Data manipulation with **dplyr**

Hadley Wickham
@hadleywickham
Chief Scientist, RStudio

June 2014
Data analysis is the process by which data becomes understanding, knowledge and insight.
Data analysis is the process by which data becomes understanding, knowledge and insight.
Transform

Visualise
Surprises, but doesn't scale

Model
Scales, but doesn't (fundamentally) surprise

Tidy

Transform
1. Flights data
2. One table verbs & grouped summaries
3. Data pipelines
4. Grouped mutate/filter & window functions
5. Joins (two table verbs)
6. Do
7. Databases
The bad news:
It’s going to be frustrating

© Allie Brosh
The good news: Frustration is typical and temporary

© Allie Brosh
Flights data
Rstudio projects

- Isolate code and results from different projects. Restart where you left off.
- Double-click dplyr-tutorial.Rproj file to open. (One R file for each section)
- (If you don’t use RStudio, just change working directories)
Flights data

- **flights [227,496 x 14]**. Every flight departing Houston in 2011.
- **weather [8,723 x 14]**. Hourly weather data.
- **planes [2,853 x 9]**. Plane metadata.
- **airports [3,376 x 7]**. Airport metadata.
library(dplyr)
library(ggplot2)

flights <- tbl_df(read.csv("flights.csv", stringsAsFactors = FALSE))
flights$date <- as.Date(flights$date)

weather <- tbl_df(read.csv("weather.csv", stringsAsFactors = FALSE))
weather$date <- as.Date(weather$date)

planes <- tbl_df(read.csv("planes.csv", stringsAsFactors = FALSE))

airports <- tbl_df(read.csv("airports.csv", stringsAsFactors = FALSE))
Your turn

Introduce yourself to your neighbour.

What questions might you want to answer with this data?
One table verbs
• **filter**: keep rows matching criteria

• **select**: pick columns by name

• **arrange**: reorder rows

• **mutate**: add new variables

• **summarise**: reduce variables to values
Structure

- First argument is a data frame
- Subsequent arguments say what to do with data frame
- Always return a data frame
- (Never modify in place)
df <- data.frame(
 color = c("blue", "black", "blue", "blue", "black"),
 value = 1:5)
df

<table>
<thead>
<tr>
<th>color</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>blue</td>
<td>1</td>
</tr>
<tr>
<td>black</td>
<td>2</td>
</tr>
<tr>
<td>blue</td>
<td>3</td>
</tr>
<tr>
<td>blue</td>
<td>4</td>
</tr>
<tr>
<td>black</td>
<td>5</td>
</tr>
</tbody>
</table>

filter(df, color == "blue")
```r
filter(df, value %in% c(1, 4))
```

<table>
<thead>
<tr>
<th>color</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>blue</td>
<td>1</td>
</tr>
<tr>
<td>black</td>
<td>2</td>
</tr>
<tr>
<td>blue</td>
<td>3</td>
</tr>
<tr>
<td>blue</td>
<td>4</td>
</tr>
<tr>
<td>black</td>
<td>5</td>
</tr>
</tbody>
</table>

After applying the filter, the resulting dataframe is:

<table>
<thead>
<tr>
<th>color</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>blue</td>
<td>1</td>
</tr>
<tr>
<td>blue</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>a</td>
</tr>
<tr>
<td>---</td>
<td>-------</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>b</td>
<td>a & b</td>
</tr>
<tr>
<td>!b</td>
<td>a & !b</td>
</tr>
</tbody>
</table>

- \(x > 1 \)
- \(x \geq 1 \)
- \(x < 1 \)
- \(x \leq 1 \)
- \(x \neq 1 \)
- \(x == 1 \)
- \(x \%in\% ("a", "b") \)
Find all flights:

To SFO or OAK

In January

Delayed by more than an hour

That departed between midnight and five am.

