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Preface

Summary in English

This PhD thesis deals with statistical models intendeddeerisic genetics, which is the part of
forensic medicine concerned with analysis of DNA evidemoenfcriminal cases together with
calculation of alleged paternity andhiaity in family reunification cases. The main focus of the
thesis is on crime cases as thedgedifrom the other types of cases since the biological materia
often is used for person identification contrary thraty.

Common to all cases, however, is that the DNA is used as ev&ienorder to assess the prob-
ability of observing the biological material givenfidirent hypotheses. Most countries use com-
mercially manufactured DNA kits for typing a person’s DNAofite. Using these kits the DNA
profile is constituted by the state of 10-15 DNA loci which fzakarge variation from person
to person in the population. Thus, only a small fraction & ¢fenome is typed, but due to the
large variability, it is possible to identify individualsith very high probability. These probabil-
ities are used when calculating the weight of evidence, whricsome cases corresponds to the
likelihood of observing a given suspect’s DNA profile in thepplation.

By assessing the probability of the DNA evidence under camgdypotheses the biological
evidence may be used in the court’s deliberation and triadaunal footing with other evidence
and expert statements. These probabilities are based argbtiop genetic models whose as-
sumptions must be validated. The thesis’s first two artidiescribe the -correction” which
compensate for possible population structures and renoatecestry that couldfiect the mod-
els’ accuracy. The Danish reference database with neaf0B2DNA profiles, is analysed and
the number of near-matches is compared to the expected msinnger the model.
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A frequent event in connection with crime cases is the dietecf more than one person’s DNA
in a sample from the crime scene. In such cases, the DNA pisfilalled a DNA mixture as it
is not possible mechanically or chemically to separate tbledical traces into its contributing
parts. To ascribe an evidentiary weight to a DNA mixture, duantitative part (comprised
as signal intensities in a so-called electropherogram -)ER@e result from biotechnological
analysis is used. Two models for handling DNA mixtures assented together with afffieient
algorithm to separate the DNA mixture in the most probabtrilouting profiles. Furthermore,
it is discussed how the quantitative part of the evidencedkided in calculating the evidential
weight.

In criminal cases, the biological traces are often foundrahe scenes in conditions which
can degrade and contaminate the DNA strand, which compfidhe subsequent biochemical
analysis. Furthermore, the amount of DNA may be limited Wwhitay challenge the sensitivity
of the biotechnology applied in the analysis. Models to estd the degree of degradation and
estimate the probability of an allelic drop-out are disedss the thesis. Furthermore, it is
exemplified how to incorporate the probability of degradiatind drop-out when calculating the
weight of evidence.

Finally, the thesis contains an article which deals withtfmecessing of the data after the sig-
nal is processed by PCR thermo cycler and detected by giwiresis apparatus. Central is the
detection of a signal-to-noise limit which currently is agfiklimit recommended by the manu-
facturer of the typing kit. This article discusses how thigeshold can be determined from the
noise such that it may be specific to each case and locus. iéwidity two filters are presented
that handle specific types of artifacts in the data genergifocess which are manifested as
increased signals in the EPG.



Summary in Danish Y

Summary in Danish

Denne ph.d-afhandlingomhandler statistiske modelleramedndelse indenfor retsgenetik, som
er den del af det retsmedicinske omrade som beskaeftigeresicamalyser af dna-spor fra krim-
inalsager, samt beregning af pastaet sleegtskab i forlsiedatierskabs- og familiesamfarings-
sager anvendt i retlig sammenhaeng. Afhandlingen har eigsderkus pa kriminalsager, idet
disse adskiller sig fra de gvrige sagstyper ved at det bighkegnateriale ofte anvendes til per-
sonidentifikation i modseetning til besleegtethed.

Feelles for sagerne er dog, at dna bruges som bevis i forHadd sandsynliggare forskellige
hypoteser fremsat i den respektive sag. | langt de flesteelandendes kommercielle dna-kit til
at typebestemme en persons dna-profil. Disse kit fastlsaygeprofilen ud fra 10 til 15 dna-
markgrer, som har en stor variation fra person til persorfdlkeingen. Saledes er det kun en
brgkdel af genomet som typebestemmes, men grundet dervataabilitet er det muligt ud fra
disse fa markarer at identificerer personer med meget hdggahghed. Disse sandsynligheder
anvendes til at udregne den bevismaessigeveegt, som ekseniyeskriver sandsynligheden for
at observerer en given mistaenkts dna-profil i befolkningen.

Ved at vurdere sandsynligheden for dna-beviset under koatande hypoteser kan det biolo-
giske bevis inddrages i rettens votering og domsafsig@édige fod med gvrige beviser og
ekspertudsagn. Disse sandsynligheder bygger pa pomsggaetiske modeller, hvis antagelser
ma godtgares. | afhandlingens to farste artikler beskriles sakaldte ¢-korrektion” som
kompenserer for mulige befolkningsstrukturer og fiereegtskab, som kan indvirke p& mod-
ellernes korrekthed. Blandt andet analyseres den dankemeedatabase med knapt 52.000
dna-profiler, hvor det undersgges, hvor meget disse drfdepradskiller sig fra hinanden, samt
om antallet af neermatches kan forklares ved hjeelp af de dteemodeller.

En ofte forekommende haendelse i forbindelse med krimigalsar detektion af mere end én
persons dna i en prgve fra et gerningssted. | sddanne &ifkalldes gerningsstedsprofilen en
dna-mikstur, idet det ikke er muligt rent mekanisk eller k&hrat separere det biologiske spor
i de bidragende dna-profiler. For at kunne tilskrive en beeessig veegt til en dna-mikstur,
bruges den kvantitative del (bestdende af signalintetesitedtryk i et sakaldt elektroferogram
- EPG) af resultatet fra de bioteknologiske analyser af sjmaret. Der praesenteres to modeller
til handtering af dna-miksturer og efftektiv algoritme til at separere dna-miksturer i de mest
sandsynlige bidragsprofiler. Endvidere diskuteres dedrlades den kvantitative del af beviset
inddrages i udregningen af den bevismaessige veegt.

| kriminalsager er det biologiske spor ofte fundet p& gegasteder under forhold, som kan
nedbryde og forurene dna-strengen, hvilket besveerliggwisédnere biokemiske analyse. Yder-
mere kan meengden af dna veere begraenset, hvilket kan udéertsitiviteten af bioteknologien
anvendti dna-analyserne. Modeller til at vurdere graderedbrudthed, samt estimere sandsyn-
ligheden for et alleludfald i dna-analysen behandles imdlingen, samt eksempler pa hvorledes
dette indkoorporeres i den bevismaessige veegt praesenteres.
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Endelig indholder afhandlingen en artikel som omhandlecesseringen af de kvantitative data
observeret fra EPG’et detekteret af elektroforesemaskénefter PCR-processen. Centralt er
detektionen af en signal-stgjgraense som hidtil har veeréagtranbefalet graense fra produ-
centen af det kommercielle kit. | artiklen diskuteres dedtedes graeensen kan fastseettes ud
fra stagjniveauet, sdledes den kan veere specifik for hver gaina-markgr. Der praesenteres
to yderligere filtre til handtering af seerlige typer af aatdkr som udtrykkes i EPG’et som

forsteerkede signaler.
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CHAPTER 1

Introduction

Forensic genetics is about drawing conclusions from bickdgvidence related to various types
of crimes and legal disputes. It is the task of the forensitegjeists to present the genetic
evidence as scientific and impartial as possible. The sticaspects comprises thorough inves-
tigation of the various components in the analysis procéssotogical evidence. The analysis
consists of several sub-analyses handling specific taskiseoroute from tissue or body fluid
to data used for interpretation. Since there are many sswiceariability and uncertainty, the
interpreter must be able to quantify the amount of uncettaind include this when reporting
the evidential weight.

Evidence from a scene of crime is subject to more sourcesrahility than samples taken in
relation to family disputes. In the former case issues ofammmated samples or degraded DNA
due to non-optimal conditions raises problems for the tygéchnology. The DNA might be
too damaged for analysis or it might only be possible to ohtasults from a subset of the DNA
markers used for identification yielding partial DNA profileIn paternity disputes or family
reunification cases the problems facing the forensic geisttiare mainly related to population
genetics and pedigree analysis since in these cases thenegesamples are often of high quality
and in suficient amounts such that the risks of contamination, altilap-out or degradation of
the biological material are minimal. However, the tissuedi®r identification of body remains
found in the debris from a mass disaster or in mass gravetes séverely degraded.
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1.1 Qualitative models

Even before it was possible to obtain DNA profiles, biologfeatures or phenotypes were used
for evidential calculations. The blood type of a child isatetined by the blood types of the
parents’ blood types. Hence, this information may be usepaiternity disputes, where the
alleged father can be excluded if there are inconsistentiie constitutions of the trio’s blood
types. However, the few possible states of the blood typdémfhat the power of discrimination
is low since many men unrelated to the child will share blggektwith the true father.

Hence, the more polymorphic and diverse the biological eaitke more informative and pow-
erful it is for discriminating among individuals. The dewpiment of DNA markers has min-
imised the problem of low discriminating power. By selegtiDNA markers on dferent chro-
mosomes forensic geneticists have obtained a powerfuféto@haking statements about pater-
nity, relatedness and identity. The prevailing DNA typiegtinology used in forensic is based
on the short tandem repeat (STR) typing technique.

The STR repeat sequences used in forensic genetics araltypiade up by motifs of four or
five base pairs, e.g. the typical repeat motif for THO is gilbgm CAT (Butler, 2005, Table 5.2).
This implies that for locus THO an allele designated “6” hiais tnotif repeated consecutively
six times, which if often denoted [TCAZ]

Excluding abnormalities, every individual has two allgpes locus - one maternal and one pa-
ternal. However, it is impossible to determine the originhaf alleles and they may possibly be
identical (homozygote) which implies only one allelic tyisedetected. Otherwise two distinct

alleles are observed (heterozygote) and in either casasitdae of the individual’s parents share
minimum one allele with their commortigpring, assuming no mutations.

The commercial STR kits genotype 10 to 15 autosomal STR lachéaving 10 to 25 fre-
quently occurring alleles in the Danish population. Thattlie qualitative part of the DNA
profile consists of a set of loci where the DNA profile is specifby the states of the alleles. The
heterozygous DNA profile with the highest probability in thanish population using the SGM
Plus kit (Applied Biosystems) is reported in Table 1.1.

Table 1.1: The heterozygous DNA profile with the highest probabilitghie Danish population.

Locus D3  VvWA D16 D2 D8 D21 D18 D19 THO FGA
Alleles 15,16 16,17 11,12 17,20 13,14 29,30 14,15 13,14 36,21,22

Since the STR loci are located orfiérent chromosomes the laws of inheritance suggest that the
allelic distribution over loci multiply:P(Ag, Adj,. ..., AL Ay ) = H{;l P(Ai,Aj), whereAy;, is
theith allele on locu$ andL is the total number of typed STR loci. Using the allele praliizds
estimated for the Danish population, the probability ofexgng the DNA profile of Table 1.1
when sampling a random person from the population387:1071°.
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When a crime is committed, DNA evidence is often considemede court of law, when convict-
ing a suspect guilty or innocent. Let respectively andHgy denote the hypotheses relating to
the guilt and innocence of the suspect, @nthe evidence relevant for the hypotheses. Then the
court is interested in posterior ratR{Hp|E)/P(HqlE). However, such statements are impossible
for the forensic geneticist to quantify since this involtes prior ratioP(Hp)/P(Hg) which is
unknown to the forensic expert. What can be evaluated byxjperewitness is the likelihood ra-
tio P(€|Hp)/P(€|Hg) using a model for the occurrence of the evidence given tieahypothesis

is true.

The likelihood ratio,LR, is the essential quantity in forensic genetics and thisishdiscuss
several ways to include more of the available informatioitsrevaluation. Consider a crime
case with an identified suspect. L@t denote the suspect's DNA profile aiég the DNA
stain obtained from the scene of crime, and assumethat consistent withGs. That is, all
alleles inGgs are present it which we denot&s = E.. The two competing hypothesis state
respectivelyHp: “The suspect is the donor of the DNA stain” aHd: “An unknown and to the
suspect unrelated person is the donor of the DNA stain”. @tterlhypothesis is what is called a
“random man”-hypothesis. L& denote the DNA profile of the random man which assuming
no typing errors implies thady = Gs. In this case th&Ris given by:

_ P(EIHp)  P(Ec, Gs|Hp) P(EcIGs)P(Gs) 1

R = PEIHg) ~ P(Ew.GslHa) ~ PEJU)P(GsIGL)P(GL) ~ P(GulGS)

whereP(Gy|Gs) under some model assumptions is the probability of obsgri¥ie crime scene
profile at random in the population. Hence, the evidencelesdbe forensic geneticist to make
statements like “The probability of observing this part&profile at random in the reference
populationis 1 in 1,000,000” or equivalently “the DNA evide is 1,000,000 times more likely
underH, than undemy”. There is an ongoing debate in the forensic genetic comtyari
which probability is of relevance to the court. In the recdatade the “match probability”
(Balding, 2005) that takes subpopulation structures ormomcoancestry into account has be-
come prevalent. That is, rather than considering profileth®fsuspect and “random man” as
independent, one computes the probability of the obsergfilgoconditioned on the suspect’s
profile. Hence, using the “posterior distribution” of aéislrather than the “prior distribution”,
rare alleles are less extreme. This implies a more consesv@taluation of the evidence since
one accounts for the possibility that an allele that is rar@i admixed population is more com-
monly observed in one of its subpopulations to which the scisfand possibly the culprit) might
belong.

Over the recent years the national databases of STR proéilesdrown in size due to the suc-
cess of forensic DNA analysis in solving crimes. With theastwwumbers of profiles available, it
is possible to test the validity and applicability of pogtida models to forensic genetics (Weir,
2004, 2007; Curran et al., 2007; Mueller, 2008). Furtheentre accumulation of DNA pro-
files implies that the probability of a random match or neatamaf two randomly selected
DNA profiles in the database increases. If all pairs of prefilee compared to each other in the
database this corresponds@) = n(n-1)/2 pairwise comparisons in a database witBNA
profiles. In the Danish DNA reference database there areoappately 52,000 DNA profiles
which yield 1,351,974,000 pairwise comparisons. With ¢hlesge number of comparisons it is
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likely to observe DNA profiles that coincide on many loci winitas concerned some commenta-
tors and raised questions about “overstating” the powevARvidence. Hence, it is important
to demonstrate that the observed and expected number ofiesadce sfiiciently close in order
to retain the confidence in DNA typing in general and the papoh genetic models used for
evidential calculations in particular.

1.2 Quantitative models

The commercial kits used for analysis of DNA evidence previgiantitative and qualitative

information to the analyst. The qualitative informatiopoets which alleles that are present in
the data (like in Table 1.1), whereas the qualitative pargginformation on peak intensities in
terms of height and area of the peaks obtained from the ef@utrogram (EPG). An example
of an EPG is given in Figure 1.1 where the peak intensitieakeights and areas) are plotted
in relative fluorescent units (rfu) against the base pai) (bpgth. Peaks with a low bp value

correspond to alleles with short amplicons (amplicons aaelerup by the primer binding site

and STR repeat structure). The peak intensities are mehbyra CCD camera where the
observed intensity corresponds to the amount of light eahiitom the fluorescence dye.

—— Blue fluorescent dye
Green fluorescent dye

—— Yellow fluorescent dye

——- Red fluorescent dye

Peak height (rfu)
2000 3000 4000
Il Il

1000
Il

100 150 200 250 300 350 400

Base pair (bp)

Figure 1.1: An example of an electropherogram (EPG) for the SGM-PlugAgiplied Biosys-
tems) with peak height (in rfu) plotted against the base (g} length.
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Thus the crime scene evidendg, consists of two components: The qualitative (or genetic)
part,G; and the quantitative part with peak intensiti@s,The peak intensities reflect the amount
of DNA contributed to the particular allele, and since thehteology is indfferent to the origin

of the various DNA fragments, the DNA amounts contributeghared alleles add up. The
resulting peak intensities are registered via a CCD canmartedietects the light emitted from a
fluorochrome attached to DNA molecules corresponding toR &Tle. A diterence in electric
potential forces the DNA molecules to move in the capillavipere the size dierence of the
molecules implies that some DNA fragments pass the CCD aabwedore others.

Since the length of the repeat sequences of the STR loci undestigation are overlapping,
most commercial STR kits applies 3-3iéirent fluorochrome dyes in order to concurrently detect
signals from multiple alleles and loci. One of these dyest@ionDNA fragments of known
length which are used for fragment size determination ofofheerved peak intensities. These
fixed lengths are used to align the observed peak intensgitias allelic ladder which converts
an observed fragment length to an allelic repeat numberthieo8GM-Plus kit this size marker
is given a red fluorochrome (represented by dashed linegimré&il.1).

In a single contributor DNA sample it is possible to obseme or two alleles per locus depend-
ing on whether the DNA profile is homozygous or heterozygmspectively. However, whan
DNA profiles contribute to the same sample it is possible teeole one to @ alleles per locus,
since the individuals may share all or no alleles. The petdasities associated to the alleles
reflect the amount of DNA contributed to that particular lalleHence, in a two-person mixture
alleles where the major component (the DNA profile with tligést amount of DNA contributed
to the sample) contributes are often larger than those afiher component. However, if the
DNA profiles share alleles the peak intensities of the comailetes are approximately the sum
of the contributions.

When assigning weight to the evidence under a given hypistilees methodology needs to
consider both parts of the data. This is particularly imaotrtwhen the data originate from a
DNA mixture, since the quantitative evidence currentlyhis bnly way used to separate the
observed alleles into contributing profiles. Often the pea&nsities are used only to reduce
the number of possible combinations entering the likelthoatio. This approach is sometimes
called the “binary model” in the forensic literature, e.gy Bill et al. (2005); Buckleton et al.
(2005). However, a more correct approach would be to attdieléhood to each combination
of profiles measuring the agreement between the observddipeasities and the expected
intensities under some model. Let the evidefice (&, K) where K are the known profiles
associated to the crime, then the extendBdaking Q into account is given by:

_P(EHp)  P(Q,5.KIHp) PS5, K, Hp)P(SIK, Hp)P(KIHp)

R= P(€IHg) ~ P(Q,9, KIHq) = P(QIS, K, Hq)P(SIK, Ha) P(K|Hq)

(1.1)

whereP(Q|-) measures the agreement between the observed and expeakeidtensities. Ide-
ally the model forP(Q|-) should take the entire EPG signal into account which inefuitie noise
component (pictured as a “rug” close to O rfu in Figure 1.@juatment and correction for tech-
nical artefacts (stutters and pull-ufiects, cf. below), detection of degradation (discusseden th
end of this section), the genotypes of the contributors, etc
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However, evaluating th&R under such a model is computationally intense and complicat
Thatis, for each locus every pair of alleles constructed@aréesian product of the allelic ladder
should be considered even though the peak height imbal@ratesof peak heights) within and
between loci were extreme. For practical purposes such araph would be infeasible and
too computational intense for standard case work. Henge¢cdmmon to reducg to a smaller
set of observations by using a criterion to separate theeramd signal into two parts, such that
the number of possible combinations of DNA profiles decreagelimit of detection is often
used to discriminate between the noise and signal. Howswelh, a threshold approach induces
the risk of making wrong assignment of noise and signalfalee positive and negative calls.
In forensic genetics, these terms are commonly denotedidsopnd drop-outs which refers to
extra alleles in the signal not contributed by the true dermdithe stain and missing alleles of
the true donors being be below the limit of detection.

Let Q denote the part of the EPG that is classified as true signainésioned above is cur-
rently the basis for separating DNA mixtures in its conttibg components. That is, by defining
a model forQ given a set of contributing profiles, it is possible to detigrthe goodness-of-fit
between a hypothesised combination of DNA profiles and tlseted peak intensities. Meth-
ods exist for modellind?(Q|G, G, H) of which some are more heuristic than statistical (Bill et
al., 2005; Wang et al., 2006), but progress is made towardteladased on statistical methods
(Perlin and Szabady, 2001; Cowell et al., 2007a, b, 2010:a@@R2008; Tvedebrink et al., 2010).

In cases where the amount of DNA contributed by the donor efgiofile is low, there is a
risk of the peak heights being below a limit of detection. Tiha@t of detection is introduced
in order to distinguish between noise and true signals. ftag imply allelic drop-out which
causes only a partial (or no) profile to be typed. Hence, adoagributing profile to an observed
stain may have one or more alleles not present in the casdesayi taking allelic drop-outinto
consideration could imply that the true donor is erronepestluded from further consideration.
In order to include the possibility for drop-out in the euwide evaluation it is necessary to be
able to quantify this possibility in terms of a probability.

In contrast to drop-out which is “missing” alleles, the lgsichnology used in the typing of DNA
profiles may cause additional peaks to be present in thewdastain. The PCR process, which
amplifies the DNA by making multiple copies of the presen¢lal, causes extra peaks in the
position in front of the true peak. These peaks are calletlestuand is due to mispairings
between the Tag enzyme and amplicon. This creates a DNA prode repeat unit shorter than
the true amplicon. Stutters may be produced in any cyclesoPtbR process and a rule of thumb
says that the stutter peak height is about 10-15% of the &ak peight. This percentage is an
overall value across alleles and loci, but shorter alledad to have lower stutter percentage than
longer alleles.

Another systematic component caused by the typing tecggadoe the so called pull-up (or
bleed through) fects, where the light emitted from one fluorescent dye isatieden the spectra
of a different fluorochrome. This implies false detection of pealh similar fragment length as
the parental peak, but on di@irent dye band. Furthermore, using a fixed limit of detecttd60

rfu say, neglects important information about the noiselleva sample. If a peak in the interval
40 rfu to 49 rfu is observed, the fixed threshold-protocokdeines this peak as undetected.
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However, by using a model for the threshold, it might be reabte to have a variable limit set
such that e.g. 995% of all noise peaks are removed. This may for some caség atipreshold
as low as 25 rfu allowing for a more flexible analysis schemelwmay be valuable for samples
of low amounts of DNA.

When DNA is exposed to inhibitors such as chemicals, mastsunlight and heat, the DNA
molecules are prone to degrade and the DNA strand damaged.cdinses the results of the
DNA investigation to have a characteristic profile with dexging peak intensities as a function
of the DNA fragment length. The longer the amplicon, the niikay it is that the peaks will
have low emission values. This implies that the risk of alelrop-outs increase for longer
amplicons and may result in partial DNA profiles since sone fail to produce any signal.
Degraded biological material is pronounced in samplestditanm the debris of mass disasters
or mass graves.



Introduction

1.3 Outline

The following seven chapters (Chapters 2-8) present thensgurnal papers constituting this
PhD thesis. The organisation of each chapter is such thagbdper is presented in its jour-
nal form (including bibliography) followed by supplementaemarks about the results, how
it relates to the previous chapters, further discussionaaiditional data analysis. As a conse-
guence notation is not necessarily consistent betweenhidyeters and some of the material is
repeated in dferent chapters. On the other hand, the chapters may be réepeindently of
each other. Each chapter has its own bibliography with tfereaces used in there, and on the
last pages of the thesis there is a complete list of all ref@s. In chapters were there is a ref-
erence to supplementary material, e.g. as in journal patfegsnaterial is available on-line at
http://people.math.aau.dk/~tvede/thesis.

The order of the chapters is such that the number of factorsidered in the evaluation of the
evidence increases. First only the qualitative part of #tes i considered in the likelihood ratio
with the correction for population stratificatioiffects. Later the quantitative data is added to
the likelihood ratio where each model relaxes the assumptioade in the preceding chapters.
Finally the last chapter combines the results and suggmstsstfor future research.

Chapter 2 discusses the topic of substructures in populations andd@aecount for this in evi-
dential calculations. Concepts of identical-by-desceaidt subpopulationsfiects are common
concepts from population genetics. The idea of measuripgilpdon stratification goes back
to Wright (1951) who defined three quantities measuring #ggrek of relatedness between in-
dividuals, subpopulations and the total population. Thelehdiscussed in the chapter handles
this from a statistical point of view by defining the corre@atamong individuals’ DNA profiles
as overdispersion and show how it is manifested in the deetédcorrection used in forensic
genetics.

Chapter 3 is an analysis of the Danish DNA profile reference databagethB beginning of
2009 the database included 51,517 unique DNA profiles typeieio forensic autosomal STR
loci. We investigated the methodology of Weir (2004, 200Apwnade pairwise comparisons of
every pair of DNA profiles in the database. We derived fiicient way to compute the expected
number of matches and partial matches for a gieni. above. Furthermore, in line with Curran
et al. (2007) we extended the model to allow for closer fahiklationships (full-siblings, first-
cousins, parent-child and avuncular) and we derived egjmes for the variance of the number
of matches and partial matches in the database.

Chapter 4is the first of five papers on the quantitative part of the degdl@ble from STR results.
The paper is an extension of the work | did in my MSc thesis wliee peak intensities of the
EPG were modelled by a multivariate normal distribution.eTdhallenging part of the model
is the fact that the dimensions of the data vector (and sulek® hereof) vary among DNA
mixtures due to the étierent number of shared alleles between individuals. An Hdd+ghm
was proposed for optimisation and we demonstrated that taehin fact is a mixed fects
model.
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Chapter 5discusses a simpler and more operational model for DNA meastthan the one from
the previous chapter. In order to separate an observed DXAImiinto the contributing DNA
profiles we derived a statistical model, which was suitedafgreedy optimisation algorithm.
The algorithm is very #icient, separating complex DNA mixtures in a few seconds iltniple-
mented as an on-line tool which provides valuable grapluagut for further interpretation by
the forensic geneticists.

Chapter 6 addresses an important question in forensic genetics adelrgial calculations: Esti-
mating the probability of allelic drop-out. We define a prdaythe amount of DNA contributed
to a sample and use this quantity to derive an logistic regsasnodel to estimate the probability
of allelic drop-out.

Chapter 7 presents a methodology for filtering the quantitative dedenfSTR results. The ob-
served data is a conversion of emitted light from a fluorostedetected by a CCD camera. This
implies that the signal consists of a noise component artddusystematic components, the so-
called “pull-up dfects” and “stutters”. We demonstrate how to determine aifigahreshold
using distribution analysis of the noise component. Pplland stutter corrections were per-
formed by regression analysis. The methodology decre&geificantly the number of allelic
drop-outs compared to the standard protocol.

Chapter 8 is a short communication on how to model degraded DNA in a Erapd intu-
itive manner. Degraded DNA is a common problem in crime casepses since the biological
material from which the DNA is extracted has often been eggdde non optimal conditions.
Sunlight, humidity, bacteria and chemicals are some oféhsans for observing degraded DNA
which complicate the succeeding analysis and interpogtatiThe model presented in the pa-
per is used to modify the drop-out model discussed in Cha&plsradjusting the proxy for the
amount of DNA taking the level of degradation into account.

Chapter 9 summarises the results from the proceeding seven chaptéosrbing a 'unifying’
likelihood ratio. The terms in this likelihood ratio consis:

P(Qmis|Qobs 9mis, gobs» G) P(Qobsigmis, Sobs G) P(Smis, gostK, G) P(K|G) P(G),

whereG is a combination of DNA profiles consistent with the hypoteesder consideration.
FurthermoreQ and§G symbolises the quantitative and qualitative parts of thdesce, respec-
tively. The first term P(Qnmig-) evaluates the probability of allelic drop-out using thedals of
Chapters 6, 7 and &(Qqpd*) is evaluated by one of the models for DNA mixtures (Chapders
and 5), while the last terms are evaluated usingitberrection discussed in Chapters 2 and 3.
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Abstract:

We present a statistical model for incorporating the exargability in allelic counts due to sub-
population structures. In forensic genetics, thiget is modelled by the identical-by-descent
parametep, which measures the relationship between pairs of alleit8rwa population rela-
tive to the relationship of alleles between populationsi(\\2007). In our statistical approach,
we demonstrate th@may be defined as an overdispersion parameter capturingiipegula-
tion effects. This formulation allows derivation of maximum likediod estimates of the allele
probabilities and together with computation of the profile log-likelihood rémlence intervals
and hypothesis testing.

