example: propagation of evidence

The same junction tree is used for the representation of various conditional distributions – we just modify the potentials by *entering evidence*.

When entering evidence father = AA, we

- Choose a potential containing the variable father
- ► Set the value of the potential to 0 for all combinations except where father == AA.
- ► The product of potentials is now $p(\text{family})\mathbb{1}_{\{\text{father} == AA}\}$ rather than p(family).
- propagation gives the (unnormalised) marginal potentials for the conditional distribution given the evidence.

Enter the evidence

```
## Modify the potential for a clique containing father
q1 <- setSliceValue(q1, list(father = "AA"), comp=T)</pre>
ftable(q1, col.vars="father")
##
                 father
                           AΑ
                                    AB
                                           BB
## child mother
                        0.2401 0.0000 0.0000
## AA
         AΑ
##
         AB
                        0.1029 0.0000 0.0000
##
         BB
                        0.0000 0.0000 0.0000
                        0.0000 0.0000 0.0000
## AB
       AΑ
##
         AB
                        0.1029 0.0000 0.0000
##
         BB
                        0.0441 0.0000 0.0000
## BB
         AΑ
                        0.0000 0.0000 0.0000
##
         AB
                        0.0000 0.0000 0.0000
                        0.0000 0.0000 0.0000
##
         BB
```

Propagate the evidence

```
## Run propagation again
s1_old <- s1
s1 <- tabMarg(g1, "father")</pre>
q2 <- tabMult(tabDiv(s1, s1_old), q2)</pre>
s2_old <- s2
s2 <- tabMarg(q3, c("grandma", "grandpa"))</pre>
q2 <- tabMult(tabDiv(s2, s2_old), q2)
s2 old <- s2
s2 <- tabMarg(q2, c("grandma", "grandpa"))</pre>
q3 <- tabMult(tabDiv(s2, s2_old), q3)
s1 old <- s1
s1 <- tabMarg(q2, "father")</pre>
q1 <- tabMult(tabDiv(s1, s1_old), q1)</pre>
```

Potentials are now marginals

```
net_with_ev <- setEvidence(extended.family, "father", "AA")</pre>
marq <- querygrain(net_with_ev, c("father", "grandma", "grandpa"), type = "joint")</pre>
ftable(marg, row.vars=c("grandma", "grandpa"))
##
                   father
                            AA AB
                                      BB
## grandma grandpa
## AA
           AA
                          0.49 0.00 0.00
##
           AB
                          0.21 0.00 0.00
                          0.00 0.00 0.00
##
           BB
## AB
           AΑ
                          0.21 0.00 0.00
##
           AB
                          0.09 0.00 0.00
##
           BB
                          0.00 0.00 0.00
## BB
           AΑ
                          0.00 0.00 0.00
##
           AB
                         0.00 0.00 0.00
##
                          0.00 0.00 0.00
           BB
ftable(q2, row.vars=c("grandma", "grandpa"))
##
                   father
                              AA
                                      AB
                                             RR
## grandma grandpa
## AA
                          0.2401 0.0000 0.0000
           AΑ
                          0.1029 0.0000 0.0000
##
           AB
           BB
                          0.0000 0.0000 0.0000
##
## AB
           AΑ
                          0.1029 0.0000 0.0000
##
           AB
                          0.0441 0.0000 0.0000
##
           BB
                          0.0000 0.0000 0.0000
## BB
           AA
                          0.0000 0.0000 0.0000
##
                          0.0000 0.0000 0.0000
           AB
##
           BB
                          0.0000 0.0000 0.0000
```

Normalise potentials

Because we started with an unnormalised probability mass function, we need to normalise the potentials after propagation.

The normalising constant is exactly the probability of the evidence.

```
sum(q2)
## [1] 0.49
pEvidence(net_with_ev)
## [1] 0.49
```

The junction tree representation

The junction tree representation allows local computations on batches of variables: we never need to compute the joint distribution!

In particular, we can easily

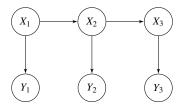
- marginalize
- get conditional distributions
- ▶ simulate

gRain has two convenience functions for setting up the junction tree:

compile: sets up the junction tree and initialises potentials propagate: modifies the potentials into marginal distributions. These steps are done implicitly when querygrain is called, so it is more efficient to do it explicitly.

Including non-discrete observed variables

Example: Hidden Markov Models



Discrete unobservable variables $X_1 \sim \text{bin}(2, 1/3)$ and $X_i \mid X_{i-1} \sim \text{bin}(2, X_{i-1}/3)$.

Continuous observable variables Y_i with $Y_i | X_i \sim N(X_i, 1)$.

Build the network for X

Enter observations *Y* via likelihood evidence

Observations y = (0, 4, 1) are entered into the network via *likelihood evidence*:

```
## The evidence is the vector p(y_i \mid x_i) for all
## possible values of x_i
(evidence \leftarrow list(x1 = dnorm(0, mean = 0:2, sd = 1),
                   x2 = dnorm(4, mean = 0:2, sd = 1),
                   x3 = dnorm(1, mean = 0:2, sd = 1)))
## $x1
## [1] 0.39894228 0.24197072 0.05399097
##
## $x2
## [1] 0.0001338302 0.0044318484 0.0539909665
##
## $x3
## [11 0.2419707 0.3989423 0.2419707
hmm_ev <- setEvidence(hmm, evidence = evidence)</pre>
hmm_ev <- propagate(hmm_ev)</pre>
```

Posterior distributions and likelihood

After propagating the likelihood evidence the network represents p(x | y).

We can get the likelihood p(y) as the normalising constant

```
## p(y)
pEvidence(hmm_ev)
## [1] 0.0003230195
```

How does it work?

Setting likelihood evidence for a variable corresponds to multiplying one potential – and thus the entire distribution $p(x_1, x_2, x_3)$ – by the likelihood evidence:

$$p(x_1, x_2, x_3 | y_1, y_2, y_3) \propto p(x_1, x_2, x_3) p(y_1 | x_1) p(y_2 | x_2) p(y_3 | x_3)$$

The normalising constant (pEvidence) is exactly the likelihood of the observations:

$$p(y_1, y_2, y_3) = \sum_{x_1, x_2, x_3} p(x_1, x_2, x_3) p(y_1 \mid x_1) p(y_2 \mid x_2) p(y_3 \mid x_3)$$