Where the arrival delay was more than twice the departure delay
filter(flights, dest %in% c("SFO", "OAK"))
filter(flights, dest == "SFO" | dest == "OAK")
Not this!
filter(flights, dest == "SFO" | "OAK")

filter(flights, date < "2001-02-01")

filter(flights, hour >= 0, hour <= 5)
filter(flights, hour >= 0 & hour <= 5)

filter(flights, dep_delay > 60)

filter(flights, arr_delay > 2 * dep_delay)
df

<table>
<thead>
<tr>
<th>color</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>blue</td>
<td>1</td>
</tr>
<tr>
<td>black</td>
<td>2</td>
</tr>
<tr>
<td>blue</td>
<td>3</td>
</tr>
<tr>
<td>blue</td>
<td>4</td>
</tr>
<tr>
<td>black</td>
<td>5</td>
</tr>
</tbody>
</table>

select(df, color)

<table>
<thead>
<tr>
<th>color</th>
</tr>
</thead>
<tbody>
<tr>
<td>blue</td>
</tr>
<tr>
<td>black</td>
</tr>
<tr>
<td>blue</td>
</tr>
<tr>
<td>blue</td>
</tr>
<tr>
<td>black</td>
</tr>
</tbody>
</table>
```r
select(df, -color)
```
Your turn

Read the help for `select()`. What other ways can you select variables?

Write down three ways to select the two delay variables.
select(flights, arr_delay, dep_delay)
select(flights, arr_delay:dep_delay)
select(flights, ends_with("delay"))
select(flights, contains("delay"))
df

arrange(df, color)
```r
df

<table>
<thead>
<tr>
<th>color</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>

arrange(df, desc(color))

<table>
<thead>
<tr>
<th>color</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>
```
Your turn

Order the flights by departure date and time.

Which flights were most delayed?

Which flights caught up the most time during the flight?
arrange(flights, date, hour, minute)

arrange(flights, desc(dep_delay))
arrange(flights, desc(arr_delay))

arrange(flights, desc(dep_delay - arr_delay))
```r
# Define the initial df
df <- data.frame(
  color = c("blue", "black", "blue", "blue", "black"),
  value = c(1, 2, 3, 4, 5)
)

# Mutate df by multiplying 'value' by 2
mutate(df, double = 2 * value)
```
```r
mutate(df, double = 2 * value, quadruple = 2 * double)
```
Your turn

Compute speed in mph from time (in minutes) and distance (in miles). Which flight flew the fastest?

Add a new variable that shows how much time was made up or lost in flight.

How did I compute hour and minute from dep?

(Hint: you may need to use select() or View() to see your new variable)
flights <- mutate(flights,
 speed = dist / (time / 60))
arrange(flights, desc(speed))

mutate(flights, delta = dep_delay - arr_delay)

mutate(flights,
 hour = dep %% 100,
 minute = dep %% 100)
Grouped summarise
```r
summarise(df, total = sum(value))
```

```
df

<table>
<thead>
<tr>
<th>color</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>blue</td>
<td>1</td>
</tr>
<tr>
<td>black</td>
<td>2</td>
</tr>
<tr>
<td>blue</td>
<td>3</td>
</tr>
<tr>
<td>blue</td>
<td>4</td>
</tr>
<tr>
<td>black</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
</tr>
</tbody>
</table>
```
```r
by_color <- group_by(df, color)
summarise(by_color, total = sum(value))
```
by_date <- group_by(flights, date)
by_hour <- group_by(flights, date, hour)
by_plane <- group_by(flights, plane)
by_dest <- group_by(flights, dest)
Summary functions

- min(x), median(x), max(x), quantile(x, p)
- n(), n_distinct(), sum(x), mean(x)
- sum(x > 10), mean(x > 10)
- sd(x), var(x), iqr(x), mad(x)
Your turn

How might you summarise dep_delay for each day? Brainstorm for 2 minutes.
by_date <- group_by(flights, date)
delays <- summarise(by_date,
 mean = mean(dep_delay),
 median = median(dep_delay),
 q75 = quantile(dep_delay, 0.75),
 over_15 = mean(dep_delay > 15),
 over_30 = mean(dep_delay > 30),
 over_60 = mean(dep_delay > 60)
)
by_date <- group_by(flights, date)
delays <- summarise(by_date,
 mean = mean(dep_delay, na.rm = TRUE),
 median = median(dep_delay, na.rm = TRUE),
 q75 = quantile(dep_delay, 0.75, na.rm = TRUE),
 over_15 = mean(dep_delay > 15, na.rm = TRUE),
 over_30 = mean(dep_delay > 30, na.rm = TRUE),
 over_60 = mean(dep_delay > 60, na.rm = TRUE)
)
OR

```r
by_date <- group_by(flights, date)
no_missing <- filter(flights, !is.na(dep))
delays <- summarise(no_missing,
  mean = mean(dep_delay),
  median = median(dep_delay),
  q75 = quantile(dep_delay, 0.75),
  over_15 = mean(dep_delay > 15),
  over_30 = mean(dep_delay > 30),
  over_60 = mean(dep_delay > 60)
)
```
Data pipelines
Downside of functional interface is that it's hard to read multiple operations:

```r
hourly_delay <- filter(
  summarise(
    group_by(
      filter(
        flights,
        !is.na(dep_delay)
      ),
      date, hour
    ),
    delay = mean(dep_delay),
    n = n()
  ),
  n > 10
)
```
Solution: the pipe operator from magrittr
x %>% f(y) -> f(x, y)