In order to compare our method with existing methods, wealyaed FBI data from Budowle
and Moretti (1999) with allele counts in six US subpopulaso Furthermore, we investigate
properties of our methodology from simulation studies.

Keywords:
f-correction; Forensic genetics; Subpopulation; Diritimiltinomial distribution; Maximum
likelihood estimate; Confidence interval.

2.1 Introduction

Attaching probabilities to dierent levels of relatedness in paternity disputes or etialyighe
weight of evidence in crime cases with biological tracesentat the scene of crime are essential
tasks in forensic genetics. To this purpose, tiiedence in the genetic constitution of individuals
in the population is used to assess the probabilities ofitlitkerce under competing hypotheses.
Currently, 10 to 20 locations on the genome (loci) are irigased for identification purposes
and an individual’s DNA profile is made up by theferent states (alleles) of the loci.

It is well known that allele frequencies may vary betweemgttgroups, geographic remote
populations and subpopulations. However, due to a commalntnary past it is assumed that
the allele frequencies of the subpopulations have a comneampand that the variation between
subpopulations is due to genetic sampling (Weir, 1996).

In forensic genetics, population structures are of greabitance when the probability of ob-
serving a given suspect's DNA profile is assessed under uaitiypotheses. Budowle and
Moretti (1999) published allele frequencies from sifelient US subpopulations (African Amer-
ican, Bahamian, Jamaican, Trinidad, Caucasian and Hispmi1l3 CODIS Core STR loci. In
this study, the authors obtained allele frequency estismedeying significantly across subpop-
ulations. For example, the frequencies range from 6.9%p@i) to 27.3% (Jamaican) for
allele 28 in locus D21, indicating that a homozygote on tbeuk could be 16 times more likely
in the Jamaican than in the Hispanic subpopulation (whemnaisgy Hardy-Weinberg equilib-
rium). The ability to distinguish true geneticfiirences from samplingfects depends on the
sample size. That is, testing the significance of such diletpiency diferences depends on the
database sizes, since the variance of the estimates soedesdly with the number of sampled
DNA profiles.
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In order to correct for subpopulation structure, Nicholsl &alding (1991) suggested thé-*
correction” to be used when inferring the weight of evidemmc®rensic genetics. Our approach
acknowledges the extra variability in the allelic countd addresses this as overdispersion. The
statistical model of the present paper has the same prepeaithe genetic model. We exploit
results from the statistical literature in order to obtaiaximum likelihood estimates (MLES)
of the allele frequencies artiparameter, and compute profile log-likelihoods figproviding
approximate confidence intervals.

The basic idea and principle of overdispersion in alleliarts formulated in Section 2.2 has
previously been noted in the forensic literature, althonghcalled overdispersion, by Balding
(2005). However, the terminology of overdispersion (oehegeneity) explicitly underlines that
a simple assumption of the sampling distribution (multimaindistribution) is instficient to
model the data. By “overdispersion” it becomes more traregao statisticians with limited
knowledge in population genetics to appreciate the conakpériability between population
groups. Hence, these rather specialised types of modeludri@tp a more general statistical
framework.

2.2 Overdispersion in allelic counts

Our set-up assumes that the allelic counts in a given subaimu X follow a multinomial
distribution with some unknown allele probabilities. Dwean evolutionary past, there exists
some variation among fierent subpopulations in terms of allele probabilities. ldeer, these
allele probabilities have a common distribution acrosgpspllations with a mean and variance.
For now, we just leE(P) = « be the mean of this distribution ait{ P) its covariance matrix.
Note that this parametrisation B{ P) implies thatr are the allele probabilities in the reference
population from which the subpopulations are assumed te Hascended.

Let n be the number of alleles sampled from a given subpopulatitim kvalleles. Then the
model can be formulated as

PX =z|P=p) = ( )ﬁ p;’, where (n) __n (2.1)
i

n
T xz) 1%, X!
j= =17

is the multinomial cofficient. ThusX follows a multinomial distribution when conditioned
on P = p. This implies thafg(X) = E(E{X|P}) = E(nP) = nx from the assumption of
E(P) = .

2.2.1 Dirichlet-multinomial distribution

In line with other authors (Lange, 1995b,a; Weir, 1996; Rdarand Hartigan, 1996; Balding,
2003), we assume the distribution of allele probabilite$&¢ a Dirichlet distribution. The as-
sumption of a Dirichlet distribution is based on theordtarguments from population genetics
together with the convenience that the Dirichlet distiidnitis the conjugate prior of the multi-
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nomial distribution. The Dirichlet distribution has detydunction

l—‘(7’+)
f(PL, s POV - = , 2.2
(pz Pr; Y1 ) = H, Ty L | | (2.2)

wherey, = Z‘j‘=1 vj- When assuming a Dirichlet distribution #1, we can derive the marginal
distribution of X by multiplying (2.2) and (2.1) and integrating ovyer The resulting distribu-

tion is called the Dirichlet-multinomial distribution (Hoson et al., 1997) or multivariate Polya
distribution (from its relation to the Polya urn schemee@&@r and Mortera (2009)) with density

k . .
P(X = ) = (”) ro) gl y'). (2.3)

xz)I(n+7y.) j=1 F()/j)

Using the results of Mosimann (1962), the mearXpimay be computed &8(X;) = nyj/v,
wherey;/y, is the mean oPj, E(P;j) = nj = yj/v.. Furthermore, the covariance matrix &f is
given byV(X) = cn[diag(w) — wx ], wherec = (n+v,)/(1+vy,) andx " is the transpose of.
Hence, the covariance matrix of the Dirichlet-multinondatribution is inflated by the factar
compared to an ordinary multinomial covariance.

The Dirichlet-multinomial distribution derived in (2.33 almost identical to Eq. (8) in Curran
et al. (1999) except for the multinomial déieient, which is merely a constant with respect to the
parameters of the model. Furthermore, by introduéiag in Curran et al. (1999y, = (1-6)/0

or equivalently = (1 + y,)™t, we may rewritec in terms ofo:

n+y,

=(N+y.)0=nd+(1-60)=1+6(n-1).
1+,

This implies thatV(X) = n[diag(®) — 7= "][1 + 6(n — 1)] which is identical to the variance
in Curran et al. (1999). In Curran et al. (1999), this expgmsgvas derived by letting denote
the identical-by-descent (IBD) parameter, whereas intifitgsical modeb is an overdispersion
parameter.

Adirect |mpI|cat|on fromX being Dirichlet-multinomial distributed is that the vercad propor-
tionsP = {P }J =X ,/n}] 1 is an unbiased estimator sfwith covariance matrix~*[diag(m)—-

7 ][1 + 6(n - 1)]. WhenX follows a multinomial distributionf? is the maximum likelihood
estimator ofr. However, under the Dirichlet-multinomial model this \&arce does not go to
zero even for very large sample sizes

lim |diagr) - w7 | (0 + %) = |diagr) - w7 |6,

as opposed to the asymptotic behaviour under the multinonadel wheren limn—[diag(r) —
7’| = O, with O being the null matrix.

LetY" = (Yi,...,Y,) denote the vector of sampled alleles, of whiXR is the sifficient statistic,
where the superscript is added to stress thalleles were sampled. Consider the probability
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P(Yhi1 = JIY™ = 9y"), i.e. the probability of a futurg allele given the alleles previously
sampled:
_ [ 1@)P(Yaa = iIp) TTIL; PY; = vilp)dp
) J ) T, P(Y: = yilp)dp
() + X+ 1)
Ly + X?)F(y++ n+1)
X760 + (1 = O)r;
1+(n-1) °

P(Yne1 = J|Yn = yn)

(2.4)

where we used(p) from (2.2) andx™?! = x?+1. This expression emphasises that the probability
of observing a futurg allele only depends on the previous sampled alleles thrthegtotal allele
count,n, and how many of these alleles were of tyjpe”. Hence, we also apply the notation
P(j|x'j‘) for this probability which is identical t®n(A) = (Nad + {1 — 8}pa)/(1 + {n — 1}6) in the
recursion equation of Balding and Nichols (1997, equatigm(here we changed their notation
from F for #), which is the probability of observing ahallele aftemy of n alleles being of type

A

2.2.2 Application to paternity testing

Forensic genetics is widely used in paternity disputes oerwa person applies for a family
reunification. In the setting of a paternity dispute,Higtbe the hypothesis: “The alleged father
is the true father” andH, the hypothesis: “A man unrelated to the alleged father istithe
father”. The paternity indexR]l) is defined a$1 = P(E|H1)/P(E|H.), where the evidencé, is
the DNA profiles of the involved individuals, i.e. child, nh&tr and alleged father.

In paternity testing, thé-correction enters thBl through the assumption of correlated individ-
uals in the population due to subpopulation structuresdiBgland Nichols, 1995; Evett and
Weir, 1998). Consider only one locus where a child’s DNA peof$ (@c) and its mother’s
profile is @b). Assuming no mutations, the true father must pass craliele to the child.
If the alleged father's DNA profile isc(), the Hi-hypothesis implies that the pareng(cd)
have dfspring @c). The probability of the evidence, givad;, is computed af(E|H;) =
P(adab, cd)P(ab, cd), whereP(adab, cd) is the probability that a child iac when its parents
are @b, cd), i.e. P(adab,cd) = %1, andP(ab, cd) is the probability for observing alleles b, ¢
andd in the population. The other hypothesi$;, claims that the child got its allele from a
man unrelated to the alleged father. Then the paternityxinale derived in Appendix 2.A.1, is
given by

1+30
2[0+ (1-6)r]’
wherePI(6) is used to emphasidel’s dependence oft Table 1 and 2 in Balding and Nichols
(1995) give the (reciprocaR|(6) for other parent-child scenarios (wigéhldenoted byF).

PI(6) = (2.5)

As an example, let us assume that this specific trio scerarigpiicated for alS loci used for
DNA profile testing. The consequence between applgingd and and using the simpkd (0) =



16 Overdispersion in allelic counts and #-correction in forensic genetics

1/(2pc) for independent profiles is very pronounced even for realsigncommon alleles. If
e = 0.025 and = 0.03, thenP1(0.03) ~ 10 while P1(0) = 20. Hence, the numericalféerence
between the two paternity indexes is ®independent DNA marker#1(0)/P1(0.03)}° ~ 25,
which for the typical forensic typing kits witB > 10 yields a ratio of at least 000. That is, the
evidential weight may decrease by several orders of maggmity correcting for possible IBD
or population stratification.

2.2.3 Application to DNA mixtures

When two or more individuals contribute to a biological stdhe observable DNA profile is a
mixture of the various alleles contributing to the staing @&therefore called a DNA mixture. In
anm-person DNA mixture, it is possible to observe 1 to @lleles per locus, since the involved
DNA profiles may share all or no alleles (see e.g. Tvedebitiak 2010, for a further discussion
of DNA mixtures). Assume for a two-person mixture, e.qg. aregse, that we observe the alleles
(abg and that the victim’s DNA profile isgb) and the suspect's DNA profile i€€). Then, in
line with the paternity index, the likelihood ratio is defthasLR = P(E|H1)/P(E[H>), where

E is the evidencegbc and the known DNA profiles antl; and H; is the prosecutor’s and
defence’s hypotheses, respectively (in the literaly@ndHg are commonly used for the same
hypotheses). The hypothesis states “The victim and suspect constitute the DNA mixture
whereasH, acquits the suspect: “The victim and an unknown individuwaistitute the DNA
mixture”. LetP(abdab, ij) be the probability of observing the crime scene staloc) given the
mixture originates from genotyped andij. When assuming no typing errors this probability
is 1if (ij) € {(ac), (bo), (ca), (ch), (cc)} and O otherwise. In line with the derivation Bf (0) (see
Appendix 2.A.1 for the details d?1(0)), we get

P(abdab, cc)P(ab, cc)
>.ij P(abdab, ij)P(ab, cc,ij)
B (1+30)(1 + 40)
(70 + {1 - 0)[27a + 27 + 71c]) (20 + {1 - O)7c)

LR(6) =

(2.6)

In Figure 2.1, we have plotted tHeR(6) function for the DNA mixture above withr, and
fixed at 01. The solid line represents the uncorredt®{d = 0) and the broken lines show the
corrected_R(9) for #-values as described by the legend. The inserted plot shmusehaviour
close to the value, = 0.71 where the £ect of theg-correction is reversed. We see that the
effect of@ is minimal for common alleles and more pronounced for raesokience, in practice
the largem is the more conservative thdr-estimates are.

The use of in evidential computations can be seen as a means to smgdttarallele proba-
bilities over possible subpopulations and thereby adjgsfior the uncertainty associated with
unobserved or unobservable substructures in the largabase. This latent structure may
be seen as a reason for overdispersion in statistical tarens,inhomogeneity due to unob-
servedunobservable variables.
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Figure 2.1: The dfect of  on LR(#) for a single locus as exemplified.R(6) is plotted for
variousg-values ranging from.00 (no subpopulationféect) to Q04 (large subpopulatiorfiect)
against the allele frequency of the allele in question (ladliede c) with the other probabilities
(ma andmy,) fixed at Q1. Inserted is a blow-up of the curve negr= 0.71 (c marks this point).

If the suspect or alleged father in the two situations casreid above has a ethnicity or na-
tionality that indicates that a specific database is reptasige for his genetic origin then allele
frequencies estimated from this database are the most@jgueoreference sample to use for
evidential weight calculations. However, the databasethagopulation that it resembles may
be constituted by several subpopulations or groups, whacises this conceptual population to
be heterogeneous. That is, geopolitical or tribal strestuogether with marital and religious
preferences may induce genetic diversity causing oveedssn. Hence, a database that seems
to be the most appropriate for a particular suspect may naab@led on a dficiently high
resolution to obtain a homogeneous reference subpopulatidact, it may not even be possible
to obtain samples with this property. Thus, genetic divgsnd the resulting overdispersion in
allele counts must be accounted for by theorrection.
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2.3 Parameter estimation

Assume that we have allelic counts frdwhdifferent subpopulations such that denotes the
number of allelej in subpopulation and that for each subpopulation = 1,..., N, there is a
total of n; counts;n = (ng, ..., Ny). In addition, we assume that the subpopulations are indepe
dent, implying that the likelihoods of the counts from thégapulations multiply.

The likelihood may then be derived by multiplying over thents of (2.3). This likelihood
implies diterentiation ofl-functions in order to solve the likelihood equations. Afusebser-
vation about th&-function is that
y
r
fa+(-1)=ax---xX(@+y-1)= (a+y)’
r=1 F(a)
using the fact thaxI'(x) = I'(x + 1). Hence, an equivalent way of expressing the distribution
(2.3) using the rising factorials of (2.7) is given as

1 T2, (1= 6) + (r — 1))
1'[?21{1 -0+ (r-121)6

2.7)

mx:@:@)

From this probability function we can compute the log-likebd functior¢ (s, 8; ). Discarding
the multinomial constant (which is a constant with respethé parameters), the log-likelihood
is

Xij N

(. 6, ) :ZN:iZIogn,(l 0) + (r — 1)9) — Zilogl 0+ (r - 1)8). (2.8)

i=1 j=1r=1 i=1 r=1

The corresponding likelihood equatiog(r, 0; x)/d(w, ) = 0, cannot be solved analytically
for the parameters; hence numerical methods need to beddviok parameter estimation. Let
1 denote the parameter vectgr = (w,0) = ({x ']“1 ), sincenry = 1- Z, ln, A possible
numerical method for solving the likelihood equatlons ishiér-scoring, where the parameter
estimates in each iteration are updated ua,hml) P + J(q,b(m))} lu('z,b(m)) where¢(m)

is the estimate in thetth iteration u('z,b(m)) is the score functiom((zp; )/, andI(yhm) is
the expected Fisher Information Matrix (FIM) both evalubite . Paul et al. (2005) derived
exact expressions for the expected FIM entriés). The results of Paul et al. (2005) imply that
the expected FIM may be computed using expressions onlyimgpthe marginal distributions
of X;. Similar results were obtained by Neerchal and Morel (2005)

2.3.1 Computational considerations

Most of the methodology discussed in this section and stioseschereof have been imple-
mented in theR-packagedirmult available on-line in the CRAN repository at hiffaww.r-
project.org (Tvedebrink, 2009).

Even though the expressions for the expected P, 6), given in (Paul et al., 2005, pp. 232)
are compact, they cause the parameter estimation to be tatiopally ingficient. Numerical
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work has shown that it is much more convenient to estimateytharameters and transform the
estimates, rather than estima&tand directly. The log-likelihood(v; x) is

k  Xj

N N N
(@) =2, 0, 0 lodty + 1 =11= ) ) logly, +7 1) (2.9)

i=1 j=1r=1 i=1 r=1

where we used (2.3) and (2.7). The first-order and seconeldativatives of the log-likelihood
{(~; x) are given by

af(‘y,w) Xij 1
6’}/J { )/J+r—l ny++r_l} (210)
02 é’('y, x) N (D L
.Z‘{, 1(7 ”‘1)2 Z()’ +r—1)2} (2.11)
82 f('y, x) N n
6715% Zl z; L —1)2 2.12)

where (2.10) gives the elements of the score functi¢w). Furthermore, this implies that the
diagonal elements of the expected FINt), are

Xi P(X” > r) 0 1
3(71’71)_2{2 (’}’ +r_1)2 ;(7++r_1)2}’

for j = 1,...,k, and the &-diagonal elements(y;, ), equal (2.12). However, for most practi-
cal purposes using the observed Fi)ty), rather than the expected FINI(y), in the Newton-
Raphson scoring ensures much lower computational time.g¥ical investigations indicate that
the J(~)-implementation converges to the same extrema and much quickly as the diagonal
elementsg(y;, yj), for this matrix are as in (2.11), i.e. theter@sX; >r),r = 1,..., xj, where
Xij ~ Beta-Binomialf;, y.—y;), need not be computed.

The inverse of the expected FIM is the asymptotic covariamaiix of the MLE. As our interest
is in (7, 6), we exploit thati(r, 6) = ATI(v)A, where{A}i; = {dv/dli;.

Simulations

Standard asymptotic theory assures that the MLE is the nfidseat estimator. However, infer-
ence abouf depends mainly on the number of subpopulations samplednd only to a minor
degree on the subpopulation sample sizesHence, in order to verify our implementation and
the performance of the maximum likelihood estimator fdfetient number of subpopulations,
we simulated data with known allele frequenciesandé-value. When simulating theith data
matrix, zm, form=1,..., M, we used the following sampling scheme:

1. Drawp{ , ~ Dirichlet({yr,—(1—0)/0}';:1),i =1,...,N.
2. Drawzjq, ~ Multinomial(ni,pi"m), i=1,...,N.
3. Themth data matrix iseqm = [Z1m, ..., TNm] -
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This ensures that the random varialXg, of which x;, is a realisation, follows a Dirichlet-
multinomial distribution with parameters andd. Note that the concept dff subpopulations
is a theoretical one. In practice only an overall databasgdvexist which neglects the present
substructure. However, the intension is to account forghigitioning using th&-correction.

In Weir and Hill (2002), the authors argue that if the expgoteof a ratio was the ratio of ex-
pectations then the method of moment (MoM) estimatigsy, of Weir and Hill (2002, equation
5) was an unbiased estimatoréf

Y41 (MSP; — MSG;)
¥ (MSP; + (ne - 1)MSG))’

Ovom =

wherene = (N - 1)1 (N, m - n;t SN n?) andn, = £, ni. The quantities MS@and MSR
are two mean squares defined as

N N
1 _
MSP: = (B — D)2 d MSG = B (1 — B
1= N2 igl n(Pj - p)° an G Zi'\il(ni—l) i§=1 i fi ( Bij)
with fij = Xij/mi, pj = n;lZi’il xij. Even though the expectation does not satisfy the property
mentioned above, thgom -estimator seems to perform reasonably well on average.

More recently, Zhou and Lange (2010) has derived MM (Minaticcmmaximisation) algorithms
for some discrete multivariate distributions and amongeitle Dirichlet-multinomial distribu-
tion. The authors have provided Matlab scripts (on line saipentary material available at the
website of Journal of Computational and Graphical Stas$tior estimating parameters in the
MM set-up.

In the following we compare the MLE, MoM and MM estimates omglated data using the
relative frequencies in locus D13 from data published in ®ué and Moretti (1999) as and
6 = 0.03. The box plot in Figure 2.2 shogestimates of 100 simulated datasdis € 100)
with sample sizesp;, of 200 and an increasing number of databases (increasimiperuof
subpopulationgy).

From the box plot it is evident that the MLE has a lower vargrtaut also that on average the
MoM and MM estimates are closer to the true value. Howevethashumber of databases
increases so does the accuracy of the estimates, as one equddt. In addition to the accu-
racy of the estimation procedure, it is relevant to complaeecomputational speed and ease of
implementation of the various methods. Naturally, the Mad#ireator is the easiest to imple-
ment, and since no iterations are applied, “convergencepéias immediately. Both MLE and
MM estimates are based on iterative procedures. Whereaestatistical tools exist for easy
implementation of Newton-Raphson iterations, a little emoode needs to be written for MM
algorithms. However, the script-files of Zhou and Lange (®0dlegantly demonstrated how
these obstacles can be handled in Matlab. We compared theutation times for the various
iterative methods (Zhou and Lange, 2010, implemented sraptl more advanced MM meth-
ods in their paper) and number of iterations needed to gdtisfconvergence criteria. The MLE
method implemented iR is always faster and needs fewer iterations for convergemecpared
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Figure 2.2: Box plots of 100 estimates based on simulated data &vith0.03 for an increasing
number of databases with a fixed number of observations palaseif; = 200 for alli). White
boxes are MLE, grey boxes are MoM estimates, dark grey baedd &l estimates, and the light
grey boxes are posterior means. ®hadicates the average of the estimates within each block.

to the standard MM implementation. However, the more adedMdM updating schemes are
more dficient than the MLE for small database counts. We tested the sdégorithms on larger
datasets (Danish and Greenlandic forensic databases@i®and 2,000 DNA profiles). For
these larger databases, the MLE implementation was 10 fiasésr than the specialised MM
algorithms and up to 1,000 times faster than the standard iMpMementation. However, this is
only true when using the observed FIf{;y), while the computation of the expected FIiy),

is very slow even for databases of moderate size.

Profile log-likelihood

From the box plots in Figure 2.2, there seems to be a tendemdpé MLE to underestimate
thed-parameter. In order to investigate the reason for thiswiehaand compute the confidence
intervals forg, we derived the profile log-likelihood(6) = max, ¢(m, 0; x), for 6. That s, fixing

6 at some valu@ and finding the maximum likelihood value under this constraBy fixing @

atd we also fixy, aty, = (1-6)/6. Hence, we are maximising the regular log-likelihood under
the constraint thag, = y,.
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Since the analytical form of the log-likelihood is complied, the only way to evaluate the profile
log-likelihood is by numerical methods as for the maximukelihood estimation. Applying a
Lagrange multipliera, we need to find the stationary pointség) = £(v; ) + A(¥+ —y.). The
partial derivatives yield

o) _ otlviw) . o _s,
dyi dyi ’ dA o

which implies that the score function for this new systemu(s, 1) = (u(y)-A1k,¥+—y+) ",
wherewu(v) is the score function from (2.10) arii is a k-dimensional vector of ones. The
observed FIMJ(+, 1), is also almost preserved from the likelihood equations,

(. 1) = [3_%) _é k] :

wherej(v) is the observed FIM from Section 2.3.1. Hence, we may applytdn-Raphson iter-
ations in order to maximisé(~y; =) under the constraint, = y,. Alternatively this constrained
optimisation problem could have been solved using (receysjuadratic programming. How-
ever, for this particular log-likelihood function Newtddaphson procedure works very well with
Lagrange multipliers, and the existing code for maximaats easily extended for handling the
extra terms induced by the constraints.

In Figure 2.3 the profile log-likelihood for simulated dat&wo = 0.03 is plotted. Each panel
is standardised such that the maximum valug(6f is zero, 2f(6) — £(6)]. The intersection
of the dotted line and the profile log-likelihood indicate8%6-confidence interval far based
on a)(f-approximation of-2¢(6). In each panel the associated MLE (markedelhyMoM (o)
and MM (») estimates are plotted together with the téuealue (). In all six panels the true
value is included in the confidence intervals. As one woulgeek, the width of the confidence
intervals decreases as the number of datasets increasas. arb profound arguments for using
the y?-approximation of partial maximised log-likelihood as ogpd to using asymptotic results
relying on approximative normality of the MLE with a covar@e matrix asymptotically equal
to the inverse FIM (Barnddi-Nielsen and Cox, 1994).

From Figure 2.3, it is evident that the profile log-likeliltbds skew for small numbers of
databases. This pronounced departure from symmetry esplaé bias of the MLE and MM
estimate for small numbers of databases. Using a Bayes@oagh, one may assume a uni-
form prior oné. This implies that the posterior distribution®&pproximately equals the profile
likelihood, p(6|x) o exp[f(8)]. The posterior mearg(6|x), may be evaluated using a numerical
approximation, N .
YLy 6 explt(6)]

i, expli(o)]
Then differentd-values used in the sums of (2.13) are the same as those usmahfputing the
profile log-likelihood, e.g. equidistant points coveritg t95%-confidence interval. Table 2.1
lists the posterior means and estimates for the data in €23, where the data points used for
computing each posterior mean lies within the 95%-confidémierval.

E(0lz) = f 0p(6l2)de ~ (2.13)
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Figure 2.3: Profile log-likelihoods for simulated data for an increasimumber of databases
with 6 = 0.03 for all simulations (marked by). The MLE (e), MoM (o), MM (A) and posterior

mean §) are plotted together with a 95%-confidence interval (sgetion of the dotted line
and the profile log-likelihood curve). The horizontal dasla@d solid lines represent bootstrap
confidence intervals based on randomisation and clustemging, respectively.

Table 2.1: Posterior means and estimates for the data in Figure92=3)03).

Number of databases MLE MoM MM Posterior mean
2 0.0395 0.1315 0.0411 0.0532
4 0.0271 0.0374 0.0278 0.0310
8 0.0243 0.0349 0.0249 0.0263
16 0.0258 0.0247 0.0265 0.0267
32 0.0297 0.0345 0.0306 0.0303
64 0.0286 0.0316  0.0295 0.0290
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We see that the posterior mean estimate in most situatiopoiras the MLE estimate (except
for the first row) and reduces the amount of bias for small nensbf databases. In Figure 2.2 the
light grey boxes (rightmost box whiskers for each stratuspyesent the posterior means for the
simulated data computed usifigralues within the 95%-confidence interval for the assediat
MLE. Table 2.1 indicates that the bias is reduced for thegyast means, with only a minor
increment in the variance (see Figure 2.2).

A full Bayesian implementation with prior distributions en and 6 (or equivalently onry-
parameters) was not pursued in this study. However, seaathbrs (see e.g. Holsinger, 1999)
have discussed estimation@fand other population genetics diversity measures) frorayeBi-
an perspective. We refer to the review paper by HolsingerVden (2009) for further results
and discussions on Bayesian methodologies.

Bootstrapping confidence intervals

In addition to computing a confidence interval fousing the/\/f—approximation of the profile
log-likelihood, we also investigated the performance adtstrap methods to construct the con-
fidence intervals. However, there are some problems whetstoapping clustered data in order
to assess the variability of the intra-cluster correlaparametes.

