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Outline and take-home message
I Mixed models (random effects, random regression etc.) models

handled by lme4 package in R.
I Tests are by default based on χ2 approximation of LR test

statistic.
I Works fine with “large samples” / “large dataset”, but not with

small samples.
I Main concern: Effects can appear to be “more significant than

they really are”.
I Source of confusion: A dataset can be large with respect to

some aspect of a model while small with respect to other.



I The R package pbkrtest provides some remedies:

I Base test on F-statistic, where denominator degrees of freedom
are estimated from data.

I Base test on parametric bootstrap where data are simulated
under the model (carries over to e.g. generalized linear mixed
models).

I Look at simulated and real data

I Notice: Talk and paper (with correction) available at
http://people.math.aau.dk/~sorenh/

http://people.math.aau.dk/~sorenh/


History: The degree-of-freedom police
I SH raised issue about calculating degrees of freedom on R-help

- 2006: [R] how calculation degrees freedom see:
I SH: Along similar lines . . . probably in recognition of the degree

of freedom problem. It could be nice, however, if anova()
produced . . .

I Doug Bates: I don’t think the “degrees of freedom police”
would find that to be a suitable compromise. :-)

I In reply to related question:
I Doug Bates: I will defer to any of the “degrees of freedom

police” who post to this list to give you an explanation of why
there should be different degrees of freedom.

I Main point: Quite different views on whether the
degree-of-freedom issue really is an issue or not.

https://stat.ethz.ch/pipermail/r-help/2006-January/087013.html


Example: Double registration in labs

Clustered data:
I Compare two groups (treatment with a control);
I M units (petri plates, persons, animals. . . ) per group;
I Each unit is measured R times. Measurements on same unit

are positively correlated.



Simulated data: Two groups, N = 3 subjects per group, R = 3
replicated measurements per subject.

y1 grp subj y1 grp subj

67 ctrl subj1 26 trt1 subj4
72 ctrl subj1 45 trt1 subj4
140 ctrl subj1 90 trt1 subj4
13 ctrl subj2 48 trt1 subj5
27 ctrl subj2 53 trt1 subj5
37 ctrl subj2 95 trt1 subj5
-76 ctrl subj3 70 trt1 subj6
-66 ctrl subj3 99 trt1 subj6
-56 ctrl subj3 131 trt1 subj6

Problem/issues: If we ignore clustering/positive correlation:

I Pretend to have more information than we have
I Standard errors of estimates become too small
I p values become too small
I Effects appear stronger than they really are.

Notice:

I Measuring the same unit many many times will make the dataset
larger, but will not really add many more chunks of information
(depending on the size of the within-subject correlation, of course).

I Instead, more units are needed.



Ignore clustering
Simple regression model

ygir = µ+ βg + egir

Estimate Std. Error t value Pr(>|t|) Pr(>X2)

(Intercept) 17.6 18.8 0.934 0.364 0.350
grptrt1 55.4 26.6 2.086 0.053 0.037

Notice: the t-test “accounts for” the uncertainty in the estimate of
the standard error; gives larger p values.



Analyse average
Compute average for each subject and consider model

ȳgi = µ+ βg + egi ,

Estimate Std. Error t value Pr(>|t|) Pr(>X2)

(Intercept) 17.6 34.0 0.516 0.633 0.606
grptrt1 55.4 48.1 1.152 0.314 0.249

Notice: Both tests give large p-values suggesting no effect at all.



Model with random effects
Consider variance component model

ygir = µ+ βg + Ugi + egir

term estimate std.error statistic Pr(>X2)

(Intercept) 17.6 34.0 0.516 0.606
grptrt1 55.4 48.1 1.152 0.249

Notice: p-values (for χ2-test) same as when analyzing average. No
t-test available.



The Kenward–Roger approach
I Multivariate normal model

Y ∼ N(Xβ,Σ)

I Test of the hypothesis

L(β − β0) = 0

where L is a regular matrix of estimable functions of β.
I With β̂ ∼ Nd (β,Φ), a Wald statistic is

W = [L(β̂ − β0)]>[LΦL>]−1[L(β̂ − β0)]

which is asymptotically W ∼ χ2
d under the null hypothesis.



Consider scaled version of W :

F = 1
d W = 1

d (β̂ − β0)>L>[L>Φ(σ̂)L]−1L(β̂ − β0).