hourly_delay <- flights %>%
 filter(!is.na(dep_delay)) %>%
 group_by(date, hour) %>%
 summarise(delay = mean(dep_delay), n = n()) %>%
 filter(n > 10)

Hint: pronounce %>% as then
Your turn

Create data pipelines to answer the following questions:

Which destinations have the highest average delays?

Which flights (i.e. carrier + flight) happen every day? Where do they fly to?

On average, how do delays (of non-cancelled flights) vary over the course of a day? (Hint: hour + minute / 60)
flights %>%
 group_by(dest) %>%
 summarise(
 arr_delay = mean(arr_delay, na.rm = TRUE),
 n = n()) %>%
 arrange(desc(arr_delay))

Nifty trick to see more data
.Last.value %>% View()

It would be nice to plot these on a map...
```r
flights %>%
  group_by(carrier, flight, dest) %>%
  tally(sort = TRUE) %>%  # Save some typing
  filter(n == 365)

flights %>%
  group_by(carrier, flight, dest) %>%
  summarise(n = n()) %>%
  arrange(desc(n)) %>%
  filter(n == 365)

# Slightly different answer
flights %>%
  group_by(carrier, flight) %>%
  filter(n() == 365)
```
per_hour <- flights %>%
 filter(cancelled == 0) %>%
 mutate(time = hour + minute / 60) %>%
 group_by(time) %>%
 summarise(
 arr_delay = mean(arr_delay, na.rm = TRUE),
 n = n()
)

qplot(time, arr_delay, data = per_hour)
qplot(time, arr_delay, data = per_hour, size = n) + scale_size_area()
qplot(time, arr_delay, data = filter(per_hour, n > 30), size = n) + scale_size_area()

ggplot(filter(per_hour, n > 30), aes(time, arr_delay)) +
 geom_vline(xintercept = 5:24, colour = "white", size = 2) +
 geom_point()
Grouped
mutate/filter
Groupwise variables

- Creating new variables within a group is also often useful.

- Sometime that’s a combination of aggregation and recycling, e.g.
 \[z = \frac{x - \text{mean}(x)}{\text{sd}(x)} \]

- Other times you need a \textbf{window function}

- More details in \texttt{vignette("window-functions")}
Example:

```r
planes <- flights %>%
  filter(!is.na(arr_delay)) %>%
  group_by(plane) %>%
  filter(n() > 30)

planes %>%
  mutate(z_delay =
    (arr_delay - mean(arr_delay)) / sd(arr_delay)) %>%
  filter(z_delay > 5)

planes %>% filter(min_rank(arr_delay) < 5)
```
Window functions

- Aggregation function:
 \[n \text{ inputs} \rightarrow 1 \text{ output} \]

- Window function:
 \[n \text{ inputs} \rightarrow n \text{ outputs} \]

- (Excludes functions that could operate row by row)
Types of window functions

- Ranking and ordering
- Offsets: lead & lag
- Cumulative aggregates
- Rolling aggregates
Your turn

What’s the difference between `min_rank()`, `row_number()` and `dense_rank()`?