Several studies (Davison and Hinkley, 1997; Ukoumunne.e2@03; Fields and Welsh, 2007)
indicate that special attention needs to be paid when onkeappe bootstrap methodology
to this problem. The general recommendation is to sample subpopulation (cluster) level
rather than an individual (randomised) level due to the ddpace structure implied by the intra-
cluster correlation factor. In Figure 2.3, we have supedsgal bootstrap confidence intervals
(horizontal solid and dashed lines) based on both kinds ofdt@p regime. The general picture
is that the cluster sampling underestimatésolid line - missing in first two panels due to few
databases), whereas the randomised bootstrap providesstireated values (dashed line).

From numerical studies we recommend the use of the profildiketihood method in order to
estimate the confidence intervals fbsince this method is valid for any number of subpopula-
tions in the data. This might not be surprising (Davison amkigy, 1997; Ukoumunne et al.,
2003; Fields and Welsh, 2007). However, bootstrapping tienoépplied when assessing the
variability of estimates but fof this is inappropriate.

Significance test

Testing whethe# satisfies certain numerical properties is interestingesgguality ofg across
loci simplifiesPl andLR computations. Further simplifications are possibte=f 0 is supported

by data. This implies that there is no detectabledénce among the databases, where the
reasons for this may be small sample sizes (and thus largsiga), or that the databases are as
if sampled from a homogeneous population.

Samanta et al. (2009, Section 3: Hypothesis testing) di:hiypothesis tests for inference about
6 under various population assumptions. Here we initiateelsyirig for equality ofs for the
various loci,s = 1,...,S. The null hypothesis ig; = --- = 85 = ¢ for some unknowr®’,
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wherefs is thed-value for locuss, with the alternative hypothesis specifying that at least@
is different from¢’. In order to test this hypothesis, we evaluate

S
UCN WAL WAC TN (2.14)

s=1

wherels is the regular log-likelihood in (2.8) withs = ¢’ for all s. The test statistics is given by
S ~
-2 IOgQ =-2 g({ﬁ's}il, v SU) - Z 55(7}5’ Os, ws) s
s=1

andis approximatelyé_l—distributed from th&—1 degrees of freedom (DoF). Details of finding
stationary points of (2.14) are given in Appendix 2.A.2.

Furthermore, testing whethér= 0 is another interesting hypothesis test. Under the null hy-
pothesis there is no evident substructure in the data. lgatipport ford = 0 implies that DNA
profiles may be regarded as independent, which has a higlemti#uon the estimation of the
evidential weight (see Sections 2.2.2 and 2.2.3). The Bleiemultinomial model withd = 0

is equivalent to the simpler multinomial model. Howevestitrgg the hypothesis that= 0 can

not be based on asymptotic theory nor inferred from the Bichjiexclusion of zero in the confi-
dence intervals from the profile log-likelihood singe: 0 lies on the boundary of the parameter
space.

A possible method is to use a parametric bootstrap, wheréemeéate datar;, ..., x;, under the
null hypothesi®) = 0. From these simulated data we estiméteand obtain an approximative
distribution ofé under the null hypothesis, which we apply in order to testsigaificance of
0 # 0 for the observed data;. Hence, the parametric bootstrap comprises two steps:rét) d
a, ~ Multinomial(fzi, }Y . {2}, /n,) and (2) estimateé;,.

By choosingM large, e.gM = 1000, one get$1 estimates ob of which most should have an
estimate smaller thafiwhen the hypothesig = 0 is false. An empiricap-value is computed
by #{@:;1 > 6}/M, i.e. the ratio of the number of larger parametric bootséstpmates to the total
number of bootstraps.

2.4 Results

The paper of Budowle and Moretti (1999) presents alleledesgies of 13 CODIS Core STR
loci in six US subpopulations. The data have previously hessd to estimate the magnitude of
0 used for forensic purposes; see e.g. Weir (2007). Hentefeatrefer to these data as “FBI
data”.

Estimates ob based on the MoM, MLE and MM are given in Table 2.2. There amesdistinct
differences between tigy e andfuoem, With often a factor two in dference; furthermore , the
standard errors are often very much smaller for the MLE tlarttie MoM estimates. The
standard errors are asymptotic, wh&E() is based on a Taylor series approximation by Li
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Table 2.2: Locus-specific estimates 6fhased on MLE, MoM, MM and posterior mean (PM).
The confidence interval for the MLE is based on Iﬁeapproximation of the profile log-
likelihood.

Locus Owow SE(@) Owe SEO)  95%-Clford Om PM

D3 0.0108 00085 Q0056 00020 (00028;00110) Q0057 Q0061
VWA 0.0107 00085 00053 00017 (00027;00098) 00053 00056
FGA 0.0050 00051 Q0037 00010 (00021;00061) Q0037 Q0038
D8 0.0140 00106 Q0084 00024 (00049;00145) Q0085 Q0089
D21 00126 00097 00053 00013 (00031;00086) Q0053 Q0055
D18 00142 00107 Q0086 00019 (00056;00133) Q0087 Q0089
D5 0.0226 00157 Q0161 00042 (Q0097;00276) Q0163 Q0170
D13 00264 00180 00147 00040 (00088;00254) Q0149 00156
D7 0.0061 00056 00035 00013 (00015;00072) 00036 00038
CSF (00050 00049 Q0091 00026 (Q0049;00167) Q0092 Q0097
TPOX 00306 00205 00248 Q0066 (00147;00433) 00254 00263
THO1 00328 00217 00189 Q0054 (00110;00340) 00193 00202
D16 00117 Q0091 00069 00023 (00036;00131) Q0070 Q0074

(Weir and Hill, 2002, pp. 730), an8E(6) = {(J~Y)¢,}*/? from Section 2.3.1. Standard errors of
the MM estimates are not readily obtained from the Matlalpsepf the supplementary material
of Zhou and Lange (2010), hence these are not provided i al The ratidyiom /uLe of the
estimates in Table 2.2 repeats the pattern which was iredidat the plots in Figures 2.2 and 2.3.
For most loci, the MoM estimate lies within the 95%-confidemterval. The MM estimates
coincide with the MLE for all loci. The posterior means are foost loci close to the MLE,
which is due to the rather symmetric shape of the profile ikglihoods plotted in Figure 2.4,
where the profile log-likelihoods for the FBI data are pldttegether with the MLE (marked by
e), MoM (o), MM (A) and posterior meant{.

We tested the hypothesis of equalityéofior all loci in the FBI data. From Table 2.2, it is clear
that there are dierences among loci, but also some clustering of the estanbtdable 2.3, we
have listed the results from testinglgrent hypotheses.

Table 2.3: Results from testing hypothesis of equalityodbr multiple loci.

Loci 0 o -2logQ DoF p-value
All 0.0101 0.0090 62.8011 12 <0.0001
D5, D13, TPOX and THO1 0.0186 0.0183 2.2630 3 0.5196

Remaining loci 0.0063 0.0061 12.7175 8 0.1219
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Figure 2.4: Profile log-likelihoods for the 13 CODIS loci from the FBI dabf Budowle and
Moretti (1999). The MLE is marked by, MoM by o and MM by A. For all loci the MLE

and MM estimate coincide. For most loci, the MoM estimats ligthin the MLE confidence
interval. The+ indicates the posterior mean.

The tests indicate that there are groups of loci with sinétaalues. The mears, of the four
loci (D5, D13, TPOX and THO1) with the largestestimates in Table 2.2 5= 0.0186, and the
mean of the remaining loci & = 0.0063. In both groups, the estimaté&d= 0.0183 (95%-CI:
[0.0126;00269]) and? = 0.0061 (95%-ClI: [00043; 00088]) is almost equal té (Table 2.3).

Furthermore, using the methodology described in Secti8ril Zor testing ifd = 0, the test
yielded that for no loci wa# equal to zero. This was true for both the MLE and MoM esti-
mates. However, the test based on the MLE is more powerful tistng the MoM estimate.
The estimated-values for the Caribbean subsample (subset of FBI dataam&m, Jamaican
and Trinidad subpopulations) are given in Table 2.4 togetlid empirical p-values and 95%-
confidence intervals under the null hypothebis,: 6 = 0.

In locus D8, the tests based on MLE rejects the null hyposhesgiereas the MoM test accepts
thatd = 0. For this locus (and D3, D21, D7, CSF, D16) the MoM estimateagative, and so is
the lower bound of the confidence intervals for all loci.

Conceptually, we could imagine that we only had observedanoon Caribbean database with-
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Table 2.4: g-estimates for Caribbean sample (three databases fronBtheafa) together with
empirical p-values and 95%-confidence intervals wites 0. For each locus, the first row is
MLE and the second row MoM estimates. Note that for locus R3t¢ist based on MLE rejects
the hypothesis while the MoM-based test does not.

Locus @-estimate p-value 95%-Confidence interval Hg-decision
D3 2582 x101* 0.099 (3975 x1012;7.243 <10)  Accept
-1.440 ~10° 0.745  (-2755x10° ;5.715 x10%)  Accept
VWA  3.904 <10* 0.000 (3966 x1012;9.639 <10"Y) Reject
3.488 ~10° 0.030  (-2226 -10° ;3.656 x10%)  Reject
FGA 3944 x107%? 0.507 (1772 <10%2;1.470 x101Y)  Accept
6.496 <10 0.284  (-2021 ~10° ;3.221 x10%)  Accept
D8 4351 x10° 0.010 (3973 <1012;8.016 10'Y)  Reject
1.286 x10° 0.214  (-2581 x10° ;4.404 <10°%)  Accept
D21 3510 <102 0.680 (2654 x1012;1.711 <10  Accept
-4.964 x10* 0567  (-2196 <10° ;3.710 x10%)  Accept
D18 6262 ~10* 0.000 (2655 x1012;2.230 <101 Reject
6.657 <10° 0.001  (-2066 ~10° ;3.058 x10%)  Reject
D5 3367 <10° 0.000 (3964 <10%?;5.651 101  Reject
8.452 ~10° 0.000  (-2314 <10° ;4.449 <10%)  Reject
D13 1405 x101! 0.197 (3962 x1012;9.433 x101Y)  Accept
3.693 x10° 0.060  (-2449 x10° ;5.637 10%)  Accept
D7 4776 10712 0.712 (3964 x101?;5566 <10  Accept
-1.062 ~10° 0.727  (-2337 x10° ;4.600 ~10°%)  Accept
CSF 4399 x101? 163 (3971 x1012;8.619 <10)  Accept
-2.049 <103 0.924  (-2494 -10° ;4.102 x10%)  Accept
TPOX 1478 ~<10° 0.000 (5950 <10%2;2.149 x101% Reject
7.890 ~10° 0.002  (-2533x10° ;4.135x10%) Reject
THO1 8026 <102 0.735 (5949 <1012;1.429 x101%  Accept
6.922 «10* 0.295  (-2700 x10° ;4.298 10°%)  Accept
D16 7002 <102 0.704 (3976 x1012;1.371 <109  Accept
-1.925 103 0.903  (-2403 x10° ;4.100 ~10°%)  Accept

out information on the specific island of origin. Thus foriledgth 6 = 0 (see Table 2.4) this
collapse of the observed databases would in principle natfr®blem. However, for the other
loci the present substructure would potentially causeLfReéo be anti-conservative depending
on a particular suspect’s DNA profile and origin.
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In Table 2.5, the estimated allele probabilities, for appropriate subscrip) are presented for
each locus. Note that the estimated allele probabilitieseatimates of the allele probabilities
in the reference population from which each of the six subiaifons is assumed to have de-
scended. Owing to lack of space, only alleles with integéuesare presented, i.e. common
alleles such as 9.3 in THO1 are not reported in Table 2.5.

2.5 Discussion

The model based on the Dirichlet-multinomial distributioas previously been discussed, for
example, by Lange (1995b). However, the estimation metbodgested there relied on approx-
imations of the trigamma-function, which were avoided hadwe to similar results as those of
Paul et al. (2005).

The maximum likelihood estimation of parameters discugs#ds paper is much more involved
than those of the method of moment (MoM). However, the prigeof the MLE ensure reduced
variance of the estimates. In general, thestimates based on MoM and MLE did coincide,
indicating that the usual relative frequency estimate eqa@te in order to obtain point estimates
for the allele probabilities. However, as pointed out by @aret al. (2002), the uncertainty of
these point estimates needs to be carefully considered agsassing the weight of the evidence.
If allele probabilities are estimated from limited datadmshe estimates of the rare alleles are
subject to large standard errors. This may lead to overagtsrof the (point estimates dfR or

PI.

Having a joint model for the allele probabilities afigparameter increases the belief in the es-
timates of the latter. However, sinee may be estimated by the empirical probability the
simpler one-dimensional maximisation problem &, p; ) may be adequate for estimating
0 and assessing its variance. Simulations have shown tisanitthod underestimategven for
large number of databases; hence this estimator fiéient as opposed to the joint likelihood
approach, which therefore is recommended for estimation.

Balding (2003, pp. 229) argues that one should expect vifityadi¥ ¢ across the STR loci used
in forensic genetics. This may be due téfeient mutation rates in the various loci and selection
or “indirect selection” from linkage between the STR loctdagenegenetic regions subject to
selection.

It is possible to test the hypothesis of eg@lakcross loci using our model. For the FBI data there
were two groups of loci with commofrestimates. Figure 2.1 showed that increagedlues
weaken the evidence in most cases. Hence, for a consergatilteation of the evidence, it may
be reasonable to use the largeéstlue. This supports the use of the upper 95%-confidende lim
(see Table 2.2) of the-estimate, which in most cases does not disagree with thencory used
value 0.03 fo® (Phillips et al., 2010). Furthermore, Balding (2005, pp) &Ques that “plug-in
values (off) should tend to be towards the higher end of the range of jblieugalues” in order

to incorporate uncertainty from higher-order termg.of

However, in paternity disputes it is not common practicevaate the evidence conservatively
since in most circumstances these are civil lawsuits. Hengaternity cases it may be more ap-
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Table 2.5: Estimates ofr for each locus. The first line of each cell entry gives the MIn &he
second line is the MoM estimate. In small font the associstaddard errorg10. Only integer-

valued alleles are reported, for compactnésédd 10 units to each FGA allele designatich.

Add 20 units to each D21 allele designation.

Locus
Allele D3 VWA FGA* D8 D21+ D18 D5 D13 D7 CSF TPOX THO1 D16
5 .0063 .037
.0019 .023
6 .0009 .009 .0024 015 .0011 .011 .0389 119 .1761 227
.0005 .011 .0018.018 .0005 .013 .0482 419 .1734 491
7 .0008 .008 .0499 .080 .0066.036 .0027 .021 .0129.036 .0290 .072 .0227 .086 .3285 .282
.0005 .011 .0501 226 .0131.244 .0009 .014 .0122.065 .0332 292 .0164 .116 .3341 .901
8 .0070.027 .0055 .028 .1852.145 .0254 080 .0501 .113 .1626.120 .0327 .077 .4161 333 .1769 227 .0344 072
.0089.117 .0050 .068 .1892.709 .0337.294 .0492 303 .1626.394 .0425 342 .43081.075 .1752 656 .0310 .162
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11 .0054 025 .1202.109 .0538 .097 .0760.098 .0142 048 .3017.257 .2725 240 .2234.136 .2428 192 .2439 .288 .2996 .186
.0037 033 .1220.333 .0501 .167 .0750.169 .0104 .076 .3055.903 .2683 437 .2230.357 .2435 367 .2334 475 .2981 163
12 .0020.014 .1841 130 .1307 .147 .0180.048 .0773 116 .3536.268 .3592 260 .1244 107 .3155 208 .0514 .139 .2245 169
.0014 .021 1845265 .1260 .190 .0154.081 .0790 .338 .3529.382 .3687 1.005 .1261.373 .3178 431 .0444 256 .2324 706
13 .0060.027 .0086 .032 .1601.123 .2524 190 .0046.023 .0806 .119 .1823.215 .1442 .188 .0246.050 .0686 .111 .0019 .019 1447 142
.0062.067 .0084 098 .1592.253 .2584 639 .0035.034 .0890 536 .1893.667 .1370 .199 .0239.093 .0636 .104 .0005 .010 1427 224
14 .0914 109 .0768 .098 .1627.124 .2818 .197 .0064.027 .0926 .127 .0172.064 .0575 .121 .0052.022 .0138 .048 .0236 .059
.0947 338 .0749 162 .1597.350 .2822 570 .0055.071 .1029 603 .0108.073 .0502 .177 .0045.032 .0098 .030 .0211 114
15 .3212 177 .1533 133 .1047 102 .1677 .163 .0136.041 .1504 .157 .0069.037 .0014 .014 .0038 .023 .0028 .018
.3235.5508 .1610 633 .1047.228 .1672 473 .0174.163 .1461 139 .0033.028 .0005 .011 .0023 .024 .0014 .015
16 .2931.173 .2791 .166 .0417 066 .0448 088 .0026.017 .1603 .162 .0014.015
.2897 395 .2804 512 .0432.222 .0446 248 .0030.044 .1561 431 .0005.025
17 .1908.149 .2177 153 .0309.057 .0096 .039 .0020.014 .1502 .157
.1893.322 .2144 375 .0317.174 .0079 .079 .0015.023 .1566 518
18 .0832.104 .1678 .138 .0092.031 .0011 .011 .0967 .129
.0856.438 .1685 .381 .0089.069 .0005 .011 .0979 345
19 .0078.031 .0692 .093 .0047 .021 .0707 112
.0067 .050 .0679 .139 .0040.035 .0686 287
20 .0210 .051 .0008.008 .0481 .092
.0192 o071 .0005 011 .0467 248
21 .0011 010 .0008 008 .0228 .063
.0014 .025 .0005.026 .0204 134
22 .0110 .042
.0099 .096
23 .0046 .025
.0035 .034
24 .0011 011
.0005 .o11
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propriate to use the locus-specific MLESs (or the commwalues for groups of loci in Table 2.3)
when computind?(6).

2.6 Conclusion

We have demonstrated how the genetic dependence causeenbigadiby-descent assumption
can be modelled as overdispersion from a statistical pdiateov. This allowed for maximum
likelihood estimation of allele probabilities in the redaice populationg, and the identical-by-
descent measure, By using recent results from the statistical literature M was computed
analytically and confidence intervals based on profile Ikglihoods were provided.
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Appendix

2.A Mathematical details

In Appendix 2.A.1, we give some mathematical details on howlérive the paternity index,
P1(6), of (2.5), and Appendix 2.A.2 is about testing for equatify) across loci.

2.A.1 Deriving paternity index (PI)

We demonstrate how to derive the paternity indelx,in (2.5) usingP(Yn1=j|Y "=y") = P(jlx’j‘)

in (2.4). In a given locus, the child’s profile iag) and the mother is heterozygowy, where

c is different froma andb. Discarding the possibility of mutations, the true fatheeds to pass
on ac allele to the child. Assume that the alleged father is hetggous €¢d), which implies
P(adab, cd) = %1, i.e. under hypothesid; the probability of the child’s profile given its parents’
profiles is. ThePl is determined by:

_ P(ac,ab,cdH;) P(adab, cd)P(ab, cd)
P(ac.ab.cdHz) ¥, P(adab, cd,ij)P(ab, cd, ij)’
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where (j) denotes the profile of the true father undi&r and summation is over al alleles
in the given locus. However, when omitting the possibilifynautations, unlessor j equalsc
the child can not be the true father'sfspring, i.e. P(adab, cd,ij) = O for (i, j) wherec # i
andc # j. Hence, we fixj = cand sum over ali = 1,...,k, whereP(adab, cd, cc) = % and
P(adab, cd,ic) = ;11 foralli # cunderH,. This implies that the expression for tRé is given by

~ P(ab, cd)
2P(ab,cd, co) + 2 3, 1P(ab, cd, ic)

1#£C

_ P(ab, cd) B 1
2P(ab, cd, ¢)|P(diab.cd, ¢) + 3 P(ilab.cd.¢)|  2F(¢ab.cd)

1#£C

where the sum in square brackets by definition is one. Usmgxbressiorﬁ’(jlx’;) in (2.4) with
xt = (¢, X x¢, x4 = (1,1,1,1), we have,
1 1+(n-1) 1+36

Pl= 2P = 20+ (L O)md 20+ (L))

2.A.2 Testing equality of 6 for multiple loci

In order to find stationary points for the log-likelihood &.14), we use Fisher-scoring with La-

grange multipliers = {/ls}il, ensuring equal for all loci. Translating the common parameter

¢’ toy’ ensures computational simplicity. The observed FJiy), associated with (2.14) is
[d(v)]  O12 EE O1s g«
021 [I(v2] -+ O2s gk
I = : : :
Os1 o+ Oss1 [I(2)] gk
ar, a .. ar. 0

whereOs; is a Ks+1) x (ki+1)-matrix of zeros,

g =0 g

s o[

Furthermore, the score function is

u({vs, /15};1, Y) = ({u(ys) — Aslk, (¥ - 75+)}S$1, 4)

whereu(+s) is the score function of (2.10).
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2.7 Supplementary remarks

The methodology presented above for estimagiagd computing the profile log-likelihood has
been applied in the publication by Phillips et al. (2010)etfprmed some of the computations
of that paper using théirmult package and made plots similar to those of Figures 2.3 and
2.4 (Fig. 4 in Phillips et al., 2010). Plots in higher res@atare available from my web page
(http://people.math.aau.dk/~tvede under “List of publication”).

In population genetics the Hardy-Weinberg equilibrium (BY¢onstitute a fundamental point of
reference. Proposed independently by Hardy (1908) andiWein(1908), the HWE states that
assuming random mating, no selection, no mutations andtefiopulation size the probability
of a diploid genotype is the product of allele probabilitiB§AA;) = 2pip; andP(AA) = piz.
We know immediate from these assumptions that HWE fail tal Isaice no real world popula-
tion satisfy these restrictions. However, quoting Box amdder (1987, pp. 74): “Remember
that all models are wrong; the practical question is how \grdo they have to be to not be use-
ful” applies also to HWE. In fact testing for HWE is often doteetest for data quality, where
the test is performed on genetic data to detect possiblerepeesentation of homozygotes due
to typing errors.

Over the last 100 years since the publication of the Hardyaldégg principle several genetic
models have been proposed to relax the assumptions methédwoze. One such attempt were
Wright (1951) who defined thE-statistics s, Fir andFs)), which are measures of popula-
tion differentiation (Holsinger and Weir, 2009). In forensic gersethe most interesting of the
parameters i& st which measures the divergence between a subpopul&jamd the total pop-
ulation, T. Cockerham (1969, 1973) showed that for most interestisgraptions made about
the population structure and breeding patteérissidentical toF st (Weir and Cockerham, 1984,
pp. 1358). The use of thecorrection alters the genotype probabilitR@\A;) = 2p;p;(1 - )
andP(AA) = pif + pi2(1 — 0), where the magnitude @fcontrols the deviation from HWE.

In the following chapter, a paper discussing theorrection in relation to a DNA reference
profile databases is presented. In that setting only ondods¢ais available, hence there is no
point of reference to which extend a particular subsampéealshse diers in allelic constitution
from another. Therefore filerent means of estimatirfgneeds to be considered. In the setting
abovey was a measure of subpopulation structure in a larger datalwagreas in the subsequent
settingd is a measure of correlation between gametes (within anddsetwidividuals). Hence,
by making pairwise comparisons of all individuals in theatetse we may be able to quantify
by analysing the dierence between expected and observed counts of matching loc
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Abstract:

In this paper we analyse the Danish reference database alatethover approximately 40 years
with 51,517 DNA profiles, which is close to 1% of the Danish lagopulation size. Each entry
in the database is associated with a civil registration remshich that twins are identified and
potential near matches due to typing errors are removed.

We investigated the methodology of Weir (2004, 2007), andresions by Curran et al. (2007) to
allow for close relatives, who derived expressions for tkigeeted number of matches and near
matches in a database when every DNA profile is compared aitedl profiles in the database.
We extended the methodology by computing the covariancexmditthe summary statistic and
used it to estimate the identical-by-descent paransdiarthe Danish database.

Keywords:
DNA databasef-correction; Subpopulation; Close relatives; Covariamegrix.

3.1 Introduction

In order to accommodate the pressure from the legal commuiiir (2007) commented on
the rarity of DNA profiles and in particular on the number opegted profile matches and near
profile matches one should expect as the DNA databases secieaize. The fact that a pair
of profiles matches at 9 out of 13 loci in an Arizonian dataliH#$5,493 profiles (Troyer et al.,
2001) is not unexpected. In fact Weir (2007) suggests thatof6uch pairs would be expected
under his population genetic model with the coancestryrpaterd = 0.03. However, if one
compares the expected counts and observed counts in We#)20is evident that the expected
number of partially-matching loci is much larger than wisabbserved. A possible explanation
is that the population is subdivided which increases thebrarmf homozygote profiles. That s,
profiles that are homozygous are either similar dfedént, which is not captured in the model
discussed by Weir (2004, 2007).

Mueller (2008) investigated the performance of simple pafan genetic models further. He
also focused on the Arizona database and discussed howitikeds to observe the reported 122
pairs matching on 9 loci and 20 pairs matching on 10 loci od3dbci. By means of simulations
he increased the complexity of the model to include five etlgnoups each with four possible
subpopulations and a number of relatives. He concludedithatder to obtain sfliciently
high probabilities for the observed counts, there needdzktbetween 1,000 and 3,000 pairs
of full-siblings in a substructured population. Severdlestauthors have discussed multi-locus
matching and population structures influence on match fmibties, e.g. Lange (1993, 1995);
Donnelly (1995b,a); Balding and Nichols (1995); Ayres (@pQ.aurie and Weir (2003); Song
and Slatkin (2007).

The main focus of this paper is the examination and validatiothe model proposed by Weir
(2004, 2007) and the modifications hereof by Curran et al072@o allow for closely related
individuals in the database. To this purpose we model anigsathe distribution of matches and
partial-matches in the reference DNA database at the $eatiBorensic Genetics, Department
of Forensic Medicine, Faculty of Health Sciences, Uniugrsf Copenhagen.
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3.2 Materials and methods

3.2.1 Data

The Danish reference DNA profile database contains 51,5H BNA profiles accumulated
from 1971 to the beginning of 2009 typed at the 10 autoson@liteluded in the SGM Plus
kit (Applied Biosystems, CA, USA). The database constitiitie more than 1% of the Danish
adult population (approx 4 million people). Each entry ia ttatabase is associated with a civil
registration number such that twins are identified and piatemear matches due to typing errors
are removed.

The database were analysed such that every profile were cedhfmaany other profile in the
database. For each pairwise comparison the number of mgt@greement on both alleles),
and partially-matching loci (sharing exactly one allefgjyere registered. Leb; andG; be two
DNA profiles in the database. ThéM(G;, G;) is a 11x 11-indicator matrix with zeros except for
the (m, p)-entry corresponding to and p matching and partially matching loci between profile
G; andG;j, respectively.

Hence, the summary statistié¢ = {Myyp}mp is formed by

>
=

M = Z M(Gi, G;), (3.1)

i j>i

N
i

which corresponds tbl = 2 = n(h—1)/2 pairwise comparisons of DNA profiles. With the
database size of = 51,517 this results ilN = 1,326974886 comparisons.

The result of analysing the Danish database with 51,517 DNA profiles is summarised in
Table 3.1, wheré/y,, corresponds to the number of pairs witimatching loci and partially-
matching loci. From Table 3.1 we find that e.g. the number afpE profiles with 5 matching
loci and 4 partially-matching loci out of ten autosomal lecMs;s = 17,060. Figure 3.1 shows
a the summary statistic in an informative way where we haoe#tgd the observed counts on
log,g-scale.