In the computations:

I σ̂ is vector of REML estimates for elements in Σ = Var(Y ) and

I β̂ is REML estimate for β.

I Φ(σ) = (X ′Σ(σ)X )−1 ≈ Cov(β̂),

I Asymptotically F ∼ 1
dχ

2
d under the null hypothesis

I Think of 1
dχ

2
d as the limiting distribution of an

Fd ,m–distribution as m→∞

Kenward and Roger’s modification
To account for the fact that Φ = Var(β̂) is estimated from data, we
must come up with a better estimate of the denominator degrees of
freedom m (better than m =∞).
Kenward and Roger (1997)
I replaced Φ by an improved small sample approximation ΦA

I derived formulas for mean E ∗ and variance V ∗ of F (based on
1. order Taylor expansion)

I scaled F by a factor λ
I determined denominator degrees of freedom m by matching

moments of F/λ with an Fd ,m distribution.



Consider variance component model

ygir = µ+ βg + Ugi + egir

statistic ndf ddf F.scaling p.value

Ftest 1.33 1 4 1 0.314

Notice: Same p-value as when averages are analysed.

However, analysing averages is not always an option.



Parametrisk bootstrap
Consider two competing models: A large model f1(y ; θ) and a
simpler sub model f0(y ; θ0).
The test statistic for testing the simpler model under the larger is
tobs .
The p-value becomes:

p = sup
θ∈Θ0

Prθ(T ≥ tobs),

where supremum is under the hypothesis.
Usually supremum can not be computed. Instead we base p value
on the parameter estimate:

pPB = Prθ̂(T ≥ tobs),



In praxis, pPB is approximated as:

1. Draw B parametric bootstrap datasets D1, . . .DB from the
fitted null model f0(·; θ̂0).

2. Fit the large and the null model to each of these datasets.

3. Compute the likelihood ratio (LR) test statistic for each
simulated dataset. This gives the reference distribution for the
test statistic.

4. Compute how extreme the observed test statistic is in the
reference distribution; this gives the p value.



Consider variance component model

ygir = µ+ βg + Ugi + egir

statistic df p.value

LRT 1.47 1 0.225
PBtest 1.47 NA 0.346

Notice: p-values close to those based on Kenward-Roger
approximation.
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Figure 1: χ2 distribution and simulated reference distribution.



Simulation study
y1 grp subj y1 grp subj

67 ctrl subj1 26 trt1 subj4
72 ctrl subj1 45 trt1 subj4
140 ctrl subj1 90 trt1 subj4
13 ctrl subj2 48 trt1 subj5
27 ctrl subj2 53 trt1 subj5
37 ctrl subj2 95 trt1 subj5
-76 ctrl subj3 70 trt1 subj6
-66 ctrl subj3 99 trt1 subj6
-56 ctrl subj3 131 trt1 subj6

I Task: Test the hypothesis that there is no effect of treatment. How
good are the various tests?

I Simulate data 1000 times with divine insight: there is no effect of
treatment.

I Test the hypothesis e.g. at level 5%. If test has correct nominal level
we shall reject about 50 times.

I If hypothesis is rejected e.g. 100 times then p values are
anti-conservative: Effects appear more significant than the really are.
That is we draw “too strong” conclusions.



0.01 0.05 0.10

lm+F 0.21 0.31 0.41
lm+X2 0.24 0.35 0.42
avg_lm+F 0.01 0.06 0.11
avg_lm+X2 0.07 0.13 0.19
mixed+X2 0.05 0.14 0.23
mixed+F 0.01 0.06 0.11
mixed+PB 0.01 0.05 0.10



Sugar beets - A split–plot experiment

I Model how sugar percentage in sugar beets depends on harvest
time and sowing time.

I Five sowing times (s) and two harvesting times (h).
I Experiment was laid out in three blocks (b).