For each plane, find the two most delayed flights. Which of the three rank functions is most appropriate?
min_rank(c(1, 1, 2, 3))
dense_rank(c(1, 1, 2, 3))
row_number(c(1, 1, 2, 3))

flights %>% group_by(plane) %>%
 filter(row_number(desc(arr_delay)) <= 2)

flights %>% group_by(plane) %>%
 filter(min_rank(desc(arr_delay)) <= 2)

flights %>% group_by(plane) %>%
 filter(dense_rank(desc(arr_delay)) <= 2)
daily <- flights %>%
 group_by(date) %>%
 summarise(delay = mean(dep_delay, na.rm = TRUE))

What's the day-to-day change?
daily %>% mutate(delay - lag(delay))

If not ordered by date already
daily %>% mutate(delay - lag(delay), order_by = date)
Other uses

- Was there a change? \(x \neq \text{lag}(x) \)
- Percent change? \(\frac{x - \text{lag}(x)}{x} \)
- Fold-change? \(\frac{x}{\text{lag}(x)} \)
- Previously false, now true? \(\text{!lag}(x) \& x \)
Two table verbs
Motivation: how can we show airport delays on a map? Need to connect to airports dataset

```r
location <- airports %>%
  select(dest = iata, name = airport, lat, long)

flights %>%
  group_by(dest) %>%
  filter(!is.na(arr_delay)) %>%
  summarise(
    arr_delay = mean(arr_delay),
    n = n()
  ) %>%
  arrange(desc(arr_delay)) %>%
  left_join(location)
```
Joining datasets

<table>
<thead>
<tr>
<th>name</th>
<th>instrument</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>John</td>
<td>guitar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paul</td>
<td>bass</td>
<td></td>
<td></td>
</tr>
<tr>
<td>George</td>
<td>guitar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ringo</td>
<td>drums</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stuart</td>
<td>bass</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pete</td>
<td>drums</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

+

<table>
<thead>
<tr>
<th>name</th>
<th>band</th>
</tr>
</thead>
<tbody>
<tr>
<td>John</td>
<td>T</td>
</tr>
<tr>
<td>Paul</td>
<td>T</td>
</tr>
<tr>
<td>George</td>
<td>T</td>
</tr>
<tr>
<td>Ringo</td>
<td>T</td>
</tr>
<tr>
<td>Brian</td>
<td>F</td>
</tr>
</tbody>
</table>

=

?
x <- data.frame(
 name = c("John", "Paul", "George", "Ringo", "Stuart", "Pete"),
 instrument = c("guitar", "bass", "guitar", "drums", "bass", "drums")
)

y <- data.frame(
 name = c("John", "Paul", "George", "Ringo", "Brian"),
 band = c("TRUE", "TRUE", "TRUE", "TRUE", "FALSE")
)
inner_join(x, y)
left_join(x, y)
Illustration of `semi_join` Function

Given two data frames `x` and `y`:

x

<table>
<thead>
<tr>
<th>name</th>
<th>instrument</th>
</tr>
</thead>
<tbody>
<tr>
<td>John</td>
<td>guitar</td>
</tr>
<tr>
<td>Paul</td>
<td>bass</td>
</tr>
<tr>
<td>George</td>
<td>guitar</td>
</tr>
<tr>
<td>Ringo</td>
<td>drums</td>
</tr>
<tr>
<td>Stuart</td>
<td>bass</td>
</tr>
<tr>
<td>Pete</td>
<td>drums</td>
</tr>
</tbody>
</table>

y

<table>
<thead>
<tr>
<th>name</th>
<th>band</th>
</tr>
</thead>
<tbody>
<tr>
<td>John</td>
<td>T</td>
</tr>
<tr>
<td>Paul</td>
<td>T</td>
</tr>
<tr>
<td>George</td>
<td>T</td>
</tr>
<tr>
<td>Ringo</td>
<td>T</td>
</tr>
<tr>
<td>Brian</td>
<td>F</td>
</tr>
</tbody>
</table>

The semi-join of `x` and `y` is calculated as:

```
semi_join(x, y)
```

Resulting in:

<table>
<thead>
<tr>
<th>name</th>
<th>instrument</th>
</tr>
</thead>
<tbody>
<tr>
<td>John</td>
<td>guitar</td>
</tr>
<tr>
<td>Paul</td>
<td>bass</td>
</tr>
<tr>
<td>George</td>
<td>guitar</td>
</tr>
<tr>
<td>Ringo</td>
<td>drums</td>
</tr>
</tbody>
</table>

© 2014 RStudio, Inc. All rights reserved.
\[\text{anti}_\text{join}(x, y) \]
<table>
<thead>
<tr>
<th>Type</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>inner</td>
<td>Include only rows in both x and y</td>
</tr>
<tr>
<td>left</td>
<td>Include all of x, and matching rows of y</td>
</tr>
<tr>
<td>semi</td>
<td>Include rows of x that match y</td>
</tr>
<tr>
<td>anti</td>
<td>Include rows of x that don’t match y</td>
</tr>
</tbody>
</table>
Let's combine hourly delay data with weather information

hourly_delay <- flights %>%
 group_by(date, hour) %>%
 filter(!is.na(dep_delay)) %>%
 summarise(
 delay = mean(dep_delay),
 n = n()
) %>%
 filter(n > 10)

delay_weather <- hourly_delay %>% left_join(weather)
Your turn

What weather conditions are associated with delays leaving in Houston?