Two of the authors (T. Tvedebrink and J. Curran) implemetadputationally &icient func-
tions for constructing theM-table in the statistical software (R Development Core Team,
2009). Thecompare-function from theDNAtools-package (Curran and Tvedebrink, 2010b)
took less than 5 minutes to perform aJB26,974,886 pairwise comparisons on a 2.50 GHz lap-
top computer. Most of the methodology in this paper has begreimented in th®NAtools-
package together with specialised plotting functions. paekage is described in more detail
elsewhere (Curran and Tvedebrink, 2010a).
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Table 3.1: Summary matriXM for the Danish reference DNA profile database with 51,517 DNA
profiles. M, is the number pairs of profiles with matching (wherenis the row number) and

p partially-matching (wherg is the column number) loci. Owing to lack of space the fongsiz
is reduced for the least interesting part of the table (lomber of matching loci).

M 0 1 2 3 4 5 6 7 8 9 10
0 906881 8707969 37632872 96157037 160570778 182820115 143627613 76852119 26786782 5486572 501671
1 1100493 9484061 36229766 80292877 113733413 106635954 66164365 26183818 5992415 604900
595135 4531792 14996133 28165271 32810688 24271278 11132519 2887555 325493
188146 1237733 3467281 5353738 4913791 2683854 805798 103305
38094 212,192 487484 592929 401832 143202 21490
5114 23490 42459 37933 17060 3100
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Figure 3.1: Plot of observed counts (marked byversus the number of matching and partially-
matching loci (counts on Igg-scale) for the Danish database. The superimposed poits (
represents the expected counts (under the model describ®dction 3.2.2) and the vertical
bars indicate an approximative 95%-confidence intervalmaed byN7# + 2 y/diagX(0)} (see
Sections 3.3 and 3.3.2).
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3.2.2 Population genetic model

The model proposed by Weir (2007, 2004) defines for each oL thi three probabilities
(Poyo, Pos1, P1/0), which are the probabilities for two randomly selectedfigs sharing none,
one or both alleles at a given locus (Weir denoted the prdibabiPo, P1, P,. The change
of subscript will hopefully be clear in the following). TheqgbabilitiesPy,, depends on the
coancestry cdécientd through the match probability equations (Nichols and Bajdil991)
that are derived using the recursion formuPgA; |z") = [x)60 + (1 - 6)pi]/[1 + (n— 1)8], which
is the probability of observing anallele after having seexj alleles of type” amongn sampled
alleles.

The expected values associated with the observed coufisunder this model is computed
asN, wherem = {mmp}mp iS the matrix of probabilities for the matgartially-match events
(m p). The elements ofr, m7yyp,m = 0,...,L;p = 0,...,L — m, may be computed using

recursion over loci: Letﬁvp denote the probability based éroci, i.e. using only a subset of

size¢ of theL loci. Then the following equation denote how to comptﬁ;% forc=1,...,L-1:

o = PEishys * PiiThp-1 + P11 2
where the “sum” of the subscripts for each term on the righthgide equals the subscript on
the left hand side, aann/ refer to thePy,, probabilities for thefth added locus. When either
m = 0 andor p = 0 we have these boundary equations:

{+1 P(+l 4 {+1 P(+l l P£’+1

+1 _ pt+l_¢
o0 = FooTo/00 Tojp = P

41 ¢
0/0%0sp + Pojimtoypr - @nd me = Pojomtyo + P1jomim 100

whereny o = P, 75, = Py, andng, = Pgo. These equations are easily implemented in
computer software andteciently compute the expected numbers for variéwalues.

Weir (2007) focused in his survey paper primarily on comgaribetween the observed counts
and the expected numb&tzr (), for different values of. However, as Curran et al. (2007) dis-
cussed one needs to consider normalisation of thé&elces for a proper comparison between
the observed and expected counts. In this paper we show howripute the covariance matrix
of M in order to make a more rigorous comparison taking the caticel between cell counts
into consideration.

Close relatedness

Weir (2007) showed that for a specified family relationstip pairs of profilesPn,, is updated
using the probabilitiess;, that the two individuals shalealleles identical-by-decent (IBD):

ﬁ’o/o = koPo/o ﬁ)O/l = k]_(l - 9)(1 - 82) + koPo/]_ and |51/0 = k2 + k]_[@ + (1 - 9)82] + koP]_/o,

whereS; = Z./—l p2 is the sum of squared allele probabilities at a given locuk Widifferent
alleles, andDm/p denote the probability that two individuals with the sp@cdffamny relationship
will match asm/pin a given locus. In order to computg Pry, is replaced b)Pm/p in the (3.2).

In Table 3.2 we have listed the five types of relatedness dersil in this paper. The avuncular
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class covers half-siblings, grandparent-grandchild amcledsnephew (independent of gender)
since these has identickivector and are as such indistinguishable only using uatirdenetic
markers.

Table 3.2: Probability of sharing alleles IBD for the specified relationship (Weir, 2007, &bl
4).

Relationship Full-siblings First-cousins Parent-childvuAcular Unrelated
k = (ko, ki, ko) (0.25,0.5,0.25) (0,0.25,0.75) (0,1,0) (0,0.5,0.5) (@)

The dfect of these types of relatedness is represented graphicafigure 3.2 wherery,, is
plotted for the possible combinationsmafandp for 8 = 0.03. Note that parent-child (marked by
+ in Figure 3.2) must share at least one allele per locus imglthatry,,, = 0 whenm+ p # L.
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Figure 3.2: Effect ons for the five types of relatedness with= 0.03. The legend explains the
plot characters.

The inclusion of related pairs of profiles were investigdtgdCurran et al. (2007) using Aus-
tralian data with Caucasian and Aborigine origin. Usind thar) = E(E[7|R]) = X,ex E(r|R =
rP(R = r) they computed expected number of matches by stratifyingjase relationshipsR.
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They formulated the model witR = {Full-siblings, First-cousins, Parent-child, Unreldted
T = aﬁ_FuII—siblings+ﬁﬁ_First—cousins+ 5%Parent—child+ y, (3_3)

wherey = 1-a—£-¢ and the parameters refer to the fraction of the total corspas that are
made between pairs of full-siblings, first-cousins, paiitd and unrelated, respectively.

After fitting the model to the data, we have parameter esémat the various parameters in the
(3.3)-model. Thus we have an overall estimate of the praibathat a random pair of profiles
in the database has a certain familial relationship, e.g.ptiobability of two pairs of profiles
originating from a pair of full-siblings in the Western Aualia database is.81-107° (Curran

et al., 2007 g-estimate in caption of Fig. 1).

These probabilities might be used in relation to crime cagesre a suspec§, declares that a
close relative is the culpriC. Let Gs be the suspect’s profile (known to the investigator) and
Gc the profile of the culprit (unknown, but may be identicaldg). For some crime cases the
defence may claim that the circumstances of the crime is thattthe true Gender is a close
relative toS. Given a specific familial relationship, it is possible to compute the probability
that S and C share the same DNA profile. We need to distinguish betweersithation of
Gs being heterozygous or homozygous, andFiBc = AvAj|Gs = AvAy, R=r) andP(G¢ =

A AV|Gs = A A, R =r) denote these probabilities, wheris the specified familial relationship
of C andS. Furthermore, the information aboytimplies knowledge ok which gives these
expression for the two probabilities:

k
P(Ge=AvAIGs=Ar Ay, Ren)=kot = [P(AIAT. A A ) +P(AT 1A A A)) | +HoP(AL AV A AY)
ki 20+(1-6)(pr+py) 67+6(1-0) (P +pir)+(1-6)*pr py

ket w20 (1+20)(1+0)
(3.4)
P(Gc=Ar Ar|Gs=Ai Ai, R=r)=ko+ki P(AV A, A A ) +koP(A Av | AV AY)
_ 2 VD (1—0)2 02
=k2+k130+(1_0)p" N 66-+50(1-0) pi +(1-6)"p; (3.5)

1+26 (1+20)(1+6)

If the suspect is not the true culprit, then the probabilitstiGs = G¢ (share the same DNA
profile) is given byrige. For the five types of relatedness considered here, the Ipitiies are
plotted in the right-most category in Figure 3.2 foe 0.03.

3.3 Results

3.3.1 Simulations

We used the model discussed above to simulate DNA profilddats with known allele fre-
guencies (the estimated allele frequencies from the Datasfibase) and various values for
For a specified number of DNA profiles, we used the recursivadita of Nichols and Balding
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(1991) for individuals only remotely relate®(A.|[z") = [x)0 + (1 - 6)pi]/[1 + (n - 1)d] to
simulate alleles with a correlation governedibwyherep; in the formula is the allele frequency
of allele A, and the vectore" = (x],...,X}) is the sificient summary statistic (Tvedebrink,
2010). In order to take close relationships among the idd&is into consideration, we simu-
lated the number of individuals with a specified relatiopstik = (Ngs, Nic, Npc, Nay, N — Ny),
where alln, are even numbers. The subscripts relates to full-siblikg,(first-cousins (1C),
parent-child (PC) and avuncular (AV). The last entryrip refer to the remaining number of
unrelated DNA profiles (UN). Since the comparisdf&G;, G;) only considers pairs of profiles,
the closely related DNA profiles are simulated in pairs shett:t

1. Simulate the first relativB;: Ry ~ P(ArAjlz") = P(Arlz™1)P(A; |z"), wherez"1=z"+e;
ande;j is a vector of zeros except for a one in enfry
2. Simulate the number of alleles the second reld®vshare IBD withR;: | ~ P(k).
3. ProfileR; is simulated conditioned on the valuelof
| =0: Ry is generated unrelated B: Ry, ~ P(AvA/|A Aj, "), and may be identical (by
state) toR;.
| = 1. Thefirst allele oR; is drawn randomly from the alleles Bf, e.g.A; is sampled. The
second allele is then sampled fra?(Aw |A, Av Ajr, 2").
| = 2. Ryisidentical toR;. Note that only full-siblings has this possibility in ounsilations.

By using this sampling scheme we makg?2 pairwise comparisons for relatedness on level
r, since all other pairs of simulated relatives are mutuafiyelated to each other. Hence, the
known vector ofp; = {P(R = r)},ex is for each simulated database:

_ Nrs Nic Npc Nav 1- ny
P hn—’ nh—0' nn—1’'n(n-1)’ " n(n-1)

From the expressions above it is clear that for increasirigbd&e sizes the number of com-
parisons between relativesa$n®). However the impact oM depends on the product of the
matching probabilities and the fraction of comparisomgp, = Mueller (2008) argued that the
number of full-sibling pairs in the Arizonian database<65493) needed to be between 1,000
to 3,000 pairs. This gives that the fraction of pairwise cangons attributed to full-siblings is
between 431077 and 142x107° for the Arizonian database.

In the formulation of Weir (2004, 2008)was assumed constant across loci. However, this need
not to be the case due tofidirent mutation rates, and possibly selectioimalirect selection by
linkage to other gen@gwmarkers subject to selection (Tvedebrink, 2010). In ounttions we
used a constarst across loci for simplicity. For each simulated database stienatedd using

five optimisation criteria:

(M — Nm(6))? |M — N (9)]
Cu) = Y (M -N(0)  Colt) = ) T AT Gl = )

(3.6)
_ 0 (M - Nm(9))? _ Ts(0)-
N0 =) qagz@y - 120 = (M - Nr@) (0 (M - N (o), (3.7)

where summation is over the vector entries. The object fonstn (3.6) were investigated by
Curran et al. (2007) as a mean to compare the expected andetdseunts. The authors argued
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that numerical work indicated th&l3(0) yielded good results since special emphasis is placed
on the upper tail of the distribution (large number of matghioci). The functions in (3.7) uses
the covariance matrix,(¢), computed in this paper (cf. below). The first functidn(6), does

not take correlations into accounts, wheréa@) is a natural measure of similarity (a so called
Mahalanobis-distance) incorporating the covarianceimatr

Let M be theM-matrix written in vector format (Appendix see 3.A for désaon the transfor-
mation). We derived the expression for the variancanf (), such thafl,(0) = {Nw () —
M}TE(6)"{N7(0) — M} may be compared for various valueséah order to obtain the minimal
To(6). We use the generalised inverseX{f) sinceX(6) is not of full rank due to the linear
constraintN = M., where the %4"-notation indicates summation over the index. Let all the
DNA profile identifiers, (1, i2, i3, i4) be diferent, then the variance is computed as:

0 = (o) [M(G.. 801+ o |2 [M(61. 6.0, M (G Gl + 6 S 1M(61,6). MG, G

(3.8)
where the covarianc€s[ M (Gi,, Gi,), M (G;,, Gi;)] andC [M (Gi,, Gi,), M (Gi,, Gi,)] are the most
involved terms to compute sind&[M (G;,, Gi,)| = diagw(0)} — w(6)7(6)". The full details are
given in Appendix 3.A.

Simulations of unrelated DNA profiles

We simulated 1000 databases for varyimgvaluesg € {0.00; 001; 0.02; 0.03; 004} with 10,000
DNA profiles per database. For each database we computedrimaary statistidM and Fig-
ure 3.3 shows box-plots of the summary statistics on logauiit scale for eachn/ p-category for
0=0.03. The superimposed vertical boxes (dark grey) represespproximate 95%-confidence
interval computed byN7(6) + 2 +/diagX(d)}, where the approximation rely on an approxima-
tion to normality for the counts. The performance of thisraggmation increases with the cell
counts, i.e. the smaller the counts the less accurate ispr@ximation. The light grey boxes
represent the 95% sample confidence interval based on thedh8 97.5% quartiles in the dis-
tribution of the simulated values. Inserted is also the etgukvalue £) for each category. It is
evident that the median for most categories are identicdlg¢@xpected value, except for cases
with N7y sSmall. Here, the box plot is of limited use since the obséowatare “all or nothing”.

For each method the minimum was found by evaluating the fomdor 6, on a fine grid of9-
values with step length.0001 for the interval [00.12]. The box plot of Figure 3.4 compare the
performance of the five measures of similarity between theeoked and expected numbers for
the varioug-values. In the box plot the knowdy is subtracted from the estimatésuch that
the box plot show the deviation éffrom the true value.

The box plot of Figure 3.4 indicate that there is hardly ndedence among the methods. How-
ever, the mean squared errors (MSE) in Table 3.3 show thabfie method has a slightly better

overall performance compared to the four other methodsh B box plot and MSE show an

increase in the deviation for increasitigyalues. This is due to the larger variability (from the
higher correlation of the profiles) in the simulated datal hence the available information for

inference about decreases.



46 Analysis of matches and partial-matches in Danish DNA database

Counts

N

L 0T

= =
o o
w

|

L 0T
L 0T
L 0T

ocomm=={5= ©

o ane=f{3= 0

[enJed/yoren
@w
N

anjeA paadx3 v

(suonenwis) siaysiym xog 0
[eAla)ul 8OUSPLUOD [2118103Y) %SG6 W

|
;
4
-]
o
(suonenwis) SUoNeAIaSqo ,BWaNXT, o
[eAJ31UI 82UBPIUOD PAYeINWIS %56

Figure 3.3: Box plots of the cell counts (on lqgscale) for the various categories foOQ0
simulated databases with ,000 DNA profiles andd = 0.03. The legend explains the plot
characters.
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Figure 3.4: Comparisons of the performance of the object functions i@)@nd (3.7).

Table 3.3: Mean square errors for the fivefidirent measures of similarity stratified @n

C1(6) C2(6) Cs(6) T1(6) T2(6)

=000 1072<107 1.136<107 1078107 1077107 1.20510°'
6=001 343210° 341810° 3457<10° 3280<10° 3.26410°
6=0.02 750910° 7.45610° 7.601<10° 7.538<10° 7.460-107°
=003 121310% 1.20510% 1.231<10*% 1.222<10* 1.20810*
=004 171110% 1.697-10% 1.730<10*% 1.727-10* 1.702x10*
Overall 8034x10° 7.977<10° 8132<10° 8.061<10° 7.963<10°

Simulations including close relatives

The simulations in the previous section only consideredotemelatedness trough allelic cor-
relation governed by. However, most realistic reference DNA profile databasdiscantain
DNA profiles from closely related individuals, e.g. brothand father-son pairs. Hence, we also
investigated the performance of t@€0) and T (6)-functions for databases with pairs of close
relatives. For eachb-value we simulated databases with the number of relatisespacified in
Table 3.4.

Like in in the previous section we want to minimise the deviabetween the observed and ex-
pected counts. However, for these simulations the expeelad depend ofandp, through the
expressionE(M; 6, py) = Xer PR =1EMI|O;R=7r) = X,cx PrN7', as discussed in relation
to (3.3). LetC(h) andT () be as in (3.6) and (3.7), but witR(6) replaced byy . prN7",
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Table 3.4: The number of simulated relatives for the varigusalues with a total of 10,000 DNA
profiles. The numbers in brackets are the relative frequehpairwise comparisons between
DNA profile with the specified relationship, i.e. the knoR(r)-values.

Full-siblings First-cousins Parent-child Avuncular Ulated

2,000 (2:10°5)
5,000 (5:10°5)
1,000 (1-10°5)
1,000 (1-10°5)
1,000 (1-10°5)

2,000 (2:10°5)
1,000 (1+10°5)
5,000 (510°5)
1,000 (1-10°5)
1,000 (1-10°5)

2,000 (2:10°5)
1,000 (1+10°5)
1,000 (1-10°5)
5,000 (510°5)
1,000 (1-10°5)

2,000 (2:10°5)
1,000 (1+10°5)
1,000 (1-10°5)
1,000 (1-10°5)
5,000 (510°5)

2,000 (099992)
2,000 (099992)
2,000 (099992)
2,000 (099992)

2,000 (099992)

then we seekd p,) = arg(gnir;lf(e) for F being eithel€ or T.
»Pr

It should be noted that for consistency the variancabfshould in this case be computed as
2(0) = E(V(MIR) + V(E(MIR)). However, we argue that the complexity and cost in conmguti
2(0) is far beyond the gain. Hence, when minimising with respett (¢) andT»(6) we usez(6)

in the computations.

The performance of the filerent optimisation measures is summarised in Figure 3.5Tand
ble 3.5. The pattern of larger variation of theestimates for increasing is repeated in the
simulations with relatives. From Figure 3.5 there is a réwmdrspread in the estimates of
P(First-cousins) for theC;(6)-methods, = 1,2,3. The MSE forP(r) are generally smaller
for Ci(6) whereadT»(6) has smaller MSE fof.

Assuming that the estimators ®&ndp, are unbiased, the expected values are given in Table 3.4
and the estimated variances in Table 3.5. Overall the mea@swhile the standard errors
are~ 107 indicating that not all parameters seem to be significanhcé&the minimisation

is computational intense, we dropped all close relatigrsbutP(FS) and re-fitted the model.
Naturally P(FS) overestimate the actual fraction of full-siblingsc&nt needed to compensate
for first-cousins, parent-child and avuncular. Howeves,gktimate oP(Full-siblings) is for this
reduced model significantly fierent from zero.

3.3.2 Danish database

The Danish reference DNA profile database was analysed tisrdescribed methods and gave
the summary statistic presented in Table 3.1 and FigureVBelhave used th&,(6) method to
estimate the& andp, for the Danish database. The minimum was obtained #ith0.0107 and
Pr as reported in Table 3.6. It is noteworthy tisat: O for all of the Cj(6)-methods. It seems
rather unlikely that there is ndfect of subpopulation after allowing for close relatives.

Note that the estimate(Full-siblings) forT,(6) is about a factor 10 larger thanZ0~7 which is
the approximate value obtained if one assumes that everydund! of the Danish adult popula-
tion has exactly one full-sibling. However, it is likely thie frequency of full-siblings is larger
in the reference database than in the population due tousfaetors, e.g. the police’s sampling
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Figure 3.5: Box plot of the diferences betweep, andy (with ¥ replaced for the relevant
parameters) for variousvalues and number of relatives in the simulated databases.

criteria and social factors. Inserting these valueg iandX(0) gives the expected values and
covariance matrix, and given these quantities we compugedimal 95%-confidence intervals
(superimposed in Figure 3.1).

The argument for using th&correction when assessing the evidential weight of a giviiA
profile is to adjust for possible subpopulatioffieets in the population from which the suspect
and profiles for estimating allele probabilities are drawkstructured population causes the
probability of observing a specific DNA profile to be heterngeus, since the prevalence of its
constituting alleles may be higher in some subpopulatitative to the entire population. Taking
the argument further, one could argue that adjustment dhoellmade for close relatedness
between the suspect and “random man”. Hence, when formimdikelihood ratio,LR, the
hypothesis in the denominator could Hg: “A man possibly related to the suspect is the true
donor of the biological stain”. The evaluationlfE|H4) would then be a sui, . P(E|Hq4, R =
rNP(R =r), where Hy, R = r) concretises the specific relationshipetween suspect and culprit.
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Table 3.5: Mean squared errors (MSE) for various number of relativegifed byg-values.

0 Parameter  Cy(6) C2(0) Cs(0) T1(0) T2(0)
0.00 ¢ 1354107 1.316<107 1.539<107 251410* 1.202x10°7
P(FS) 1008101t 1.897-10% 1.68310° 1.653<10°° 523810°
P(1C) 481310% 8078<10° 5762107 1.505<101° 3.630-10°°
P(PC) 6835<10°1! 5191-10°1° 1.362<101° 4.788<10° 7.962x1077
P(AV) 1.835<10°% 7.247-10® 6.89510° 1.69310'° 7.217-10°8
0.01 0 3.221<10°° 3273<10° 3.049<10° 2032<10% 2984107
P(FS) 2878<10'! 8088108 86691010 1.453<10°0 1.99510°°
P(1C) 3825<10°  6.430<10° 7.40210° 1.431<10° 6.560-10°7
P(PC) 17081010 1.428<10° 205310 8610<10° 1.052x10°
P(AV) 7.710<10° 3.483<10° 1590108 3.275<10° 6.465<10°
0.02 0 7.006<10° 7.16510° 6.542<10° 2472<10* 6.853<10°°
P(FS) 40291071 1727<10° 1.131<10° 1.719<101° 6.694<10°7
P(1C) 7252:10° 1.055<10% 9.885<10°® 1.050<10° 3.598<10°7
P(PC) 19761010 7711100 2924101 1.024<10% 5.9351077
P(AV) 454710° 526410%° 1.20110° 1.250<10® 5.160<10°
0.03 ¢ 1.232<10% 1.263<10* 1.153<10% 2237-10* 1.213<10™*
P(FS) 5841<101! 569510° 7.739<101° 1.714<10°° 7.7681077
P(1C) 1688104 1.649<10*% 1.854<10° 2294107 3.728<10°°
P(PC) 229410719 3.160-10° 3.701101° 1490108 7.187-1077
P(AV) 3.361<10°1° 5053101 5101<10° 6.679<10° 4.757-10°°
0.04 0 1661104 1.698<10* 1532<10% 2.83910* 1.463<10™*
P(FS) 8469<1011 1.109-10° 1.195410° 256010 1.063:10°°
P(1C) 1886104 1.542<10* 2180<10° 356810’ 558510
P(PC) 2318<1019 2240-10° 4.1954101° 1665108 1.02810°
P(AV) 5.348101° 8605<10° 1.79910° 1.416<10% 5.296:10°
Table 3.6: Estimated values for the Danish database using varioustdbjections.
Method 6 P(Full-siblings) P(First-cousins) P(Parent-child) P(Avuncular)
C1(0) 0.0000 2592x10°6 8.413-10°° 1.072-10°%? 1.930-107°
C2(0) 0.0000 3700<10°7 5.100<10°7 1.000-10°8 4.600-10°7
Cs(0) 0.0000 5005x10°6 3.534<1077 6.08910°%3 2.475<1077
T1(0) 0.0125 1072x10°° 457310°® 5197107 5.93010°°
T2(60) 0.0107 2263<107° 1.7571077 1.491-10°° 5.882x107°
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The problem of this approach would be to quanBffR = r) for a given suspect. One approach
could be to takep,"as estimated from the database and then form a weighted siin@ dienom-
inator. By doing so for the Danish database with the estichatdrequencies for alleles and
pairs of relatives we obtaindcR andLR,, whereLR; denotes th& R taking close relatives into
account:

_ P(EHp) P(EIH,) - 1
~ P(EHg) Y P(E|Hg,R=r)P(R=r) 3 P(CIS,R=r)P(R=r)’
reR reR

LR

whereP(C|S, R = r) is computed by multiplying (3.4) and (3.5) over loci.

For each profile in the database we computRéssuming that the profile was that of a suspectin
single contributor crime case, i.eR = 1/P(U|S) whereP(U|S) is the probability of observing
an unknown profile (the defence hypothesis) given the sti'sgeofile. Similarly we computed
LR: under the same circumstances, except that the unknownepnudiiy a close relative 8.

In Figure 3.6, we have plotted lggLR: against log, LR and see that the relationship is close
to linear: logy LR, = B8 + alog,yLR. Estimating the parameters,3) = (0.115 8.59) we ob-
tain a simple formula to calculateR, from LR: LR, = 10®%°LR%%5, In Figure 3.6, we have
superimposed the predicted value (solid line) with the wad®ty represented by the predictive
interval (dashed lines). The estimated mean and standaiatide of log,, LR/LR; are respec-
tively 3.128 and 0.97. Hence, an approximative confidentarval for the ratio is given as
103128:1.96x0.97 _ 127 - 106955], i.e. taking close relatives into account decreasesRwith up

to five orders of magnitude. The dominating contributionhte sum ofP(E|Hy) is that of full-
siblings, P(E|Hg, R= FS)prs, which accounts for approximately @96 of LR;. In Figure 3.2
this was also the category with the largeso. Hence, for practical purposes the only relevant
type of close relatedness to includeliR; is full-siblings since the decrease R{E|Hq, R) for
the remaining types of relatives is minimal relativegto Furthermore, previous we saw that the
model only including full-siblings and unrelated incred$¥Full-siblings). Thus, this would
decreaséR; further yielding a more conservative evaluation of the ewick.

3.4 Discussion

It is evident from the analysis of the Danish reference DNéfig database that@correction
close to 1% is sflicient to capture thefBects from substructure among the typed DNA profiles.
Furthermore, did the analysis indicate the presence oéckiatives in the database. A fact that
were known beforehand, but the number of close relatives weknown. However, the signifi-
cance of the estimated probabilitigs, Were not assessed implying some of them may be zero.

It is unknown whether it makes sense to presentfRein court since often the judge and jury
are more interested in thdR for a specific relationship rather than a mean over commatioak
ships with numerical impact oR(E|H4). However,LR; may be used in order to accommodate
for the fact that “the unrelated man” may in fact be a unknolese relative to the suspect.
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Figure 3.6: Relationship betweehR and LR, with a predictive interval superimposed (solid
line: mean, dashed lines: predictive limits). The shade@yens indicate bin counts.

3.5 Conclusion

The main objective with the work presented in this paper wernalyse the Danish reference
DNA profile database of 51,51 7ftkrent individuals. This was to accommodate the fact that at
some point two apparently unrelated individuals will shBi¢A profiles for all ten loci in the
Danish population. If a specified relationship is deterrdiités straight forward to calculate the
probability of identical DNA profiles, however, one stillegs to account for remote coancestry
for both related and unrelated pairs of profiles.