Experimental plan for sugar beets experiment
# Plot allocation:
# | Block 1 | Block 2 | Block 3 |
# +----------------|----------------|----------------+
# Plot | h1 h1 h1 h1 h1 | h2 h2 h2 h2 h2 | h1 h1 h1 h1 h1 | Harvest time
# 1-15 | s3 s4 s5 s2 s1 | s3 s2 s4 s5 s1 | s5 s2 s3 s4 s1 | Sowing time
# |----------------|----------------|----------------|
# Plot | h2 h2 h2 h2 h2 | h1 h1 h1 h1 h1 | h2 h2 h2 h2 h2 | Harvest time
# 16-30 | s2 s1 s5 s4 s3 | s4 s1 s3 s2 s5 | s1 s4 s3 s2 s5 | Sowing time
# +----------------|----------------|----------------+



beets data
data(beets, package='pbkrtest')
head(beets, 4)

## harvest block sow yield sugpct
## 1 harv1 block1 sow3 128 17.1
## 2 harv1 block1 sow4 118 16.9
## 3 harv1 block1 sow5 95 16.6
## 4 harv1 block1 sow2 131 17.0
I A typical model for such an experiment would be:

yhbs = µ+ αh + βb + γs + Uhb + εhbs , (1)

where Uhb ∼ N(0, ω2) and εhbs ∼ N(0, σ2).
I Notice that Uhb describes the random variation between

whole–plots (within blocks).



Using lmer() from lme4 we can test for no effect of sowing and
harvest time as:
beet.lg <- lmer(sugpct ~ block + sow + harvest +

(1 | block:harvest), data=beets, REML=FALSE)
beet.noh <- update(beet.lg, .~. - harvest)
beet.nos <- update(beet.lg, .~. - sow)



Both factors appear highly significant
anova(beet.lg, beet.noh) %>% as.data.frame

## Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)

## beet.noh 9 -69.1 -56.5 43.5 -87.1 NA NA NA

## beet.lg 10 -80.0 -66.0 50.0 -100.0 12.9 1 0.000326

anova(beet.lg, beet.nos) %>% as.data.frame

## Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)

## beet.nos 6 -2.8 5.61 7.4 -14.8 NA NA NA

## beet.lg 10 -80.0 -65.99 50.0 -100.0 85.2 4 1.37e-17

However, the LRT based p–values are anti–conservative: the effect
of harvest appears stronger than it is.



set.seed("260618")

KRmodcomp(beet.lg, beet.noh)

## F-test with Kenward-Roger approximation; time: 0.10 sec

## large : sugpct ~ block + sow + harvest + (1 | block:harvest)

## small : sugpct ~ block + sow + (1 | block:harvest)

## stat ndf ddf F.scaling p.value

## Ftest 15.2 1.0 2.0 1 0.06

PBmodcomp(beet.lg, beet.noh)

## Bootstrap test; time: 5.18 sec;samples: 1000; extremes: 27;

## large : sugpct ~ block + sow + harvest + (1 | block:harvest)

## small : sugpct ~ block + sow + (1 | block:harvest)

## stat df p.value

## LRT 12.9 1 0.00033

## PBtest 12.9 0.02797



As the design is balanced we may make F–tests for each of the
effects as:
beets$bh <- with(beets, interaction(block, harvest))

summary(aov(sugpct ~ block + sow + harvest +

Error(bh), data=beets))

##

## Error: bh

## Df Sum Sq Mean Sq F value Pr(>F)

## block 2 0.0327 0.0163 2.58 0.28

## harvest 1 0.0963 0.0963 15.21 0.06

## Residuals 2 0.0127 0.0063

##

## Error: Within

## Df Sum Sq Mean Sq F value Pr(>F)

## sow 4 1.01 0.2525 101 5.7e-13

## Residuals 20 0.05 0.0025



Final remarks

I Satterthwaite approximation of degrees of freedom on its way
in pbkrtest. Faster to compute than Kenward-Roger scales to
larger problems.

I pbkrtest available on CRAN
https://cran.r-project.org/package=pbkrtest

I devel version on github:
devtools::install_github(hojsgaard/pbkrtest)

https://cran.r-project.org/package=pbkrtest


I pbkrtest described in Ulrich Halekoh and SH (2014) A
Kenward-Roger Approximation and Parametric Bootstrap
Methods for Tests in Linear Mixed Models The R Package
pbkrtest; Journal of Statistical Software, Vol 59. Please cite if
you publish results using the package.

Thanks for your attention!

https://www.jstatsoft.org/article/view/v059i09
https://www.jstatsoft.org/article/view/v059i09
https://www.jstatsoft.org/article/view/v059i09
https://www.jstatsoft.org/article/view/v059i09