Use graphics to explore.
qplot(temp, dep, data = delay_weather)
qplot(wind_speed, dep, data = delay_weather)
qplot(gust_speed, dep, data = delay_weather)
qplot(is.na(gust_speed), dep, data = delay_weather, geom = "boxplot")
qplot(conditions, dep, data = delay_weather, geom = "boxplot")
qplot(events, dep, data = delay_weather, geom = "boxplot")
Your turn

Are older planes more likely to be delayed? Explore the data and answer with a plot.

(Hint: I’d recommend by starting with some checking of the plane data)
Do
The workhorse function

• If one of the specialised verbs doesn’t do what you need, you can use do()

• It’s slower, but general purpose.

• Equivalent to dply() and dlply(), and is particularly useful in conjunction with models
How it works

- Two variations: unnamed (for functions that return data frames), and named (for functions that return anything else)

- Uses a pronoun, ., to represent the current group
library(dplyr)
library(zoo)

df <- data.frame(
 houseID = rep(1:10, each = 10),
 year = 1995:2004,
 price = ifelse(runif(100) > 0.50, NA, exp(rnorm(100)))
)

df %>%
 group_by(houseID) %>%
 do(na.locf(.))

df %>%
 group_by(houseID) %>%
 do(head(., 2))

df %>%
 group_by(houseID) %>%
 do(data.frame(year = .$year[1]))
Named usage allows us to put any object into
a column: creates a "list-column". This is valid
in R, but data frame methods don't always expect.

df <- data.frame(x = 1:5)
df$y <- list(1:2, 2:3, 3:4, 4:5, 5:6)

df
str(df)
tbl_df(df)

Doesn't work

df <- data.frame(
 x = 1:5,
 y = list(1:2, 2:3, 3:4, 4:5, 5:6)
)
Goal fit a linear model to each day, predicting delay from time of day

```
usual <- flights %>%
  mutate(time = hour + minute / 60) %>%
  filter(hour >= 5, hour <= 20)

models <- usual %>%
  group_by(date) %>%
  do(
    mod = lm(dep_delay ~ time, data = .)
  )

# See 5-do.R for more details
```
Future work

• Labelling is still a little wonky
• Parallel? (like plyr)
• Better tools for working with models
Databases
Other data sources

- PostgreSQL, Greenplum, redshift
- MySQL, MariaDB
- SQLite
- MonetDB, BigQuery
- Oracle, SQL Server, ImpalaDB
Getting started

• Easiest to dip your toe in database waters with SQLite. No setup required!

• dplyr provides `copy_to()`, which makes it easy to get data from R into DB

• You can work with database tables just like data frames. dplyr translates the SQL for you.
hflights_db <- src_sqlite("hflights.sqlite3",
 create = TRUE)

copy_to(
 dest = hflights_db,
 df = as.data.frame(flights),
 name = "flights",
 indexes = list(
 c("date", "hour"),
 "plane",
 "dest",
 "arr"),
 temporary = FALSE
)
DEMO
Learning SQL

• Learn how to use SELECT.

• Learn how indices work.
 (http://www.sqlite.org/queryplanner.html)

• Learn how SELECT works.
 (http://tech.pro/tutorial/1555/10-easy-steps-to-a-complete-understanding-of-sql)

• Make friends with an expert
When to use?

• Obviously, good idea to use if you data already in database. Better to pull from live db than to use static exports.

• If data fits in memory, using local data frame will always be faster. Only use DB for “big” data.

• Correct indexes are key to good filter + join performance. Talk to a DBA!
Where next
browseVignettes(package = "dplyr")

Translate plyr to dplyr
http://jimhester.github.io/plyrToDplyr/

Common questions & answers
http://stackoverflow.com/questions/tagged/dplyr?sort=frequent