Furthermore, only modelling the expected value or calaujghe mean is never satisfactory in
statistics. A measure of precision or variability is neettedrder to discuss the extremity of an
observation relative to the expectation under a given mddiehce, deriving and computing the
covariance matrix oM was essential. However, as the simulations exemplifiedtiea¢ was no
pronounced improvement by using the Mahalanobis distan¢e), = [ M — N7 (6)] "2(6) " [ M —
N7 (0)], rather than th€(6)-functions for estimating.
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Appendix

3.A Derivation and computation of the variance

In order to compute the variance of the summary matrix, wethsedefinition of variance
and covariance for random variables. First, note M&G;, G;) may be listed as a vector:
M(Gi, Gj) —» M(G;, Gj), where the mapping operates on thgp values: f(m, p; L) = m[(L +

1)+ (m-1)/2] + (p + 1), whereL is the total number of loci. Next, we expand the expression
V(M) = Z(6):

n-1 n
3(0)=V ZM(G|,G)

n—llzi g n-2n-1 n

=2, 0. V[MG.G)|+6 > .C[M(Gi.G), M(G, G|
i=1 j>i i=1 j>i k>j
n-1 n n-1 n

+> > C[M(Gi,G), M(G. G)]
i=1 j>i k#{i,]} 1>k

:(g)V [M(Gi,,Gi,)] +6(2)C [M(Gi,,Gi,), M(Gi,,Gi,)] +6(2)C [M(Gi,.G,), M(Gi,, Gi,)]

where (1,12, i3,14) in the last line relates to any of the DNA profiles in the dats#as long as
they are diferent profiles. We go from the first to second line by expanthegum and observe
thatC[M (G, G)), M (G, Gy)] = C[M (G, Gj), M(Gj,Gy)] = C[M(G;j, Gk), M(Gj, Gi)] since
M(-,-) is symmetric. The sum over the last term in the expansiynd (Gi, Gj), M (Gy, G))]
with all profile indexes dterent, also contain several symmetries implying the wsighthe
final expression. In order to compute the covariances , we tteeompute

E[M(G.G)M(G.G)'| and E|[M(Gi.G)M(GG)T].
respectively, given that the DNA profile indexeg, k andl are all diferent.

For computingg [M(Gi, G))M(Gi, Gk)T] we need to account for the fact that profdgenters in
both pairwise comparisons. Hence, we need to conditioB;amhen deriving the probabilities
moypayp = iy P(M/p, M/ PIGi=Ai Aj)P(ArAj) for all combinations ofn/p, /P, wherem/p
relates to the number of matchgartial-matches oG; andG;, with a similar definition ofi¥/ p
for profilesG; andGy.

As for the mean we use a recursion formula over loci to compgfgsy . However, in this
setting there are nine terms on the right hand side:

+1 + (+
m/p.fivp = m/pm/ﬁp 5Po)

m /00/0+”m/p Liyp

(+
/1 oot "m—l/p m/r;P 1/0, 0/0"‘

m/p,ﬁ‘l/f)— I:)0/0 0/1 + ”m/p m—l/pPO/O 1ot "m/p 1/ p-1 I30/1 o1t
P P[+l

¢
Tm-1/p.Avp-1 1/0 o1t "m/p—l m—l/pPO/l 107t 7Tm—1/p m-1/p' 1/0,1/0"
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When one or more of the subscripts are zero there are sinulardary conditions fotm,p myp as
those specified in Section 3.2.2. The probabilitRas, /5 are found by considering the events
separately. For each configuration of/fo, /) € {(Xo/Yo, X1/Y1) : (X, ¥i) € {0, 1}A0 < X +Y; <

1} we compute the probabilities:

Prmypayvp = P(M/p, M/P) = Z P(m/p, M/ PIGi = AvAj)P(AVAy)

i,j

Each of the probabilities in the sums are expanded suchhlibag\tents specified by/p and
M/ p are satisfied, e.gn/p = 1/0 andni/p = 1/0 implying that both profilé&s; andGy matches
the profiles ofG; on that particular locus:

P(1/0,1/0) = Z P(A Ay, AL Aj |AV A )P(ACA)) + Z P(A: A, Av Av AL AC)P(ALAY)
in,j# i
=23 P(A AV A ALIAC AL P(ACAL) + > P(A AL A A A Ay )P(AAY)
i,j#i i
=43 PAAAAATAL) + D PIAAAAAA).
i, j# i
From the recursive formulR(A.|z") = [x)0 + (1 - 6)pr]/[1 + (n - 1)d], we see that the de-
nominator do not depend on the total number of sampled alléteence, for a probability like
P(A A AcAp ArAv) that involves six alleles, the denominator will always ﬁézl(l + no).
Hence, to keep the formulae simple, we only consider the natmein the following deriva-
tions. First, we observe that:

P(A Ay A Ay A AY) = P(AV A A Ap A A P(A A A ACAY)
=[008r — 1)+ (1 - O)pi IP(Aj Ac Ay Ar Av)
= 0B — L)P(Aj AcAy ACAY) + (1= 0)pi P(Aj Ac A AVAY),  (3.9)

whereg;; counts the number of alleles in the expression on the left hand side. Now, the term
0B — 1)P(AyAcAj AirA) follows a similar expansion as the left hand side of (3.9owH
ever, the latter term of (3.9) involvgs which needs to be taken into account when evaluating
P(Aj AcAy AvAv). By following the recursion to the end, that is when the ledind side of
(3.9) is, sayP(AvA;) = P(AVIA)P(A}) = [(Br - 1)0 + (1 - O)pr]py = (1 - 6)pr pjr we end

up with terms of the formay 6% (1 — #)®p{* --- pi* for some constanta = (ao, a1, a2) and

a = (ay,...,ak). The values ofr anda is build up during the recursion, hence determining the
actual value is only a matter of bookkeeping.

Furthermore, consider the case where the product of alleleapilities isp? pJ?, pz where the
indexes are dierent. A first step would be to replapg = S, p;; —p’, and sum ovep;, pf, (Sz—

pi2, - pj%) fori” # j’. However, such calculations are very cumbersome to do bg bad from
the equation below we see that there is a lot of repeatedsteuthat may be exploited:

# #
), i

* * *
> pEtpE = D Rl (So - P - p2) =S ) pEpi- > pipl- ). pp),
Tk 7 I8

3 AT iy
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where the notation imply summation oveffdrent values of the indexes. Rewriting the expres-
sion above with the powers replaced by tiigparameters we get this more general expression:

# # # #

p;l"i' p‘jl’l' p[IZ’k’ — [Z pz’k'] Z p;l"i' p[j”J’ _ Z piffi'+ﬂk' p[j”J’ _ Z piffi' p‘jllj’“’k’

i, ).k k’ i, i, i,
where alla-parameters were 2 in the previous example. The formula eaprbgrammed
in a computer as a recursion formula. Hence, in contrast éostmpler situations only in-
volving a pair of DNA profiles where a few equations give theessary probabilities (Weir,
2004, 2007), we let the computer compute the expectafijng(Gi,, Gi,) M (Gi,, Gi,)"] and
E[M(Gi,, Gi,)M(Gi;,Gi,)"]. We have implementedfiécient functions inR to compute these
and other expectations implying that variances is compuiitiiin 10 to 30 seconds on a 2.5
GHz laptop computer for ea¢hvalue. In order to get a impression of the structure in th&ima
we have plotted a heat-map of the correlation md®{&) computed by:

Q(6) = diag 1/ \/diagZ(6)}| =(¢)diad 1/ v/diag=(6)}|

In Figure 3.7 we have plotte@(0.03) in grey-scale colours. However, the on line supplentgnta
material has a coloured animation showing the change ieqpatiQ(6) for = [0,0.001, ..., 1].

QN O P90 N Y PO PP O NI PO PO NI VO OHNNTNLOINNIVOINNIOINNOHNOHD

oooocooooogﬂ-—<ae«e«‘—1\—1-—<ae«NNNNNNNNNmmmmmmmm<t<r<r<r<r<:<tmmmmmmww®mwv»r~r~r~eooommm3
Figure 3.7: Graphical representation of the correlation ma€i§¢) computed fow = 0.03 and
n = 10,000.
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3.6 Supplementary remarks

It is relevant to be aware of and acknowledge the power of tRA Byping technology and its
role in the society. To most people DNA evidence is thoughaoflawless and superior to any
other sort of evidence. However, due to the very nature of [pkifiles there is a possibility that
a pair of apparently unrelated individuals sha®NA profile. As pointed out by Weir (2007,
pp. 360-361) this is related to the 'birthday problem’ where computes the probability that
at least two individuals out af have the same unspecified birthday. The fact that23 gives
more than 50% probability of at least two individuals shgdiirthday is surprising to many at
first glance. However, this is due to the fact that the birjhidanot specified. Similarly, when
computing the probability that any two individuals shareMptofile the actual alleles of their
common profile is not specified. If the profile were specifiegl tomputed probability would
in fact be the match probability of two DNA profiles. When sumgiover the possible DNA
profiles we obtainedilr 0(6), which was the expected number of pairs of individuals vd#n-
tical DNA profiles. For the allele probabilities estimatedrh the Danish reference database we
obtainmig0(f) ~ (@0 + @160)* which for non-negative parameters,="(0.13,0.87,14.71), is a
monotonic increasing function. That is, the probabilitgrizase witho, i.e. the more heteroge-
neous the population is, the larger is the probability ohcaing DNA profiles.

However, this fact does notimply that DNA profiling is ovaed nor that the weight of evidence
reported in court is overstated. When usingltieapproach the reported evidential-value relates
to the specificDNA profile of a suspect. The pairwise comparisons of eachipahe DNA
database were used to validate the population genetic mdtiel diagnostics presented above
indicated that the dierences between the observed and expected counts wererextteme,
and thus we may still have confidence in the models used fartieg the evidential weight in
court.
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Abstract:

The evaluation of results from mixtures of DNA from two or ragrersons in crime case inves-
tigations may be improved by taking not only the qualitatiue also the quantitative part of the
results into consideration. We present a statisticalitiloeld approach to assess the probability
of observed peak heights and peak areas information forreoparofiles matching the DNA
mixture. Furthermore, we demonstrate how to incorporasgaitobability into the evaluation of
the weight of the evidence by a likelihood ratio approach.

Our model is based on a multivariate normal distribution edifpareas for assessing the weight
of the evidence. Based on data from analyses of controllpdrérents with mixed DNA sam-
ples, we exploited the linear relationship between peagtigsiand peak areas, and the linear
relations of the means and variances of the measurementheFuore, the contribution from
one individual’s allele to the mean area of this allele isuassd to be proportional to the average
of peak height measurements of alleles, where the indiViddhe only contributor.

For shared alleles in mixed DNA samples, it is possible tceolss only the cumulative peak
heights and areas. Complying with this latent structurepgsd the EM-algorithm to impute
the missing variables based on a compound symmetry modelnmEasurements were subject
to intra- and inter-locus correlations not depending onatiial alleles of the DNA profiles.
Due to factorisation of the likelihood, properties of themal distribution and use of auxiliary
variables, an ordinary implementation of the EM-algoritbohved the missing data problem.

Keywords:
STR DNA mixture; Forensic genetics; Missing data; EM-aition; Compound symmetry model;
Multivariate normal distribution

4.1 Introduction

4.1.1 DNA mixtures

The model presented in this paper is intended to be usedendar genetics when facing DNA
data from biological stains with more than one contribusee( Gill et al. (2006) for a detailed
description of the DNA mixture problem). This specific preinl has received increasing interest
from both forensic geneticists and statisticians over déise decade, e.g. Evett and Weir (1998);
Gill et al. (1998, 2006); Perlin and Szabady (2001); Bill e{2005); Cowell et al. (2007a).

When a crime has been committed, biological stains are &ftamd at the scene of crime. DNA
is present in almost all human cells and by using biochenpicadedures, forensic geneticists
are able to extract the DNA from the body fluids for further lgsiz. In many cases, more
than one individual has contributed to a stain, which is tbalfed a DNA mixture. Mixtures
of DNA often appear in relation to crime cases, e.g. rapescagin one or more rapists, and
cases involving violence. DNA may be extracted from semeiinbd by a vaginal swab or
from blood present on the victim’s clothing.
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In crime casework today, there is an international consemsunvestigate DNA from short
tandem repeat regions - STRs. The STR regions are situateedre the coding regions in
the DNA. The polymorphism of an STR region mainly resultarirdifferences in the number
of repeated sequences. This leads to variations in the laigths of the STR regions from
person to person. In many European countries, ten STR sysiachthe sex-specific marker
amelogenin are routinely investigated in crime cases bynsetthe SGM Plus STR kit (Applied
Biosystems). The loci are located orffdrent chromosomes. This is generally assumed to be
suficient to ensure statistical independence of allelesfegreint loci.

For the most common STR technologies used in forensic DNAyaes, the alleles are read from
an electropherogram (pictured in Fig. 4.4) as peaks on angigale. This makes two types of
data available: qualitative allele type data, determingthle position of the peak (measured in
DNA base pairs), and quantitative peak intensity data sumsetby the height and area of the
peak (measured in relative fluorescence unit, rfu). Thefsetbserved alleles is termed a DNA
profile.

The shaded cones in Fig. 4.4 show a typical picture of a DNAtumé&comprising ten STR
loci (denoted D3, VWA, .., FGA in Fig. 4.4) used in forensic genetics. The peak height a
area associated with an allele reflect the amount of DNA dmrigd to that particular allele.
The potential peak positions of some loci overlap, which esait necessary to usefidirent
fluorescent dyes (the fikerent rows in Fig. 4.4 correspond to blue (D3, VWA, D16, D2gem
(D8, D21, D18) and yellow (D19, THO, FGA) fluorescent dyesjma subsequent spectral
deconvolution of the signal (Butler, 2005).

Depending on the DNA profiles mixed in the sample, the numballeles present for each locus
in a two-person DNA mixture ranges from one to four allelessian individual may be either
homozygous (carrying two identical copies of the sameg)llel heterozygous (two fiierent
alleles), and the individuals may share one or both all@lag implies that the amount of DNA
contributed to each allele varies and the peaks are therefqrected to vary in height and area.
In this paper, we present a statistical model for the peaksaii@ a given pair of profiles while
taking into account the variable dimension (sub-vectordimfension one to four for tlierent
loci) of the measurements.

4.1.2 Evaluating the weight of evidence

A complete DNA investigation is a venyfective tool for excluding individuals who are not
very closely related to the person from whom the stain materiginated. A match between

complete DNA profiles of a stain and a person is very strondexge for the assumption that the
stain came from that person compared with the assumptidritteatain came from a random

person. The weight of DNA evidence can be calculated in easke tased on assumptions
about the setting and knowledge of the distribution of theADdaracteristics in the relevant

population. The weight of evidence from DNA investigatiamgenerally accepted in almost all

countries in which DNA investigations are used.
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Methods are available to estimate the weight of the evideftiee qualitative results (Balding
and Nichols, 1994; Evett and Weir, 1998). However, we do mgelgood mathematical methods
to take into consideration the quantitative aspects of thé& Besults in order to answer questions
like: Can the two DNA profiles in a crime scene DNA mixture beritified based on the strength
of the DNA results? Are the strengths of the various DNA ressinl a crime scene mixed DNA
profile (that seems to consist of a major and a minor DNA progilenpatible with the hypothesis
that the DNA comes from two persons with known DNA profiles?

Estimating the weight of evidence in forensic sciences isrotione in terms of a likelihood
ratio, which is the ratio of the probability of the evidenégeunder two competing and mutually
distinct but not exhaustive hypotheses. In the literathesé two hypotheses are often denoted
H, andHgq for the “prosecutors hypothesis” and “defence hypothesispectively (Evett and
Weir, 1998). Even though the hypotheses may hafferdint origin than those of the prosecutor
and defence, we apply the notationtd§ andHg in this paper to denote the two disjoint events
claimed in the hypothesis, i.e. the likelihood ratio is givey LR = P(E|Hp)/P(€|Hqg), where
large values of R support theH,-hypothesis. For example in case of a rapetiyehypothesis
may be: “The victim and the suspect are the contributorsdsthin”, whereas thidy-hypothesis
states: “The victim and an unknown individual unrelatedhe suspect are the contributors
to the stain”. We denote the crime scene evidence from theuneiX. = (9, Q), where§
denotes the qualitative allele information, &ddepresents the quantitative peak information as
measurements of peak heights and areas. The most frequett assess the probabiliB(E|H)

is by solely using the qualitative informati@nin terms of allele probabilities. In DNA mixtures,
however, this may discard important quantitative inforiorabf the DNA evidence. Thus, the
probability of the evidencé given a hypothesisl needs to include both parts of the evideGce
andQ.

We defineGy, Gs andGy to be the profiles of the victim, the suspect and a potentimhawn
and unrelated contributor, respectively. Both hypothésgsndHg in our rape example are
formulated such that they are consistent wgth.e. all alleles inS are accounted for and only
alleles inG appear in the included profil€%,, Gs andGy. When fixing only one profileG”, of

a two-person mixture, the consistency wittinduces the set = {G’ : (G’,G”) = G}, which are
all profiles,G’, that together witlG” are consistent witl§. If the H,-hypothesis claim§ to be
a mixture ofGy andGs, H:(Gy, Gs), while theHg-hypothesis claims it is a mixture &y and
Gu, Hqg:(Gv, Gy), the likelihood ratio is

— P(8C9GS’ GV|HP) _ P(Q9 9’ GS’ GVal) _ P(ng’ GS9GV9 HD)P(g’ GS9GV|HD)
P(€c,Gs,GvIHd)  P(Q,9,Gs,GvIHa)  P(QIS, Gs, Gy, Ha)P(S, Gs, GvIHa)’

LR

whereGs andGy, enter as evidence as these are determined from the casmsiences. Let
Cq = {Gu : (Gv,Gy) = G} be the set of unknown profiles that together Wi are consistent
with G, thenP(S|Gy, Gy) = 1 for Gy € G4 and 0 otherwise, i.e. the set of possible unknowns
underHy. We expand the denominator of th® using hypothesisig,

P(€,Gs,GvlHg) = )" P(QIS, Gs, G, Gu)P(S, Gs, Gy, Gu),
Guéed
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Table 4.1: The four DNA profiles used in the controlled pairwise twogmeT mixture experi-
ments.

D3 VWA D16 D2 D8 D21 D18 D19 THO FGA

14,18 17,19 12,14 20,24 10,13 30.2,32.2 13,13 12,13 8,9 2220,

15,16 14,16 10,12 17,25 13,16 30,30 13,13 14,15 6,9 19,23
15,16 15,17 11,11 19,25 8,12 29,31 15,17 13,13 6,8 23,24
16,19 15,17 10,12 23,25 13,13 28,30 12,16 13,15 6,7 20,23

OO0 w>

WhereP(Q|9, Gs, Gv, Gu) = P(Q|Gv, Gu) andP(S, Gs, Gv, Gu) = P(Gs, Gv, Gu) dueto Gv, Gu) =
G andHg is assumed. Hence,

P(€,Gs,GvlHa) = ) P(QGy, Gu)P(Gs, Gy, Gu).
Gue(?d

Similar arguments apply to the numeratorLd®, and assuming independence between the pro-
files involved, i.e. unrelated individuals such tR4Gs, Gy, Gy) = P(Gs)P(Gyv)P(Gy), the final
LR expression is:

P(QIGs, Gv)
Y. P(QIGy,Gu)P(Gy)’

GU e@d

LR=

(4.1)

where the factor®(Gs)P(Gy) have cancelled out. The numeraR{f|Gs, Gy/) of (4.1) assesses
the probability of observing the quantitative informatigimen that the mixture consists of ge-
netic material from the profile&s andGy. The denominator equals the mean value of the
guantitative likelihood among the pairs of profiles that emesistent with the genetic trace. If
we assumé’(Q|Gs, Gy) = P(Q|Gy, Gy) for all Gy, i.e. the observed quantitative information
has equal probability for all profiles paired wi@,, then (4.1) reduces to the usual likelihood
ratio as in Evett and Weir (1998), sinB¢Q|Gs, Gy) andP(Q|Gy, Gy) then cancel each other in
(4.1). The assumption that the profil8g, Gy andGy are independent is a rather strong. The
so-called #-correction” incorporates the correlation from sharedssiny (Balding and Nichols,
1994) and closer familial relationships induces furtherelation of the genetic profiles. How-
ever, for the purpose of introducing the factorisation &f tfualitative and quantitative evidence
the assumption used in (4.1) is adequate.

The objective of the present paper is to develop a methogt@od an adequate statistical model
to describeP(Q|G’, G”), where both of the true profilés” andG” are known. This comprises
a mathematical formalism of inter-locus dependencies®fjilntitative evidence, the relation-
ships between a sample’s peak heights, peak areas, and thmiani DNA contributed to the
individual peak.
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Figure 4.1: Proportionality of peak areas and amounts of DNA of squasétransformed data.

4.2 Material and methods

4.2.1 Experimental data

The assumptions made as to the amplification behaviour oédndXNA samples were based
on data exploration of controlled experiments conductethat Section of Forensic Genetics,
Department of Forensic Medicine, Faculty of Health Scish&fiversity of Copenhagen. The
experiments consisted of pairwise two-person mixturesanous mixture ratios of the four
profiles in Table 4.1. The data were prepared as describededebrink et al. (2009). The
assumptions made did not contradict the assumptions maag.iCowell et al. (2007a):

1. proportionality of the peak areas and the amount of DNA@égample,
2. linearity of the observed peak areas and peak heights,
3. proportionality of the means and variances of peak areas.

These assumptions were supported by the plots in Fig. 4.Eignd.2, which were based on data
from the experiments described in Tvedebrink et al. (2008 validity of the last assumption
was emphasised by fitting a linear model: Afa®NA = s VDNA + &, with £ ~ N(0, o2) and
with Bs being a locus specific proportionality factor. Graphicalgactions show no systematic
dependence of squared residuals and DNA.
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Figure 4.2: Proportionality of peak heights and peak areas. The pripadity factor depends
on loci.

4.2.2 Model description

In a DNA mixture of profilesC andD (Table 4.1) we would observe peaks for alleles 15, 16 and
19inlocus D3. The peaks are expected to vary in height araddare to the diferent amounts of
DNA contributed to the alleles, e.g. both profiles contréatthe peak of allele 16. For identical
alleles we assume that the peak areas of each individuatidigva resulting in an observable
cumulative vector of peak areakf. Similarly, for homozygous profiles, the contribution teth
observable peak area is the sum of two identical peak areas.

The unobservable peak areas, from each individual are input for modelling the obsereabl
guantitative dataQ, from DNA traces for the assessmentR(Q|Gy, Gp), whereGy andGp
are the profiles of the victim and true perpetrator, respelsti We use the EM-algorithm in
addressing the DNA mixture problem because it can be fort@dlas a missing data problem
(Little and Rubin, 2002). The model is derived for two-persoixtures but can be extended to
cope with more than two contributors.

In the following, we letS denote the set of loci arfel the number of loci used for identification,
i.e.|8] = S. For parameter estimation, we have access to data@onxtures of known profiles.

The amount of DNA contributed to the mixture by persok = 1, 2, was modelled byA®. This
is a sum of the observed peak heights with pers@as the only contributor divided by a sum
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log(H ratio)

log(DNA ratio)

Figure 4.3: Linearity of theH-ratio and DNA-ratio with the identity liney(= x) superimposed.
The outlier at £2.77, —0.55) was due to entry error of the laboratory.

of indicators with value two and one for alleles from loci wa@ersork is homozygous and
heterozygous, respectively. Llef{‘) be theith peak height with persadkas the only contributor,

H® = (n® 4 2n® 17131 h® wheren® = n® 1+ n® is the number of persdks alleles from

heterozygousy®, and homozygous loch) and persok is the only contributor. Thug{®

is an estimate of the average peak height associated witbmles alleles.

Fig. 4.3 shows a plot of the ratld®) /H@ against the DNA ratio reported by the laboratory. The
data demonstrate that it is reasonable told&eas a proxy for the amount of DNA contributed
by persork. Furthermore, for each pair of profiles, the quantit8 andH® can be computed
using only the peak height observations.

We assumed independence among the componenrtsanid that they followed a normal distri-
bution with both mean and variance proportional to the arhofiBNA. The components oft
areAY for persork, locuss and allelei. We haveAl ~ N(asH®, 02H®) which implies the
same distribution of both alleles of locagor persork.

The parameteres andos, s8, are locus dependent and shared for all cases, 1,...,C.
This parameterisation ensures the proportionality of tleamand variance and that both are
proportional to the amount of DNA modelled B. SinceH® is the same for all loci, the
as ensure that the amplificatioffieiency may vary between loci. Hence, the magnitude of
reflects the emission intensity of locss Furthermore, the variation modelled by can be
interpreted as the data preprocessing variation of the 3[ER signals, e.g. variability from
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pipetteting the samples.

The relation betwee and A is expressed as a linear transformatidn,adding together
peak areas from identical alleles, and an additional eeron related to the measurement error,
M =TA + e. For the measurement erroes,we assume independenceAfand multivariate
normal distribution with some dependencies within and stoci. We denote the covariance of
e as CovE) = Q. Let the dimension oM ben = Y .5 ns, Whereng, 1 < ng < 4, is the number
of observed alleles in locus The transformationT, is ann x 4S-block diagonal matrix with
block matricesTs with 0 and 1 entries according to the profiles in the mixturer éach locus,

s, we sort the unobservable peak areds, by allelic number of each person, wherdek is
sorted by allelic number. For a mixture of profiseandD from Table 4.1, the genotypes in locus
s=D3 arePY¥ = (15,16) andP®?) = (16, 19), and the associated matiixis

1 0 0O
_ _ (1) D %) @ \"
MS - (MS,159 MS,169 MS,lg)T - { 8 (:I)' g—) 2 }(AS,].S’ AS,16’ AS,16’ AS,lg) + Es,

adding together the entries s that relates to the same allele, i.e. allele 16.

The number of allelic measurements within each locus véirges case to case sincefidirent
pairs of profiles will share a @fierent number of alleles. A mixture of persénand B would
havenps = 4, andB andC hasnps = 2 (see Table 4.1). Not only will the number of alleles vary,
the specific alleles present in a given mixture depends opribfdes in the mixture, e.gA and

B give alleles{14, 15,16, 18}, andB andC give {15, 16}. This makes it dficult to incorporate a
covariance structure covering all allele combinations.

We standardised the residual,by the observed peak heights,= (hs)ss With hg = (h&i)i”jl,

by defining the scaled residud, = (€s)«s, Wherees = (agi/\/h_s,i)i”jl. To make the model
operational, we assumed a compound symmetry model for traience o, CovE) = Q and
that this does not depend on the specific alleles in the n@xiTine only case specific adjustment
made was to make the dimensions of the compound symmetryiartt with the number of
observed peaks for each locus. The compound symmetrymt&mﬂﬁ implies that sub-vectors
of € share some properties with respect to the scaled covarfancehere are three flierent
types of correlation in our setting:

e Different loci 6 # t): Cov(Esj, &) = Vst
e Same locus, dierent alleles§=t,i # j): Cov(sj, &sj)=Vss
e Same locus, same allele£ t,i = j): Cov(Es;, £sj) = Var(s) = vss+ Ts.

Hence, we can parameteriéeby T = {Ts)ses ANAA = {vsi}stes. The interpretation of; is
that the correlations between observations fiedgnt loci depend only on the loci and not on
the specific alleles present on each locus. Similarly, tleetation between alleles on the same
locus, s, is independent of the specific alleles, whereas for idahgements, the covariance
corresponds to the variance, and the additions@ilows for a larger variance than that given by
the intra-locus covariance.
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4.2.3 Implementation of the EM-algorithm

In order to handle the latent structure Afand the associated missing data problem, we used
the EM-algorithm to impute the missing observations anifrege the parameters in the condi-
tional distribution ofA given M. However, since the dimensions M and sub-vectors hereof
varied from case to case, we obtained a likelihood, whichneasery well suited for the imple-
mentation of the EM-algorithm. The problem was solved byodticing appropriate auxiliary
variables.

This allowed for an implementation of the EM-algorithm iretbisual full exponential family
framework with the constraint that thresparameters should be positive, i.e. this method implies
positive intra-locus covariances. However, the intebcovariancess; are not constrained.
The parameters estimated using the EM-algorithm are netsyaecific but reflect the distribution
of the quantitative STR DNA in the laboratory.

Appendices 4.A and 4.B give mathematical details on the etk the implementation of the
EM-algorithm.

4.3 Impact on the likelihood ratio

As mentioned in Section 4.1.2, both the qualitative and tjtadive evidence need to be evaluated
for proper use of the available information from a crime scefhe probabilityP(Q|G’, G”) in

the likelihood ratio of (4.1) is evaluated by using the fittaddel to calculate.(M|G’,G”) =
|E(G/,G~)|_l/2 exp{—%(M - /,L(Gr,Gn))TZ(_(g‘,’G,,)(M - e .e) of (G',G”) and thus yielding the
observed signaM, whereas?(G’) as usual is assessed using the allele frequencies (Ewktt an
Weir, 1998).

Consider a more complicated case with no identified victinengtthe crime scene stain is as-
sumed to be a mixture of two DNA profiles, e.g. DNA extracteahira cigarette butt found
at the scene of crime. Then, given a suspect pr@dethe H,-hypothesis claims the stain to
be a mixture of the suspect and an unrelated unknown préfggGy, Gs), whereas theHg-
hypothesis states it is a mixture of two unrelated unknovefiles, Hq:(Gy, , Gu,). We form two
setsCp = {Gy : (Gs,Gy) = 9} andCqy = {(Gu,, Guy,) : (Gu,,Gu,) = 9}, consistent with each
hypothesis. Similar arguments as used for obtaining (Mmp)y thatLR is:

L(M|Gy,Gs)P(G
_P(E.GelHy) Guéep( IGu, Gs)P(Gu)

~ P(&,Gs[Hg) Y. L(MIGu,,Gu,)P(Gu,)P(Gu,)
(Gu, ,Gu,)eCq

LR

Note that the sum in the denominator involvésI25:65 terms, whereS; is the number of loci
with i observed peaks. This follows from the fact that there ar@ antl 6 possible combinations
for two, three and four alleles to be assigned to two indigldurespectively. However, this often
yields an intractable number of combinations, where oniyitéd number of pairwise profiles
actually have a likelihood valu&(M|Gy,, Gy,), large enough to have numerical impactld
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Table 4.2: Data stratified according to STR locus.

Locus Dye Allele Height Area Locus Dye Allele Height Area

D3 Blue 15 1135 10301 D21 Green 29 774 7152
D3 Blue 16 1031 9405 D21 Green 30 789 7240
VWA Blue 14 371 3365 D21 Green 31 982 9174

VWA  Blue 15 921 8654 D18 Green 13 593 6455
VWA Blue 16 395 3610 D18 Green 15 1002 10758
VWA  Blue 17 804 7382 D18 Green 17 865 9458

D16 Blue 10 485 4913 D19 Yellow 13 1614 13532
D16 Blue 11 2110 21651 D19 Yellow 14 211 1849
D16 Blue 12 417 4304 D19 Yellow 15 182 1647

D2 Blue 17 196 2121 THO Yellow 6 797 6894
D2 Blue 19 700 7713 THO Yellow 8 505 4334
D2 Blue 25 951 11209 THO Yellow 9 198 1751

D8 Green 8 774 7052 FGA Yellow 19 173 1606
D8 Green 12 1006 9297 FGA Yellow 23 880 8720
D8 Green 13 344 3166 FGA Yelow 24 647 6682
D8 Green 16 291 2675

4.3.1 Example

We illustrate that the inclusion of the quantitative pedkimation,Q, is important when evalu-
ating the weight of evidence in a mixture. In the example, emdnstrate the properties of our
approach when the data of Table 4.2 are observed.

In order to limit the number of profiles ihR, we applied the guidelines of Bill et al. (2005).
These guidelines evaluate each mixture using heuristesrabout peak height balances and
mixture proportions. The authors define the heterozygdtmibaHb as the ratio of two non-
shared peaks of an assumed heterozygous profile, and pestidetors of mixture proportions
within each Iocusl\?li. If a two-person mixture is to pass the guideline critetianuist satisfy
3/5 < Hb < 5/3 andM,—0.35 < M$ < M,+0.35, whereM, = S1 3 s M3 is an estimate of the
overall mixture proportion. We usexD.25 as limits orVI$ which resulted in 860 pairs satisfying
the heuristic rules of Bill et al. (2005).

However, instead of assigning equal weight to all thesespaie evaluaté (M |G, G”) for each
pair of profiles. As mentioned in Bill et al. (2005), this appch will not yield the corredtR

as all possible combinations should be weighted by theba@atedL(M|G’,G”)-value. This
attempt to evaluate theR aims at including more of the available information and thietding

a better approximation to the actua®, since each pair of profiles has its own weight reflecting
how well it fits the quantitative data.

In the example, we demonstrate theeet of including the quantitative information in the evi-
dence evaluation for threefterent suspect profiles. The suspect profiles used in the dgamp
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Table 4.3: Profiles of the suspects (a)-(c), unknowns and best matgyairg of profiles &)

in example of Section 4.3.1. For all the suspects, only or@own matches the chosen sus-
pect among the 860 combinations. In loci where the suspeobuwtion diters from the best
matching combination in park{, allelic numbers are in bold font.

Locus D3 VWA D16 D2 D8 D21 D18 D19 THO FGA

@ Suspect 15,16 14,16 10,1217,17 13,16 2931 1515 14,15 99 1919
Unknown 15,16 15,17 11,111925 8,12 3031 1317 13,13 6,8 2324
® Suspect 15,16 14,16 10,12 17,25 13,1830 1717 14,15 6,9 1919
Unknown 15,16 15,17 11,11 19,25 8,12931 1315 13,13 6,8 2324
© Suspect 15,16 14,16 10,12 17,25 13,180,330 1315 14,15 6,9 19,23
Unknown 15,16 15,17 11,11 19,25 8,12931 1517 13,13 6,8 23,24
® Minor 15,16 14,16 10,12 17,25 13,16 29,29 13,13 14,15 6,9 2319,
Major 15,16 15,17 11,11 19,25 8,12 30,31 1517 13,13 6,8 4232

are given in Table 4.3, together with the unknown prdd|e that maximised.(M|Gs, Gy) for
each suspect profil&s. For each suspect profile, only one of the 860 pairs of prodidisfies
(Gu,Gs) = G which implies a product of (M |Gs, Gy) andP(Gy) in the numerator for each
suspect profile, and 860 terms in the sum of the denominatwhih the combination of “Mi-
nor” and “Major” of Table 4.3, partX) has the largest quantitative likelihood value. Throughou
the example, the main focus will be on the suspect of parn(@able 4.3, with comparisons to
the results obtained using the suspects of part (b) and (c).

InFig. 4.4 and Fig. 4.5, the observed quantitative peakaye plotted together with the expected
peaks,, for the profiles of part (a) andk{ of Table 4.3, respectively. The expected peaks are
given by M = T, whereT andH® in fis, = asH® are computed for the specific pair of
profiles. It is clear from Fig. 4.4 that the imbalances indlbg the suspect combination in part
(a) imply substantial deviation from the observed data éor D2, D21, D18, THO and FGA.
These are also the loci where the two pairs of profiles of parad &) in Table 4.3 difer.

First, we make a non-quantitative evaluation of ttie using only allele probabilities for the
suspect of part (a). Since there is only one combination gttus860 that includes this suspect,
the likelihood ratioLR = P(Gy)/[ Y, P(Gu,)P(Gu,)], where the sum in the denominator is over
the setCqy, but here this set consists of 860 combinations satisfiibge [3/5; 5/3] and M3 €
[M, + 0.25] for computational simplicity. This yields a non-quaative likelihood ratio,LRg,
estimate of £27%10'3, which is very strong evidence in favour of the hypothesas the suspect
is a contributor to the stain.

The dominating values of the quantitative likelihood in thanerator and denominator are given
by L(MIG?,G?) = 5.9:10°119 andL(M|GfJ*1),GEJ*2)) = 557107 respectively. A large diier-
ence in the quantitative likelihood values was expectenhfitee diference in fit to the observed
peaks pictured in Figs. 4.4 and 4.5. Thus, including the titzive evidence, the quantitative
likelihood ratio estimatelRgq, decreased by a factor #0to 7.63<10~* which is strongly in
favour of the suspect not having contributed to the stain.
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Figure 4.4: Observeda, and expected peaks, assuming a two-person mixture of the suspect
and unknown in Table 4.3, part (a). Abscissa: Basepair (bjp)es computed using the allelic
number and STR locus, Ordinate: Peak heights in rfu.

Table 4.4: Likelihood ratios for the three ffierent suspects in Table 4.3. Het®s andLRgq
denote the non-quantitative and quantitative likelihoatios, respectively, andRgq/LRg is
the relative change in the weight of the evidence. The dltelguencies used in the calculations
were provided by The Section of Forensic Genetics, UnitiecsiCopenhagen.

LRg LRs0 LRg0/LRg

Suspect (a) 4.5270'° 7.63010“ 1.68510°%
Suspect (b) 4.2360'° 5.18510° 1.23010°
Suspect (c) 3.5940 9.74410° 2.710

Together with similar computations for the suspects ofgdrt and (c), this information is given
in Table 4.4. Here, we see that for suspects of part (b) andhe)change in the weight of
evidence is a moderate decrease and small increase, egjye®ote that part (b) dfers from
the best matching pair of profiles in three loci (D21, D18 a®Ar and part (c) in the two loci
D21 and D18.
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Figure 4.5: Observed A, and expected peaks, assuming a two-person mixture of the minor
and major profiles in Table 4.3, past), Abscissa and ordinate as in Fig. 4.4.

The non-quantitative likelihood ratio estimaté®f}s, of Table 4.4 will in many legal systems
point towards conviction of any of the suspects. When inclgdhe quantitative information,
we see that the change in the weight of evidence may add fudhée evidence against the
suspect (as in part (c)), or may decrease the likelihood estimate such that it provides strong
evidence in favour of the suspect (part (a)), however, dtsat®ons in between these two ex-
tremes will occur (part (b)). This example shows that, evéenva person’s genotype matches
the genetic stain, imbalanced STR DNA profiles judged by theeoved quantitative data may
speak strongly in favour of the suspect. However, weighexheair of genotypes by the asso-
ciated quantitative likelihood-value may add further te 8vidence against the suspect when the
suspect’s profile only causes a few or small imbalances wipect to the observed peaks.

4.4 Parameter estimation

The EM-algorithm and the specific expressions as derivedpipeAdix 4.B were implemented
in the statistical software package R (R Development Coaenl€009). In order to validate the
implementation, we simulated peak area data given the peigkts from controlled experiments
and known model parameters. After 30,000 iterations, tharpater estimates were close to the
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true values indicating a successful implementation of tiiedi algorithm.

In order to estimate the model parameters, we used a traseingpnsisting of results of investi-
gations of DNA mixtures from 71 controlled experiments coctéd at The Section of Forensic
Genetics, University of Copenhagen. These 71 cases wereglsuch that all alleles from
the contributing profiles were present in the data, i.e. mpdut events occurred (see Tvede-
brink et al., 2009, for discussion on allelic drop-out). Tdgorithm was executed using several
different sets of initial values. For each set, we ran 30,00atiters of the EM-algorithm all
converging to the same parameter estimates.

In order to monitor the convergence of the EM-algorithm, wenputed the deviance after each
iteration. After 1,100 iterations, the absolute improvebfer successive deviances was less
than 0.01.

In the A part of Table 4.5, the shading shows the locus correlatiag/sy/vssi, while the above-
diagonal part shows the locus covarianogg, whents = 0 (see Section 4.5.2). Most of the
loci were highly correlated. This indicates that evaluatid quantitative DNA evidence with
the assumption of independence across loci is an exterisipdification.

The diferent signal intensities of the fluorescent dyes were alsntifiable in the parameter
estimates. The strong signals of the green dye band and thlkewsignals of the yellow dye
band (Butler, 2005) were reflected in the parameter estsvadtes. In Table 4.5, we see that the
magnitude of thers of the yellow fluorescence was smaller than that of the biw@dkcence,

which again was smaller than that of the green fluorescemceefor loci D16 and D21).

In addition to the parameter estimates and deviance, wecalsputed the asymptotic variances
of the estimates by the normality approximation of the MLEhhe inverse Fisher Information
as covariance matrix. We found that the estimated standaidtibn of bothoe ande? indicated
reasonably good estimates of these parameters. Large tijorgbandard deviations of did,
however, indicate the possibility of model reductions.

4.5 Discussion

4.5.1 Validity of the hypothesis of a two-person mixture

When analysing the STR results of a crime scene stain, wetndexlable to determine whether
the stain is likely to originate from a two-person mixturermt. In this section, we demon-
strate how this is possible using our model for the quantéa®TR DNA data. In order to
verify the hypothesis of a given two-person mixture, we dated 1,000 vectors of peak areas,
My ..., Mj,,, for each of the 71 cases from the controlled experiments.

Simulations of the peak areas were conditioned on the obdgrwak heights and true profiles of
the mixture, and we used the parameter estimates from Tehl@ His corresponds to simulating
under a null hypothesis with the-matrix, H = (H®Y, H®) and h known together with fixed
parametersy, o2 andA, i.e. assuming that the stain originates from a two-persitune.
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Table 4.5: Parameter estimates after 30,000 iterations of the EMritg with 7 = 0 (Section
4.5.2). TheA-matrix shows the covarianceg and correlationssi/ v/vssvi; (Shaded).

Yellow dye flourescence

Blue dye flourescence

Green dye Boaree

FGA
115154
0.75
0.94
0.88

A 0.94
0.86
0.88
0.99
041
0.92

o 553
o2 59653

THO
77391
92569

0.76

0.72

0.59

0.74

0.40

0.70

0.67

0.76

599

D19
144100
104203
205283

0.95

0.89

0.79

0.87

0.92

0.48

0.93

615

D2
149201
109016
215176
248170

0.88
0.85
0.85
0.88
0.54
0.89

701

vWA
104448
58758
131949
143836
108210
0.85
0.93
0.96
0.36
0.94

764

73029 100293 123631 114678

D3
85746
66455

105095
123707
82178
86407
0.74
0.86
0.64
0.83

825
133179

D16
130536
52721
171685
184814
133964
95408
191578
0.89
0.20
0.81

910
182104

D21

103350
65426
127993
135494
97591
77664
120183
95227
0.43
0.94

892
179739

D8
39734
58288
61922
76535
34035
53656
24650
38072
82100

0.56

1019
185494

D18
146159
108537
196468
207781
144991
114277
165391
135325

75002
219665

1018
320873

FGA
THO
D19
D2

VWA
D3

D16
D21
D8

D18
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For each of the simulated peak area vectdi,, we found the pair of profiles maximising the
likelihood, Gi = (Gi1, Gip), using the approach of (Tvedebrink et al., 2010, Chaptef this
thesis) and computet andH associated Witle. Using these quantities, we can determine the
Mahalanobis distance,

Ma(M;, Gi) = (M — Mg,) Var(Mg, )™ X(M; - Mg,), (4.2)

WhereMél and Var(M ) are the expected peak areas and variance assuming a nukiGre
respectively. IfG; were equal to the true profiles of the mixture, tiéa would follow a y2-
distribution withn being the number of observations in the mixture. Howevertthe mixture
profiles may not always be identical to the pair of profiles mmasing the likelihood. This may
be due to stochastic variations and systematic comporegtsstutter and pull-upfiects. The
former is caused by artefacts in the polymerase chain mraotisulting in an increase of peak
intensities typically in the allelic position before thedrallele. Pull-up fects are manifested
as an increase of the true peaks caused by overlap of theapéthe light emitted from the
various fluorochromes, which are detected by a CCD camerheirdata generating process
(Butler, 2005). Hence, on average we expdgtfor G to be smaller than for the true profiles
which implies fewer degrees of freedom in tpé-distribution. Fig. 4.6 shows a histogram
of 1,000 simulated Mahalanobis distances for the data givélable 4.2. The superimposed
curves indicate that the expectation of fewer thategrees of freedom for the-distribution is
reasonable, where= 31 in this example. The hypothesis that the Mahalanobiamwmist follows
a/\/gg-distribution is supported by a Kolmogorov-Smifhiest (p-value of 02410), whereas both
30 and 31 degrees of freedom are rejectegdlues are ®307 and 1966x 1078, respectively).

In crime casework the DNA may be degraded or partly degradéé:h implies that results
only are obtained for short STR Igalleles (locjalleles with low base pair numbers), but not (or
weak results) with longer STR lqeaileles (locialleles for high base pair numbers). This is a
potential problem since this is not incorporated in the nhdde to the assumptions on inter-loci
correlation.

However, the Mahalanobis distankg in (4.2) can be decomposed into two parts evaluating the
quality of the samplel,\/lé“) in (4.3), and the goodness of fit of a proposed mixitre: (G’, G”)

of two profiles,ijm) in (4.4). LetEpqng, = Var(Mg|M,) andXy, = Var(M, ), then

MO(M, G) = (M, - pe.c) Zhy (M. - pec), (4.3)
Mém) (M,G) = (M - NGI+)T2;\/I|M+ (M - pgy), (4.4)

where M, is the vector of loci peak area sums gndy, (1. ) are the expected peak areas
(sums) conditioned on the loci sums for profilés The reason for this decomposition follows
from the normality assumption, whefé M) = fpz, (MM, )T, (M.), which in density func-
tions yields

1 1 1 1 _Lgm (@
Zarl 2 2MMG) 15y 2|20 2 (MM Gy (M’G)},

whereX,, = Var(M¢g). We note thatM | M, is a distribution restricted to thefme subspace
with fixed peak area sums.
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Figure 4.6: Histogram of Mahalanobis distances for simulations basedata from Table 4.2.
Superimposed are)él-distribution (solid), Gaussian based kernel densitymesstie (dashed) and
ax3,-distribution (dotted).

SincelSas| 2 = [Eaaz. |20z, 72, taking—2 log on both sides of the equation gives the decom-
position of the Mahalanobis distance (4.2) into the two9&4t3) and (4.4). Both Mahalanobis
distancesM® (M, G) and M{" (M, G), follow x?-distributions withS andn-S degrees of
freedom, respectively.

In Fig. 4.7, we have plotted histograms of {h&alues fongm) and Méq) for 66 real crime cases
made available by The Section of Forensic Genetics, Urityen§ Copenhagen. In all cases
the contributors are not known for certain. However, thewinstances of the crime cases made
a victim and suspect profile available for each case. The twilgs matched and completely
explained the mixed profile the stain.

The left panel shows the histogram of thevalues fromMg“) assessing how well the proposed
pair of profiles matched the mixture given the assumptiorte@imodel. The histogram of the
p-values indicated that the model is applicable to STR resulteal crime cases, since large
values, or equivalently small Mahalanobis-distances|yrtimat H;, is supported by the evidence.
The right panel of Fig. 4.7 shows that more than half (35 Qaskthe p-values from the test of
the sample quality were less than 0.01. This indicates thust wf the crime case samples had
been subject to degradation of the DNA material. Degradatfahe DNA is often complicating
the interpretation of DNA mixtures. It is worth emphasisthgt imbalances caused by degraded
DNA may imply that no pair of profiles haly < Xﬁ,(l—a)' where/\/ﬁ(l_a) is the critical value
on significance levek (e.g. @ = 0.01) for a)(ﬁ—distributed variable. However, conditioned on
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Figure 4.7: Histogram ofp-values of the Mahalanobis distances of 66 crime cases iohwihe
had found the pair of profiles maximising the likelihood. Ewese profiles, we have decomposed
the overall Mahalanobis distané&; into M{™ andM(?.

the loci sums, such imbalances do nfieat the evaluation of a particular pair of profiles, i.e.
M < x2 g1 is pOssible.

In order to investigate whether an observed stain may atgifrom a two-person mixture, the
evaluation oﬂ\/lém) (M, G) needs to be less tha@ﬁ_sy 1-0)" If this is not the case for the observed
stain, it may be a mixture of more than two contri&:utors orrgmllts are strongly influenced by
DNA degradation, drop-outs, stutters, pull-ufeets, etc. WitM{" (M, G) < x2 g, . itis
plausible for the observed stain to be a mixture of two irttinals since, for the pair of profiles
maximising the likelihood, the conditional Mahalanobistdnce is sfliciently small. Then the
quality of the sample may be investigated by evaluaﬁlhfﬁ) and observing if it falls above
the critical value;yg(l_a), e.g. a = 0.01. If so, this indicates unexpected imbalances between
loci, which may be due to e.g. degraded DNA, inhibitoffeeting only certain loci or allelic
drop-outs.

4.5.2 Model reductions

When fitting the parameters of the model, we find for our spediita set that the additional
variance componentss, s € 8, were infinitesimally small compared to the contributiofs Q.

A y?-test indicated that the goodness of fit was not significaintigroved by this parameter.
Hence, the results reported in Table 4.5 corresponded tmtuel withts = 0 for all s € S.
Investigations showed that further reduction of the carare structure was not supported by the
data (see Appendix 4.C for more details).
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4.6 Conclusion

In the example of Section 4.3.1, the usual evaluation of ittedihood by considerindRg =
P(SIHp)/P(SIHg) gave a likelihood ratio supporting the,-hypothesis with a likelihood ratio
larger than 18. However, when including the quantitative informatiorg theight of evidence
was decreased to a likelihood ratibRgq, less than one. This was true even with limits of
+0.25 for the mixture proportion balances in the setup of Bikhkei{2005). The likelihood ratio
without taking the quantitative information into accouatresponded to the situation, where all
combinations passing the guidelines of Bill et al. (2005)evgiven identical weights. Hence,
excluding possible combinations from entering the liketit ratio based on the quantitative in-
formation was not dticient for an accurate estimate of the likelihood ratio baseduantitative
information.

For cases where the qualitative results strongly suppattttie suspect contributed to a mixed
stain, the inclusion of the quantitative information maytffier support the conclusion. Con-
versely, the likelihood ratio may decrease supportingHhénypothesis. Both situations were
demonstrated by the example of Section 4.3.1. Hence, tHeatian of the quantitative infor-
mation using a statistical model is of great importance aeoto assess the weight of evidence
obtained from DNA mixtures.

The model derived in this paper incorporates both inforamatin qualitative traits (STR alleles)
and on quantitative aspects of the STR alleles (peak he@idsareas). Graphical diagnos-
tics (not included in this manuscript) indicate that the mlad well suited for the evaluation
of P(Q|G, H). Furthermore, assuming independence of the peak are&e ohtious STR is a
simplification that cannot be supported by the work carrietio this paper. Hence, inter-locus
correlations or other means of correction need to be coresidehen assessing the weight of
evidence from quantitative data in forensic DNA STR seging

The concordance between the model properties and priorlkdge of diferences in amplifica-
tion efficiency of various STR loci and in emission intensities ofimas fluorescent dyes adds
further support to the model.

The model described in the present paper is also applicaldther fields of science. A useful
property is the handling of variable dimension of the obagons while exploiting compound
symmetries (Votaw, 1948). For example similar problem#$wibdelling covariance structures
may arise in animal breeding studies, where the litter sarées and fisprings may be related
through the same breeding lines.
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Appendices

4.A The model

In this section, we provide more mathematical details thaargin Section 4.2.2. The model
assumes proportionality of the mean and variancd of Nys(u, A). The covariances, is a
diagonal matrix with elemenis2H® and p is a vector partitioned in a similar way with the
elemenisH® for both peak areas associated with losasd persork.

The observable peak area measuremehfs were defined as a linear transformatidn,such
that M = TA + e. In order to model the proportionality of the mean and var&aaf M, we

. . n ~
defined the scaled re&dual&'(si/ x/hi)i:l, wheren = } o5 Ns. Fore, we assumed a compound

symmetry covariance matriR (Votaw, 1948). Since = diag(h) ?¢, the covariance of
is Covl) = Q = diag(h)Y2Qdiag(h)¥2. We parametrised the covarian€®, as an additive
structure using\ = {vsistes and T = (7s)ses, Such that Co&s, &) = vsiln 1 + OsiTsln,,
whereés are the scaled residuals of locgisly is ak-dimensional vector of ones, aidg is the
Kronecker delta. For implementation of the EM-algorithne, meed the conditional distribution
of A|M . Using Lauritzen (1996, Proposition C.5), this is

AIM ~Nas {u FATT (TATT4Q) " (M = Tp), A= ATT (TATTm)‘lTA} . (@45)
The model forM corresponds to a linear mixeétects model:

M = Xa+Z(€1,€)", where & ~ N(0, diag(14o-§)seg) and & ~ N(0,Q) (4.6)

for some case specific design matridesndZ. However, estimation of the variance components
are complicated due to the varying dimensiond#fand My, s € § from case to case.

4B EM-estimators

In order to handle the complete structuredthat includes the missing data problem, we used
the EM-algorithm to impute the unobservable data. Howesiage the dimensions d¥Z and
sub-vectors hereof varied from case to case, we obtaindekhbod that was not very well
suited for implementation of the EM-algorithm. This was doghe dependence am in the
covariance of the locus-wise average of the scaled residualey, . .., £s),

Cov(E) = diagfrs/ns)ses + A = diaglr/n) + A,

wheren = (ns)ses and the vector division is done component-wisgy = (Xi/yi)[L ;.

The problem was solved using appropriate auxiliary vaegsblandu, which we assumed to
be independent and zero-mean normal distributed variabtescovarianced\ and diagf/n),
respectively. By introducing andw, we obtained a likelihood of a full exponential family,
where the estimation of and A may be done separately. The use of auxiliary variables is
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equivalent to adding constraints on the diagonal elemédnts By assuming Cowf) = A, we get
the constraint thatss > 0, s € 8. In (4.6), this corresponds to splittirgg into two independent
partséz1 and€az, &2 = £21+ 22, Wheregz; ~ N(0, QeAQ]) and&2, ~ N(0, diag(rsln,)ses) With
Q. defined in (4.7).

Hence, the E-step consisted of imputidg « andwv given the observation3Z. In the M-step,
we used that the full likelihood factorises into two termsdalling the biological part of the data
given the measurement noisé,(M)|(u, v, €), and the noisex, v, €), respectively:

f(A, M,u,v, €A, u, 7,A|H,h) = g(A, M; A, plu,v, €, H, h)h(u, v, €; 7, A|H, h)

with g andh being the density functions of the two multivariate normiatributions below:

(A 7 A ATT
9: (M E) NN{(T}L+€)’ TA TATT}}
w 0 diagér/n) O diagtr/n)Q{
h: v ~N{ 0/, 0 A AQT ”
€ 0 Qcdiag(r/n) QA Q

where Q. is defined in (4.7). In order to derive the estimators of theapeeters entering the
functionsg andh, we defined two matrice® andQc,

1, ... O 1,, ... O
Q=|: . | and Q=|: . |, (4.7)

O ... 14 O ... 1n,
where subscript refers to case, ¢ = 1, ..., C. Furthermore, the DNA proxid = (H®, H®) is
expanded to ag-dimensional vectotH = (Hs)«s, Where the componenfds are fixed for all
loci, Hs = (H®, HW, H® H®@). Note, that the compound symmetry structure of the conaga
of € with 7 = 0 can be written a8 = Q.AQ/. The estimators oft ando? can be found as
Lo Q'E(AM)

ZC QTHC

&% = (4C - 1)-12 Q" [

d:

{E(AMo) — pe)® + dianOV(AclMc)}}
H.

where the squaring of a vector is done component-wides (xi2 1, and diagB} extract the
diagonal vector oB, diagB} = (B;)[,. Furthermore, the moments dfc| M. are given in (4.5).
The estimators of = (15)scs andA are,

Ts

ot > {EQ@EIMo)nse + EELEs — N3 M)
[

A = C') {E@IM)E@IM)T + Covlwd M)} .

For both » and w, the covariance with M is expressed as Cav(M) =
Cov(x)Q! diag(h)Y/?, for  replaced by oru. The conditional moments entering the estimation
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equations may be found using the formulae for computing itimmél moments in the multivari-
ate normal distribution, EX|Y") = px + ©12055(Y — py) and Cov(X|Y) = 13 — 01,0,302;
for (X,Y)" ~ N((ux, pny)", ®) with © =[ &ir 82 | (Lauritzen, 1996, Proposition C.5).

021

4.C Model reduction

As mentioned in Section 4.4, the large asymptotic standevéitons indicated that the covari-
ance structure d® could be simplified. The estimatedparameters for nearly all loci were neg-
ligible compared to'ss. Let Diag(A); be a block-diagonal matrix with matricég i = 1,...,n

as elements and the square root of a vector defineghas: (/X),. Then, we may write the
covariance matrix oM, X, as:

Ty = TATT + Q = Diag(c2Tdiag(Hy) T + TsmmT)xs + [Vstm‘/ﬁtT]steS '

From the equation above, we see that setting 0 does not introduce any singularitiesdfy .
Hence, the asymptotic theory is not violated. In order tbudsetherr was statistically signif-
icant, we used an approximatgly-distributed test-statistic with theffiérence in parameters as
degrees of freedom (Cox and Hinkley, 1974). In the full motledre wereS(S + 3)/2 parame-
ters. By restricting- = 0, we removed parameters and tlx%—test yielded g-value of 09999
supporting the hypothesis ef = 0. The reported parameter estimates in Table 4.5 were based
on this restricted model.

Data exploration and the estimated parameters &fom Table 4.5 suggest that further model
reductions may be feasible. Possible parametrisatiofsroéy be,

CovEs, &) = Vd(s;),d(t)lnslgt + 0stTsln, (4.8)
CovEs, &) = Vd(s;),d(t)lnslgt + Od(8)d(t)Td(s) Ine (4.9)
COV(éS, ét) = V]'ns]'l—'l{t + 65(Tslns, (4.10)

where d maps locus to fluorescence dye colour, el=GA) = Yellow. The covariance struc-
turesin (4.8)-(4.10) all use fewer parameteréithan the restricted model with(D +1)/2+ S,
D(D+3)/2 and 1+ S parameters, respectively, whédas the number of dye colours. In our data
D = 3 andS = 10 and thus we removed 39, 46 and 44 parameters, respeclivelythree tests
indicated that there were significantférences between the full model and any of the reduced
models, all withp-values< 0.0001. Hence, the model with the best fit included locus depen-
dent parameters for the between and within covariance omt#esurement errors. Inspection
of the correlation matrix in Table 4.5 indicated that locu&\las the only locus with an average
between-locus-correlation less thab.0This may well cause the dye covariance models to have
a poor fit.

However, one has to bear in mind that the parameter estimegtiessbased on a limited training

set. Hence, the rejections of the hypotheses of simpler lnoday be biased towards the four
profiles included in the training set. In order to fully vgrthe model we need to increase the
proportion of alleles from each locus and also the numberafidzygous profiles. This will
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reduce the possible individual specififext that may exist in the training set. Such work is in
progress.

A more detailed description of the model and the impleméontaif the EM-algorithm with full
R-source code are available on line at Htfpeople.math.aau.gktvedgdna. The programs can
also be obtained from htifpawvww.blackwellpublishing.cornss.
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4.7 Supplementary remarks

As briefly mentioned at page 79, the model presented abovesiseaof the larger class of linear
mixed dfects models. However, what distinguishes the model frorardtlpes of linear mixed
effects models, is the property of handling varying dimensiointhe observation matrix and
subvectors hereof under the assumed mean and covariancieigtr Typically an experimental
design is set up such thag andn (as defined above) are constant over the various factorgof th
experiment. In order to construct interesting and realistiperiment useful to forensic genetics
it is not possible to fulfil such restrictions. However, bgtrécting the intra-locus correlations to
be positive, the EM-algorithm may be used to fit the model ta eehere the subvectors of the
response vary across samples.

The model extends tHeR by including the quantitative information in the evidenedcalations.

By evaluating.(M|G) for a given pair of DNA profiles(, it is possible to assess the goodness-
of-fit for a proposed pair of DNA profiles versus the observedkpintensities. However, since
the model presented above assumes intra-locus corredatiégvery time consuming and com-
putational intense to search for a pair of best matchinglp&:(ﬁ’ = maxg L(M|G), since the
configuration on the various locffact each other through the non-zero correlations.

Hence, in order to perform such a task, we need to relax soreafssumptions for fast com-
putation and evaluation. In the following chapter we présestatistical model and arffieient
algorithm for finding a pair of best matching profiles. Theibassumptions are similar to those
discussed above, with thefflirence that the peak intensities within each locus is asscore
ditionally independent. That is, by conditioning on an #acy statistic (for the mixture ratio)
we assume that the configuration of the DNA profiles in logissindependent of configurations
in locust forallt # s.

The methodology diers from previous approaches since it is frequentistic @setb on a statis-
tical model taking the present proportionality of mean aadance of the peak intensities into
account. There are several Bayesian methods for modelidgeparating DNA mixtures, e.g.
Cowell et al. (2007a,b, 2010); Cowell (2009) discussed 8eeai probabilistic expert systems to
model DNA mixtures using first a normal distribution (2007aper) and later a gamma distribu-
tion, and also Curran (2008) took a Bayesian approach aneélheddhe peak intensities using a
multivariate normal distribution. However, Curran (20@&) not include the proportionality of
the mean and variance, which is a intrinsic feature of thergammodels of Cowell et al.

Earlier Perlin and Szabady (2001) and Wang et al. (2006) lisear models to model the peak
intensities of DNA mixtures using a frequentistic appraddbwever, their models did not take
the mentioned proportionalities of the first two moments iatcount, and their methods did
not allow for dficient and consistent modelling of all loci simultaneoustpr example, Wang
et al. (2006) did not incorporate a common mixture ratio ssitoci even though there are strong
biological and biochemical arguments for this assumptramthermore, did the method of Wang
et al. (2006) call for a reasonably large amount of manuadain order to use the output from
their method.






CHAPTER B

Identifying contributors of DNA mixtures by
means of quantitative information of STR typing

Publication details

Co-authors: Poul Svante EriksenHelle Smidt Mogenserand Niels Morling

* Department of Mathematical Sciences
Aalborg University

T Section of Forensic Genetics, Department of Forensic Meglic
Faculty of Health Science, University of Copenhagen

Journal: Journal of Computational Biology (Accepted for publicatio

87



88 Identifying contributors of DNA mixtures by means of quantitative information

Abstract:

Estimating the weight of evidence in forensic genetics isrotlone in terms of a likelihood ra-
tio, LR. TheLR evaluates the probability of the observed evidence undapeting hypotheses.
Most often probabilities used in tHeR only consider the evidence from the genomic variation
identified using polymorphic genetic markers. However, erodyping techniques supply addi-
tional quantitative data, which contain very importanbimhation about the observed evidence.
This is particularly true for cases of DNA mixtures, wherermthan one individual has con-
tributed to the observed biological stain.

This paper presents a method for including the quantitatifegmation of STR DNA mixtures
in the LR. Also, an dficient algorithmic method for finding the best matching camaltion of
DNA mixture profiles is derived and implemented in an on-lioel for two- and three-person
DNA mixtures.

Finally, we demonstrate for two-person mixtures, how théstbmatching pair of profiles can
be used in estimating the likelihood ratio using importasampling. The reason for using
importance sampling for estimating the likelihood ratithis often vast number of combinations
of profiles needed for the evaluation of the weight of evigenc

Keywords:
Forensic genetics; STR DNA; DNA mixture; Greedy algoritiimding best pair of matching
profiles; Importance sampling.

5.1 Introduction

When a crime has been committed, biological traces are éftemd at the scene of crime. In
many cases, more than one individual have contributed tettie, which is then determined a
DNA mixture. The evaluation of DNA mixtures is often compland laborious taking experi-
enced case workers lots of time arftbet to analyse.

Most modern DNA typing techniques are based upon polymetzei@ reaction (PCR) produc-
ing millions of copies of the DNA string. The amount of DNA ihe PCR vessel pre-PCR is
reflected in the concentration of target molecules post-P@R targets used in forensic genetics
are selected such that they are highly polymorphic (largeber of possible alleles) which gives
a high power of discrimination. Furthermore, the genetickaies used for forensic purposes are
non-coding and should ideally be neutral with respect tectin.

The prevalent technology used in forensic genetics to parfyenetic identification uses short
tandem repeat (STR) polymorphisms. This method relies oahiéity in the length of certain
repeat motifs in the genome. The STR DNA profile is observad\so called electropherogram
(EPG), where the alleles are identified as signal peaks absignal to noise threshold (shaded
cones of Figure 5.2). For a single person DNA profile one caeole either one or two peaks
referring to the situation, where the DNA profile is eithenmfazygous (identical alleles on both
chromosomes) or heterozygousffdient alleles on each chromosome). The commercial kits
used for identification purposes typically contain betw&ério 15 genetic markers (also called
loci: plural for locus). Within each locus the number of Ekvaries from 5 to 20. For the
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kit (SGM Plus kit, Applied Biosystems, AB) depicted in Figus.2, the labels “D3”, “vWA',
..., "FGA’ refer to locus names and the integer values abovedbtied name corresponds to the
observed allele types for that particular locus.

It is possible only to observe the cumulative peaks in the ER@t is, the peak heights are
expected to be twice the height for homozygous loci reldtivine heterozygous loci, since the
two identical alleles doubles the amount of pre-PCR proéarcthe homozygous peaks. This
is also true for DNA mixtures where alleles shared by two oremmmntributors will reflect the
contribution from more donors as higher peaks. Hence, fohDiiktures with two contributors
the number of observable peaks ranges from one to four alti#@ending on the particular
profiles in the mixture.

The kit used for STR typing comprises a set of I&iused for discrimination. For an arbitrary
two-person mixture the number of possible combinationgjaren by £:75:125:65+ whereS;

is the number of loci with observations an§ = Y ; S;, is the total number of loci used for
discrimination, i.e.S is the size ofS. The numbers 1, 7, 12 and 6 comes from the number of
possible combinations (see Table 5.1) when observing 1a8d3! alleles, respectively.

Table 5.1: Possible combinations in a two-person mixture with one to &dleles.

Alleles Possible combinations
A _@aad
_ab_____(aaab) (aabb (abaa) (abab) (abbb) (bbab) (bbag)
a,b,c (aa,bc) (abac) (ab,bc) (abcc) (acab) (ac bb)

(ac,bc) (bb,ac) (bc,ab) (bc,ac) (bc,aa) (cc ab)

a,b,cd (ab,cd) (ac,bd) (ad,bc) (bcad) (bd,ac) (cd, ab)

In most cases, this leads to an intractable number of cortibirsa However, using the quan-
titative STR data (peak heights and peak areas), the nunil@awsible combinations often
decreases substantially. In this paper, we develop atitati;model for STR DNA mixtures.
The statistical model is intended to measure the agreenatnekn the expected peak intensi-
ties for a proposed combination of DNA profiles and the aadbakrved peak intensities. Hence,
we use an objective criterion to discriminate among theiptesssombinations in Table 5.1.

In order to incorporate the peak intensities in the liketiioatio LR), we first demonstrate how
to find a best matching pair of profiles for a given two-persadxtune using an fficient algo-
rithmic approach. This algorithm iteratively builds up esbmatching combination of profiles
using the statistical model for the peak intensities. Thyo@thm has been implemented in a
free on-line tool available at the first author’'s web-sitdheTstatistical model and algorithmic
construction are dlierent from previously proposed methods for DNA mixture sapan (e.g.
Perlin and Szabady, 2001; Bill et al., 2005; Wang et al., 2@x#wvell et al., 2007a,b; Curran,
2008).
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The inclusion of the quantitative information in th&® is done by assigning a weight to each
combination of DNA profiles consistent with the observed Sypes. The weight reflects the

probability of observing the observed peak intensitieggia specific combination of profiles.

The denominator in theR will in most cases yield a sum over an intractable number ai-co

bination. By sampling “close” to the best matching combimrateturned by the algorithm, we

show how importance sampling may be used to estimateRhe

5.2 Data

The model is based on exploration of controlled experimeht&o-person mixtures conducted
at The Section of Forensic Genetics, Department of Forévsiticine, Faculty of Health Sci-
ences, University of Copenhagen, Denmark. From the datamatjpn it is evident that the mean
and covariance structure of the peak areas must satisfppropality of:

e peak areas and peak heights,
e peak area and amount of DNA in the mixture,
e the mean and variance of the peak areas.

These assumptions is supported by Figures 1 and 2 in Tveuketiral. (2010). The experiments
consisted of pairwise two-person mixtures in various nretatios of the four profiles in Table
5.2. The data were prepared as described in Tvedebrink@0&19).

Table 5.2: The four STR profiles used in the controlled pairwise twosparmixture experi-
ments.

D3 VvWA Dile6 D2 D8 D21 D18 D19 THO FGA

14,18 17,19 12,14 20,24 10,13 30.2,32.2 13,13 12,13 8,9 2220,

15,16 14,16 10,12 17,25 13,16 30,30 13,13 14,15 6,9 19,23
15,16 15,17 11,11 19,25 8,12 29,31 15,17 13,13 6,8 23,24
16,19 15,17 10,12 23,25 13,13 28,30 12,16 13,15 6,7 20,23

o0Ow>

5.3 Modelling peak areas of a two-person mixture

For the search of a pair of best matching profiles to be femsibé assume the peak areas of
the various loci to be conditionally independent given tha hrea sumsA.. Performing the
inference conditioned oA, satisfies the reasoning of Cox (1958)4s is an ancillary statistic
for the mixture ratio, i.e A, is fixed for all values of the mixture ratio. Furthermore, vesiame
that the peak areas are multivariate normal distributeld @onditional mean vectag(AgAs+),



5.4 Finding best matching pair of profiles 91

and covariance matrixGov(AgAs.), defined as

As:
2
Cov(AgAs,) = Tt°Cdiagths)Ce, (5.1)
wherea denotes the proportion with which person 1 contributes ¢éontlixture, andCs = I, —
n;11n51gs with ns, 1 < ng < 4, being the number of observed peaks at losudNote thata
is supposed to be common to all loci. The definition of the davece matrix is close to the
ordinary covariance when conditioning on the vector sumweéler, as the variance of the peak
area is assumed proportional to the mean, we use the diagatak diaghs), wherehs is the
associated peak heights on lo@ido obtain weighted observations that stabilise the vagan
Furthermorer? is a common variance parameter for all Ig 8.

E(AgAs+) = [aPs1+ (1-a)Ps2] and

The Ps-vector is a vector of indicators taking values 0, 1 or 2 néfeyto the number of copies
that persork has of each allele in the mixture on locsiEE.g., if the two individuals contributing
to the mixture have genotypes (1) and (1414), respectively, we will hav#s;, = (1,1,0)"
andPs, = (0,0,2)". Assuming no chromosomal anomalies, each individualesitvwo alleles
at each locus which implies the sumBfy to be 2 for allk.

The model presented here idfdrent from e.g. the ones of Cowell et al. (2007a,b) and Cur-
ran (2008) who both takes a Bayesian approach. The modelwéICet al. (2007a) assumes
the peak heights to be gamma-distributed to ensure propaiity of the mean and variance,
whereas Cowell et al. (2007b) assumes normality of the peahts with parameters chosen
to ensure proportionality of mean and variance. As mendaneCurran (2008), the model of
Cowell et al. (2007a) makes a crude adjustment for a repeabaudtect, which is no longer
relevant. In Curran (2008) the peak heights are assumedvaridte normal, but here no attempt
is done in order to ensure proportionality of the mean anthmae. Furthermore, by condition-
ing on the peak area sums within each locus we acknowledgsritrey inter-locus correlation.
In addition to the methods based on statistical modelsethez several methods that rely on
heuristics and guidelines (Gill et al., 1998; Clayton et 5998; Perlin and Szabady, 2001; Bill
et al., 2005; Wang et al., 2006; Gill et al., 2006). Cowell le{2007b) gives a nice review of
most of these methods in their introductory section.

5.4 Finding best matching pair of profiles

In order to find the most likely pair of profiles matching thesebved mixture under the assump-
tions made by the model, one can decrease the number of itissilising the following argu-
ments. Let the observed peak areas within each la;ibs, sorted such th#s 1) < --- < Ag(ny,
and assume th&@NA; < DNA,, whereDNA is the amount of DNA contributed by perskn

Then, for a locus with four observed peaks & 4), the only likely pair of profiles given the
model relate the alleles with peak aredg{), As(2)) and As(s), As ) to person 1 and person
2, respectively. For loci with one observatiom (= 1), the two individuals need both to be
homozygous for the observed allele, while for twg & 2) or three observationsd = 3), the
possible profiles are listed in Table 5.3 (the notafigiandds is used in Section 5.4.1).
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Table 5.3: Possible profiles for loci with two and three observations.

d2: Ps1Psp Ps1Psy Ps1 Py Ps1Ps) d3: Ps1Psp Ps1Psy Ps1Psy Ps1Ps)
Ay 1 1 2 0 1 0 01 Ag@w 20 10 1 0 0 1
Ay 1 1 0 2 1 2 2 1 A O 1l 10 01 01

Ay 01 0 2 1 1 2 0

In Table 5.3,Ps1 and Ps; refers to the profiles of person 1 and person 2 on the partitadas

s, respectively, and the cell values to the number of allets®eiated with the profiles. The
reason for not considering the three and eight other cortibmsfor loci with two and three
observations (Table 5.1), respectively, is that, for anyhese combinations, one of the four
combinations listed in Table 5.3 will be more likely undee timodel assumptions, i.e. have a
better fit to the observed data. E.g. would; = (0,2)" and Ps, = (2,0)" be unlikely as we
assumed person 1 to have the lowest contribution and thedecea to be the larger.

The numbers of possible pairs of profiles for loci with tworetl and four observations are
respectively 7, 12 and 6, when discarding the informatiomfpeak areas and only using com-
binatorics. Thus, using the assumptions of the model, weedse the number of profiles which
needs to be examined in order to find the most likely profilesifiog the observed mixture.

We assume the peak areas to be normally distributed withittomal means and covariances
as specified in (5.1). Due to the conditional independendhefoci, the overall estimates of
a and? are found as sums over the loci. L&t = Csdiag(hs)Cd, then we can write the
conditional distribution asAs|As. ~ Ny (s — x5, 7°Ws), wherex§ = (Ps1 — Ps2)As./2 and
x] = Ps»2As./2 are the terms of the mean, linear and constant, irespectively. Solving the
likelihood equation with respect toandz? yield the unbiased estimators

Lses Ty Ws(As — )

@ = and 5.2
¢ IS SUSTWQUCS (5:2)
2 = N1 Z(AS — awd - o) "Wy As — axs — ),

se8

whereN = n, - S -1 = Y, s(ns— 1) — 1 andW, is the generalised inverse ¥f;. We have
to use the generalised inverseWf asWs has the ranks — 1. An approximation to this model
assumes that the precision matrix?W;?, is given byr—?Csdiag(hs)"'CI. Hence, we have
a closed form expression for the inverse covariance maieixling simple expressions for the
estimators ofr andz?,
ZSGS Z|n=51 Xai(ASi - Xi)h;}
a = T and

Dses Xity X5 g

Ns
P o= N7 (A - -6 )*h,

se8 i=1

whereAg;, hs;, X(S),i andxii are theth components of the respective bold faced vectors. We denot
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the unbiased maximum likelihood estimates for the two medsl{, 7) and (, 7), respectively.
The latter version is what is implemented in an on-line t@oflsscussed in Section 5.4.2.

In addition to the estimate a@f, we are also interested in determining a confidence intéoval
a. The conditional variance af §iven A, is found using the covariance operator on both sides
of (5.2),

Cov(Tes o5 We(As - z5)|A.)
2
(Zses w(S)TV\rs w(s))
Yises Ty WsCov(Ag A )Wz

2
ST S
(Zses Ty \N;wo)
-1

72 (Zses mSTWng) , (5.3)

where we from the first to second equality used the conditiadependence afi and A; given
A, , and second to third properties of the covariance togethibitihe expression afov(A4A.,)
in (5.1). The confidence interval afgiven A, is then given by

Var(@|A)

T

b
ST — S
\ Zses g Ws g

wherety_g/2n is the critical value on significance leygfor at-distribution withN = n, — S —

1 degrees of freedom. A similar confidence interval using(thé)-estimates is obtained by
inserting the ¢; 7)-estimates instead ofy(7) and replacingV- with W-1. From the expression

of Cl(w), it is obvious that a smatl-estimate decreases the width of the confidence interval and
thus increases the trust in the estimated mixture propuortio

Clﬁ(a) =a+ tl_'g/z,N

5.4.1 Greedy algorithm

This model was used in an algorithm for finding the most likedyr of profiles contributing to
an observed mixture where the STR profiles of both individwadre assumed unknown. First,
define the sef = {J1,...,d4}, WhereJ; is the set of plausible profiles for loci withs = 1.
These sets were defined in Section 5.4 (Table 5.3). The pssadfor a greedy algorithm
finding a pair of profiles (locally) maximising the likelihdaf the model specified by (5.1) is
given in Figure 5.1. A greedy algorithm is any algorithm thalves a problem by making the
locally optimum choice at each stage with the hope of findireggglobal optimum. A graphical
representation of the algorithm is given in Figure 5.7 foremgral number of contributors;.
The algorithm works with botha(7) or (@, 7) as estimates ofy, 7).

The greedy algorithm initiates by estimatindased on a locuswith four present alleles. The
loci of 84 contain full information on the mixture rati@, and are thus used for assessing this
guantity. In succession, the loci with three and tWg &ndsS,, respectively) observations are
analysed and the combination with the smallest contributitor and best concordance to the
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Algorithm: Find best matching pair of STR profiles.

LetT =0, & = 0 and?® = c.
While 72 decreases dr #8
Fori € {4,3,2}
Forse §i ={s:se8andng =i}
Choose combinatiope J; minimising 2
SetT ={T\ (s,)} U (s, j) and compute:”
Returna, T andJ.

Figure 5.1: Greedy algorithm for finding a pair of profiles (locally) menising the likelihood
of (5.1).

previously determined mixture proportion is chosen. TheJseontains a list of the optimal
combinations on previously visited loci and is updatedradtech iteration. On termination, the
greedy algorithm returns the best matching pair of profigether with the estimates afand
7. The algorithm is designed to perform calculations andgies similar to those of a forensic
geneticist when analysing a two-person mixture.

The optimisation problem is complicated since the inputtheffunction that we are interested
in minimising depend on each othda,(Ps1, Ps2)scs) = Y«s Ds, whereDs = (As — axg -
x7) "W (As—axi—x3). Here,f denotes the object function anBy1, Ps»)ss the set of possible
combinations for all locis € 8. Itis easy to see that, for a fixed we can minimisé for each
locus s by choosing the combination yielding the smallest squaséadte. Similarly, fixing
the combinations for all lociy is estimated using (5.2). However, from the constructiothef
greedy algorithm, the algorithm chooses the combinatiahrtinimisesr? for locuss givena
and the configurations on loci previously visited Idcg {7\ s}. This ensures locally optimal
solutions, and for most practical purposes, the algorititurns a global maximum. One should
note that when the algorithm recovers the best matchingopanofiles, we still need to consider
all profilescloseto these profiles consistent with the evidence for likelthoatio evaluation (see
Section 5.5 for further details).

5.4.2 On-line implementation

The greedy algorithm of Figure 5.1 together with the methiodsvaluating the goodness of
fit for a given pair of profiles are implemented in an on-linglggation. The on-line imple-

mentation applies then(7)-estimates when finding the best matching pair of profilefie T
two-person (and three-person) mixture separator is dlailan-line at the first author’'s website
(httpy/people.math.aau.dktvedg¢dng). The script can plot the expected and observed peak
areas for visual inspection of the fit (see Figure 5.2).

The script allows for user uploads of csv-files containinfgpimation about loci, alleles, peak
heights and peak areas. The loci implemented are thosdedia the SGM Plus and Identifiler
kits (AB) excluding amelogenin.



5.4 Finding best matching pair of profiles 95
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Figure 5.2: Plot produced by the on-line implementation of the algonith
(httpy/people.math.aau.gktvedgdng - sample data file “Paper case”). The observed
peaks,A, are based on data from Table 5.4, and the expected psakssuming a mixture of
the best matching pair of STR profiles (Table 5.5). The ole®and expected peaks coincide
for nearly all peaks.

Apart from finding the best matching pair of unknown profildee user can specify a suspect
profile, and the script finds the best matching unknown prédiiéwo-person mixtures.

Example of a two-person mixture separation in an 1:1 mixture ratio

We demonstrate the algorithm and implementation on data &acontrolled experiment con-

ducted at the Section of Forensic Genetics, Departmentreiisec Medicine, Faculty of Health

Sciences, University of Copenhagen, Denmark. The datarasepted in Table 5.4 together
with information on the true profiles of the mixture (denobsc ands).

The algorithm found that the two profiles of Table 5.5 are testhmatching pair of profiles.
The profiles are consistent with the true profiles of the mixtexcept for loci THO and FGA.
In Figure 5.2, we have plotted the data from Table 5.4 (sabides,A) together with the best
matching pair of profiles as listed in Table 5.5.

In Figure 5.3, the traces of the parameter estimates (@fished) and? (solid) are plotted for
each successive iteration with the final parameter estanagerge” = 0.43 (95%-Cl: [0.40 ;
0.45]) andr® = 113404. Evaluating the mixture of the true profiles (markeddbgind e in
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Table 5.4: Data used in demonstrating the algorithm. Thande represents profile 1 and 2,
respectively.

Locus Allele  Height Area Locus Allele  Height Area
D3 15 oe 1802 15410 D21 29 e 1073 9454
D3 16 oe 1939 16282 D21 30 o 1469 12828
VWA 14 o 712 6128 p21 31 . 798 6992
VWA 15 ° 725 6620 D18 13 o 1247 12302
VWA 16 o 626 5637 D18 15 o 899 9104
VWA 17 ° 830 7362 D18 17 e 726 7549
D16 10 o 824 7910 D19 13 e 1332 10534
D16 11 o 1772 17231 D19 14 o 416 3478
D16 12 o 586 6101 D19 15 o 504 3968
D2 17 o 434 4558 THO 6 oe 820 6739
D2 19 e 612 6563 THO 8 e 668 5573
D2 25 oe 843 9257 THO 9 o 486 4004
D8 8 e 1284 10782 FGA 19 o 490 4415
D8 12 e 1232 10359 FGA 23 oe 865 7968
D8 13 o 903 7891 FGA 24 o 527 5036

D8 16 o 638 5291

Table 5.5: Best matching pair of profiles for the data in Table 5.4. This pf profiles is pictured
in Figure 5.2 as the expected peaks.

Locus D3 VWA D16 D2 D8 D21 D18 D19 THO FGA

Minor 15,16 14,16 10,22 17,25 13,16 30,30 13,13 14,15 6,6 233,
Major 15,16 15,17 11,11 19,25 8,12 29,31 1517 13,13 8,9 4192

Table 5.4), ther estimate is almost unchanged<£-0.42), but with an increase ir? to 126634
indicating a slightly worse fit.

The fact that a combination fierent from the true one has a better fit, indicates that threre a
multiple explanations of the trace since it is a 1:1-mixtlarelose to 0.5). However, theftier-
ence inr?-estimates for the two combinations will only have a mindluance in the evaluation
of the evidence.

Example of a two-person mixture separation in an 1:2 mixture ratio

Wang et al. (2006, Table 10) presented data from a two-péstmixture with known minor
(victim) and major (suspect) profiles. Curran (2008) ancetthave analysed these data in
order to demonstrate their models for separating two-pelP¥dA mixtures. Using the on-line
implementation we obtained the true profiles with= 0.30 (95%-Cl: [0.28 ; 0.32]) and? =
12487.
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Figure 5.3: Trace of the parameter estimates ef (dashegtight ordinate labels) and
72 (solid/left ordinate labels). The plot is produced by the on-lin®ltavailable at
httpy/people.math.aau.gktvedgdnd.

5.4.3 Dropping non-fitting loci

In some cases, the stain may be contaminated, and it may fecstd drop-in or drop-out.
Drop-ins are allelic peaks present in the DNA profile not bgiag to the true profiles. Drop-ins
may occur at random (contamination) or by more systematichar@sms such as stuttering or
pull-up dfects. Stutters are caused by artefacts in the polymerageresation resulting in an
increase of peak intensities typically in the allelic psitbefore the true peaks. Pull-uffects
are manifested as an increase of true peaks caused by owéttapspectra of the light emitted
from the various fluorochromes, which are detected by a CGbeca in the data generating
process (Butler, 2005). Drop-outs are allelic peaks oftihe profiles that are absent in the DNA
profile due to, e.g. low amount of DNA or degradation of the DNAsuch cases, the observed
peak heights and peak areas no longer originates solelydrtwo-person mixture. Hence, the
proportionalities of Section 5.1 need no longer to be satiséind the mean structure of (5.1)
may not explain the observed peak heights and peak areddanial

We use arF-test approach to evaluate whether any of the includeddazis has significant
unexpected balances due to e.g. stutters, degradatiomtamsimation. The purpose is to return
a list of loci in which the hypothesis of a two-person mixtaeas be supported.

For each locus, the contribution 18 is computed byDs, which we assume to follow g7 ;-
distribution. Hence, to test whether any locus contribstgaificantly to the overall variance,
72, we evaluate for each lociss:= § the ratio

(ns—1)"'Ds
(I’]+—S—I’]S— 1)_1 Z'[E(S\S} Dt

~ Fne-1),(n. ~S-ne-1)»
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whereF,,) ) is anF-distribution withv; numerator and» denominator degrees of freedom.
Since we perform this test for all loci, we make a Bonferroairection to compensate for mul-
tiple testing. We apply this procedure successively ang tlie most significant locus (if any)

until no locus has a significant test-value. This facilitpiso available in the on-line implemen-
tation.

If the variance contribution from multiple loci is large ethest-value will not indicate any sig-
nificant locus as the overall noise of the sample is large or lbgaa mixture of more than two
individuals. This will result in large values for the overz.

5.5 Likelihood ratio

Let G be the DNA profile of the crime stain, args andGy, the profiles of the suspect and
unknown contributor, respectively. Furthermore, the eviden€econsists of both quantitative
information (peak heights and area§), and the genetic crime stain (allelic informatios),
The probabilityP(E|H) factories asP(Q, §|H) = P(Q|G, H)P(G|H) using the definition of con-
ditional probabilities. Sinc€ is a continuous stochastic variable, we use the likelihdoolio
model, L(AIG’,G"”) = [1ss{/Ws 2 exp(-3Ds)}, to evaluateP(Q|9, H), where the hypothesis
H involves profilesz” andG”.

LetCp = {Gu : (Gs, Gy) = G} be the set of unknown profiles that together viihare consistent
with G, thenP(§|Gs,Gy) = 1 for Gy € C, and 0 otherwise, i.e.Cp is the set of possible
unknowns undei,. Similarly, letCq = {(Gu,,Gu,) : (Gu,, Gu,) = 9} be the set of two unknown
profiles consistent witl§, i.e. possible pairs of profiles undelg. This partitioning of the set
of profiles is equivalent to Assumption 2 in Evett et al. (1p%®here the authors argue that the
only genotype configurations of interest are those profi&s&’) inducing the observation of
allelic peaks ing, i.e. P(5|G’,G"”) = 1 and 0 otherwise. TheR = P(£|H,)/P(E|Hq) can be
formed as:

Y. L(A|Gs,Gy)P(Gu)
GueCp

(G GZ o L(A|Gy,,Gu,)P(Gy,,Gu,)
Uy -Gu,)ECd

LR = (5.4)

The P(G) is the profile probability as applied in the regular likeldd ratio (Evett and Weir,
1998), where?(G) may be computed using tliecorrection (Nichols and Balding, 1991; Buck-
leton et al., 2005). The expression in (5.4) is similar toaguns (5) and (6) of Evett et al. (1998)
who made a Bayesian formulation of thR for DNA mixtures.

If a case includes a victim with profi@®y, the se,, = {(Gs, Gy) = G} only contain one element,
(Gs, Gy). Hence, the likelihood ratio simplifies further

L(AIGs,Gy)

> L(AIGv,Gu)P(Gu)’
Guéed

LR=

where for this simpler casey = {Gy : (Gv, Gy) = §}.
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Table 5.6: Expected peak areas for a two-person mixture (expressedrmdfa). The list is
minimal such that equivalent combinations up to numeraifaileles are avoided. The expected
peak areas are ordered by lexicographic order of the aledigdation.

ns Observed alleles Combinations Expected peak areas in tdrns

1 a (aa, aa) (2)*As+/2
2 ad (aa, ab) (l+a, 1-a) *As .+ /2
(ab, aa) (2-a,a)*As+/2
a?  (aabb (20.2(1-a))Asi/2
(ab, ab) (1,1)xAs+/2
3 a’bc (aa, bo) (20, 1-a, 1-a) *As 4 /2
(ab,ac) (1, a,1-a)<Ag+/2
(bc,aq) (2(1-a), a, @) *As+/2
4 abed  (abcd) (@,a,1~a,1-a)As /2
(ac, bd) (@, 1-a,a, 1-a) *As+/2

In some cases, the value bfA|Gs, Gy) may be very much lower than the likelihood value
for the pair of best matching profiles. This indicates thas inappropriate to assume that the
evidence is a mixture dbs andGy - even though the profile$g, Gy) are consistent witl§.

The sums involved in the evaluation of the likelihood ratidl eften involve an intractable num-
ber of terms depending on the number of loci and number ofregbdgeaks in each locus. As
the inclusion of all possible combinations is infeasible,meed at least to include combinations
with a numerical impact on the likelihood ratio for the apgmation of the true likelihood ratio
to be satisfactory for forensic use.

The best matching pair of profiles will provide an estimatethe mixture proportiore. The
expected peak areas in Table 5.6 (expressed in termsindicate that alternative combinations
need to have an-estimate close to the estimate of the best matching pairderdo have a
reasonable fit. We exploit this result when defining our pegbalistribution in the section on
importance sampling.

5.6 Importance sampling of the likelihood ratio

An exact assessment of the weight of evidence comprisesati@t of every term of the numer-
ator and denominator of (5.4). However, this is infeasilld ather methods of evaluating the
evidence need to be considered. In this section, we showinpartance sampling can be used,
for estimation of the weight of evidence by assigning wesgbtthe individual combinations.
Maimon (2010) also considered importance sampling in a Biapecontext for modelling DNA
mixtures.
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LetCq = {(Gu,,Gu,) = G}, andG = (G’,G”) refer to a pair of profiles®’, G”’). The expression
of P(€|Hg) can be interpreted as a expectatiofafith respect to the probability measuPeon
g:
P(EHg) = ) LIAIG)P(G) = E(M(e); P). (5.5)
Ge@d

Hence, simulating combinatiorfs from G with respect td® may be used to estimaf{&|Hy).
However, simulation with respect # does not take the quantitative eviden@ejnto account
and will thus yield a poor estimate &{E|Hg) due to the possible larger numerical impact from
L(A|G) compared td?(G) in (5.4). To handle this, we use importance sampling basetth®
“marginal” likelihood values of each combination.

Letq(G@) = [1ss 0s(G's), WwhereGs = (Gf, GY) is the profiles on locusand

L(AIGs, G_9)P(Gy)

sGs = ~ 5
WG ¥ L(AIGsi, G-9)P(Gs))

(5.6)

whereNs is the number of combinations for the observed number ofslléG's, G -s) is the par-
ticular combination on locus merged with the best matching combinati6h,in the remaining
loci, t € {8 \ s}, and the sum in the denominator is over all possible comioingfNs, in locuss
merge with the best matching combination in the remainieg ldence L(A|Gs, G_s) is called
the “marginal” likelihood as it gives the likelihood for tiparticular combination on locuswith
the combinations on the remaining loci identical to the Imeatching pair of profiles. Further-
more, the denominator of (5.6) is a consta,for each locus. Using this proposal distribution,
P(E|Hq) may be expressed as an expectation with respegt to

P(G)

P(&IHq) = GZG L(AIG) 5 gy 4@ = EEW(E); ).

whereW(E) = P(G)/q(G) is the importance weight. Sind&G) = []s«s P(Gs) andB =
[T<s Bs, the ratio ofL(A|G)P(G)/q(G) is nearly constant:

LAIG)PG) L(AIG)B
Mes(AIGGIPG)) [T L(A|Gs, G—)
[Tses Bs €8

where the product in the denominator in many cases is a ggmximation toL(A|G). This
constantness di(&)W(E) improves the performance of importance sampling and reslitioe
number of samples needed for results with low variance (Ralmel Casella, 2004).

In order to estimat®(&|Hy), we draw combination&,i = 1,..., M, from q(G) and compute
the Monte Carlo estimate,

M
BlelHo) = - > LAIGIW(G), G, ~ o(G),

i=1

whereW(Gj) = P(G))/q(G)) are the importance weights.
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The estimate is unbiased as the terms are independentfesgddromq(G) and all have ex-
pectationE(h(E)W(E); q) = P(E|Hg). For the variance dP(E|Hg), we compute
1 M
» _ . N2 _P 2
RPERN=—7 ) [ILAIGGI -PEHAY)
The numerator of R, P(£|Hg4), can be handled similarly taking into consideration thatave
summing over a restricted set of combinatiofig, all including the suspect’s profile&, =
{Gu : (Gs,Gy) = G}. The greedy algorithm of Figure 5.1 is also applicable whegcsgying
a suspect. We only need another ordering of the observadimhs diferent set ofJ-matrices
using the extra information of the suspect’s profile. Thiplies that there exists a best matching
combination,G®, in €, having the same properties @sfor the unrestricted se€q. Hence,

importance sampling may also be used in estima#(®jHp) with similar formulae as those for
estimatingP(E|Hg).

5.6.1 Example of estimating LR using importance sampling

The best matching pair of profiles for the data in Table 5.4f@asd in Table 5.5 and were used
for estimatingg(G) and the constar®. In the computations, we assumed uniform distributions
of the allele probabilities. Table 5.7, lists the profile dicive suspectGs, together with the
unknown profile maximising the likelihood witBs fixed. This pair plays the role oS in

this example. In Figure 5.4 the observed,and expected peak heights,assuming a mixture
of these profiles are plotted.

Table 5.7: Suspect’'s STR profile together with best matching STR profiés unknown person.

Locus D3 VWA D16 D2 D8 D21 D18 D19 THO FGA

Suspect 16,16 15,17 11,11 25,25 13,16 30,30 15,17 15,15 848,242
Unknown 15,15 14,16 10,12 17,19 8,12 29,31 13,13 13,14 6,6,2319

In order to verify the validity of our methodology and implentation of the importance sam-
pler, we limited our data to include only loci on the blue flescent dye band (D3, VWA, D16
and D2). The total number of possible combinations for theslbbci is 212°6' = 6,048 and
it is therefore possible to compute the correct valu@f|Hg) = 0.4813351071°. For the
suspect’s profile specified in Table 5.7, locus D3 is the omlye Bocus for which it is pos-
sible to alter the unknown profile and still have consistenath §. Hence, there are only
two terms in theP(€[Hp) when restricting the analysis to the blue dye band. Theevalu
P(&IHp) = 0.225730410 13 indicating that the suspect is not likely to be a true contabof the
DNA mixture sinceP(E[Hp) < P(E]Haq).

In order to evaluate the performance of the importance seaqnpé computed 1,000 estimates of
P(E|Hq4) each based on 10,000 samples. The estimates are plotegtdd¢owith the correct value
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Figure 5.4: Plot of the observed peaks, and the expected peaks,assuming a mixture of the
suspect and best matching unknown (STR profiles of Table 5.7)

in the histogram of Figure 5.5. The distribution of the esties tends to be skew for this particu-
lar example, but with most of the estimates close to the taligaofP(E|Hg). The mean of the es-
timates,P(€|Hg), is 0.483731101° with a standard deviation of 084432101, From the cen-
tral limit theorem we may approximate the (positive) diatition of P(€|Hg) with a normal distri-
bution and compute an approximative 95%-confidence intef@a 22243 0.8452178}1071°.

In forensic genetics it is common practice to evaluate thdesmce anti-conservative, mean-
ing that the estimates and approximations are favourabtadcsuspegtiefendant (Balding,
2005). For a conservativeR the estimate of the numerator should be larger than the aluey
P(&|Hq) > P(&|Hq). However, 66% of the importance sample estimates are sntaéin the true
value for this particular example. A likely explanation this is that the sampling scheme places
to much of the probability mass close to the best matchinggfgirofiles. Hence, the (very)
large set of less likely combinations are not included ingbmate.

5.7 Results

The algorithm was tested on data from 71 controlled two-gremixtures with known profiles.
Hence, it was possible to validate the suggested profilaared by the separation algorithm. Ta-
ble 5.8 summarises the comparisons with the best matchingfparofiles and the true mixture

profiles.
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Figure 5.5: Histogram of 1,000 estimates BfE|H4) each based on 10,000 samples.

Table 5.8: Detailed summary table with the number of correctly separédci, x, stratified by
mixture ratio.

Cases with both profiles Cases with major profile Cases wittonprofile

correct inx of 10 loci correct inx of 10 loci correct inx of 10 loci
Ratio 3456 7 8910 3456 7 8910 3456 7 8910
11 13022210 12122210 13022210
1:2 0000257 8 000O0O0?2 812 00O0O0Z248 8
1:4 0001326 7 0 00O0OOO019 0001326 7
1:8 0002540 4 00O0O0OOO0A15 0002540 4
1:16 00100O0O0 3 000O0OOOO0O 4 00100O0O0 3
Total 1 3 15121314 22 12122 4950 1 3 15121215 22

From the bottom row of Table 5.8, we see that the separatgorighm returned the true mixture
profiles as the best matching combination 22 times. The nuoflmses where one (14 cases),
two (13 cases) or three (12 cases) loci were wrongly sepmhregee almost the same. In five
cases, half or less of the loci were correctly separated.

In 50 cases, the true major profile were correctly identifiedlia another 13 there were inconsis-
tency in at most two loci between the major profile of the bestalming pair and the true major
profile. Furthermore, Table 5.8 shows that the eight remginases with incorrect identification
of the major profile had mixture ratio 1:1. Hence, in theseesathere were no obvious major
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profiles as the amounts of DNA contributed were (almost) eduathermore, for 1:1-mixtures,

there are many pairs of profiles yielding similar goodned# ¢d the observed peak intensities,
which previously was exemplified in Section 5.4.2. The atan is less successful in identifi-

cation of the minor profile. However, in most cases, the mprofile was separated correctly in
seven or more loci.

In addition to the 71 DNA mixtures from controlled experingrthe separation algorithm was
used to separate 64 two-person DNA mixtures from real criases. For each of the 64 crime
cases the laboratory had two reference samples that wesistamt with the observed stain.
Three experienced forensic geneticists tried to identifthiihe major and minor profiles of the
mixture without knowing the true profiles of the mixture faah mixture (blinded experiment).
In Table 5.9, the results from the separation using the s¢iparalgorithm is compared to those
of the forensic geneticists.

Table 5.9: Comparison of the performance of the separation algorithanfarensic geneticists.
The counts show the number of loci with the minor and majofil@®correctly identified.

Geneticists Algorithm
Correct loci Minor Major Minor Major
10 8 31 16 36
9 16 8 16 9
8 13 8 14 5
7 13 4 10 6
6 6 7 1 2
5 3 2 3 2
4 2 2 2 2
3 2 1 2 2
2 0 0 0 0
1 1 1 0 0

The total number of correctly separated mixtures was 16hf@iseparation algorithm and 8 for
the forensic geneticists. The samples where the minoribomdr were correctly identified in all

loci also had the major component correct (see Table 5.9)foAthe controlled experiments,
the success rate was dependent by the mixture ratio, wittbauwf correctly separated loci
decreasing ag increased towards 0.5.

Furthermore, it should be noted that the forensic gen&igigre forced to call some pairs of
profiles resulting in some inconclusive statements. Thadheforensic geneticists were forced
to deduce major and minor profiles in cases where the regroéogol of the laboratory would
not support the separation of profiles.
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5.8 Discussion

Using the quantitative information from STR DNA analysistarms of peak intensities is
presently the only way to separate STR mixture results. d@asea statistical model, we de-
veloped a simple greedy algorithm for finding the best maigipair of profiles.

Our model is based on few assumptions that are widely actemi®ng forensic geneticists.
The statistical model made it possible to make objectivegamsons of various combinations
by evaluating the likelihood values. From the normal digttion assumption, this value is com-
puted byr=N, which implies that the lower estimate, the better concordance between observed
and expected peaks.

Importance sampling was used in order to estimate the li&eli ratio since this becomes com-
putationally dfficult when 72125365 terms need to be evaluated in the numerator ofltRe
with Hg:(Gy,,Gy,). The method showed to bdfieient, and future work will consist of imple-
mentation of sampling schemes that explore more of the sasgace. This implementation
would ideally result in fewer estimates that are less thartrite value.

5.9 Conclusion

By using the greedy algorithm of Section 5.4.1, we demotesirthat it is possible to automate
the separation of DNA mixtures. However, due to the asswngf no occurrence of drop-out

or stutters, the model may be too simple for more complicagsgs. Hence, this methodology
is applicable to cases where the analysis today is standatdrie-consuming. This allows the

forensic geneticists to focus on more complex crime cases.

Future work comprises the development of a methodology &midling drop-outs and stutters.
Since stutters are profile independent (stutters from palreeaks are constant for all alleged
combinations of profiles), it is possible to remove stutfevsn the data prior to separation and
interpretation. Allowing for drop-outs while finding a besatching pair of profiles is also pos-
sible. Using the methodology of Tvedebrink et al. (20093, phobability of drop-outP(D|H),

is assessed conditioned on a given profile.
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Appendix

5.A The general case with m contributors

In the general case witin contributors to the mixed stain, our method can be genedhlyy
assuming the mixture proportions, . .., am to be strictly increasing,

m-1
1< <ami1<am=1-a,, a+:Za/i. (5.7
i=1

The conditional covariance structure is the same as spe@if{®.1), where the conditional mean
is:

m-1

= Xem + Z aiXsi, (5.8)
i=1

A m-1 m-1
EM%@=%%Z%&+R4LEM)
i=1

i=1

whereXs; = (Psj — Psm)As+/2fori =1,...,m—1andXsy, = PsmAs+/2. In order to find the
MLE of a = (ai){‘;‘ll, we solve the likelihood equations féfc, 72; (As)scs) With respect tao.
This implies that the MLE oé is:

-1
d{ZﬁMQ{Z&MMV&ﬂ.

se8 se8

Furthermore, the estimate of in the general setting is

2= N (A= Xst=Xm) "Wo (As—XsG—Xspm),
8
whereN=n, -S-m+1= 3, s(ns—1)—(m-1).

5.A.1 Greedy algorithm

The greedy algorithm of Figure 5.1 needs only a few modificetito be applicable to the general
case. Most important is the specification of the number otrdmurtors,m. This needs to be
decided before running the algorithm. For the algorithmgsibccessful, there should preferably
be at least one locus withn2peaks as this increases the confidence in the estimat&éhe
modified greedy algorithm fan contributors to a DNA mixture is given in Figure 5.6.

Furthermore, it is necessary to check if theeStimate satisfies the inequalities of (5.7) for each
combination. In Table 5.10, we list fictive data togetheiwizo combinations both implying

a perfect fit. Both matrices are valid as the orders indkgim columns satisfy the condition
(5.7). However, for Combination 1, the estimaig = (0.2, 0.45) does not satisfies (5.7) while
the estimate for Combination @, "= (0.2, 0.35) does. Hence, Combination 2 is chosen over
Combination 1.
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Algorithm: Find best matching set aofi profiles

Specify the numbem of contributors.
LetT =0, & = 0 and?® = .
While 72 decreases dF #8
Fori e {2m,...,2}
Forse 8§ = {s: se 8andns = i}
Choose combinatiope J; minimising 2
and satisfying restrictions of (5.7)
SetT = {T\ (s,-)} U (s, j) and computex”
Returna, T andJ.

Figure 5.6: Greedy algorithm for finding a set of profiles (locally) majsing the likelihood of
(5.8).

Table 5.10: Fictive data showing the importance of ensuring (5.7) is&ad.

Combination 1 Combination 2
Area P, P, P; a-sum P, P, P; a-sum
200 1 0 0 m 1 0 0 s
450 0 1 0 ay 0 0 1 la,
5560 1 0 1 %tap 1 1 0 ai+tap
800 0 1 1 Ta: 0 1 1 la

In Figure 5.7, the greedy algorithm of Figure 5.6 is desdibg a diagram emphasising the
various steps in the procedure of finding the best matchingbamation.

In step A, the parametetsandr are estimated using only the loci withmdbserved peaks. Step
B determines the profile combination (see step D) on the otitogus that minimises given
the combinations on the already visited loci. The algorithsits the blocks of loci with equal
numbers of observed alleles in decreasing order2 . .., 2. If any of the blocks is empty, the
algorithms skips forward to the next nonempty block. Theeomithin each block of loci with
2m-i observed peaks is arbitrary. When reaching the last lobes;ambination and estimates
of a andr are saved.

In step C, the algorithm visits each locus searching for aliination that might decreasewith

all remaining loci combinations fixed. #fis non-changed the algorithm stops. Otherwise step C
is looped until a fixed-value is obtained. On termination the algorithm returmesdbmbination
and estimates ak andr.

Step D pictures that, for each locus with less thampgeaks, there are several combinations of
profiles that need to be investigated. In the figure, eadpicts a combination andsymbolises
the current optimal configuration. The black arrow showsolitiombination is currently tested.
When all the combinations are tested the one with smatlesteturned.
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Figure 5.7: Diagram describing the greedy algorithm for resolving DNitures. The shaded
boxes show the loci previously visited by the algorithm. Todd lined box shows the current
locus under investigation.
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5.10 Supplementary remarks

In the above manuscript only two-person mixtures were aealyn practice, but the appendix
demonstrated how to extend the model and algorithm to hamgtlerson mixtures. The Section
of Forensic Genetics, University of Copenhagen, also pezbthree-person mixtures. Five
different DNA profiles were mixed in trios in the mixture ratios2:4. The five DNA profiles
are listed in Table 5.11. There @) = 10 different triple-wise combinations and each triple
is analysed in six dierent mixture ratios (permutations of the three profilesf)isTgives 120
samples since each case is analysed in duplicates. How&vsamples were discarded due to
pipette and amplification errors leaving 103 samples to la¢yaad.

Table 5.11: The five DNA profiles used in the three-person mixtures.

D3  VvWA D16 D2 D8 D21 D18 D19 THO FGA

14,18 17,19 12,14 20,24 10,13 30.2,32.2 13,13 12,13 8,9 2220,
17,18 14,17 99 17,23 13,15 28,28 14,19 14,152 8,9.3 20,24
16,18 16,19 10,13 16,23 11,14 31,32.2 15,19 12,15 9,9.32420,
15,18 16,18 9,11 20,21 12,13 29,32.2 13,14 13,14 6,7 22,22
15,19 15,17 12,13 16,19 12,13 27,30 13,15 13,14 9,9.3 19,25

moOw@>

The on-line implementation is programmed such that it hesidbth the analysis of single source
stains, two- and three-person mixtures. In Figure 5.8 tlag pgensities for a mixture of profiles

B, D and C (see Table 5.11) is plotted together with the exgubealues for the best matching
combination.

Since we know the true profiles, we are able to compare thesshing combination with the
true profiles as for the two-person mixtures. In Table 5.Fthree inferred profiles are listed.
The major profile coincides with profile B while the mid profdéfers from profile D by one

allele in locus D19. The minor profile has five correct and 4iply-correct loci compared to
profile C.

Table 5.12: The estimated profiles from the separation of the threeepersxture of Figure 5.8.
The major profile coincides with profile B in all loci, the midddile differs by one allele from
profile D in locus D19, and the minor is correctly identifiedfiire loci (compared to profile C).

Locus D3 VvWA Di6e D2 D8 D21 D18 D19 THO FGA

Minor profile 16,17 17,19 10,13 16,17 11,14 28,31 14,14 12,1893 20,24
Mid profile 15,18 16,18 9,11 20,21 12,13 293213,15 13,14 6,7 22,22
Major profile 17,18 14,17 9,9 17,23 13,15 28,28 14,19 1£18,93 20,24
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Figure 5.8: Three-person DNA mixture of profiles B, D and C in mixture oadi2:1 (see Ta-
ble 5.11).

The performance of the mixture separator for the threegpeBNA mixtures is summarised
in Table 5.13. For each three-person mixture the number w&cty (both alleles correctly

identified) and semi-correctly (exactly one alleles cdiyeidentified) loci are computed. This
is done separately for the major, mid and minor profile whieeemhedian of the corresponding
amounts of DNA for these classifications are 335 pg, 168 pgddnug. The first count in each
cell refers to the major profile, the second to the mid profilé Estly the minor component.

In 76 cases (73.8%) the major profile was correctly identifie@t least eight loci (and partially
correct on the remaining ones), while 52 cases (50.5%) hadnitl profile correct on at least
six loci. The success rate for the minor component was siaatory low. However, the low
amounts of DNA compared to the other two components impliasthe contributions from the
minor profile are within the limits of variation one would eqi for the larger peak intensities.
That is, the unbalances induced by adding the fraction filwemtinor component to the peaks
of the mid and major profiles is masked by the variability afse peaks.

The authors have in collaboration with Aalborg UniversibdaJniversity of Copenhagen ap-
plied for a patent for the intellectual rights of the mixtsegparating algorithm presented above:
Name of inventionA Computer-Assisted Method of Analyzing a DNA Mixture.

Application detailsJ.S. Provisional Application §148221 filed Jan. 29, 2009.
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Table 5.13: Summary table of the separation of three-person mixturash Eell corresponds to
the number of “majgmid/minor” counts for the number of correctly identified lociatified on
matches and partial-matches. Row number is full matchesalodnns partial matches.

0 1 2 3 4 5 6 7 8 9 10
0 000 000 OO0 000 000 QOO 00 0 000 01/0 011 GO0
1 000 000 ¢OO00 000 000 011 00/ 1 01/3 001 001

2 000 000 O00 000 000 012 ¢2/6 053 025

3 000 000 000 000 025 026 0210 Q54

4 000 000 OO01 QY1 045 027 Q4 6

5 000 000 O21 V1/0 058 3J7/6

6 000 000 O 10 268 894

7 000 020 0 62 1382

8 000 020 26113

9 000 2560

10 251/0
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Abstract:

In crime cases with available DNA evidence, the amount of DéNéften sparse due to the setting
of the crime. In such cases, allelic drop-out of one or mare &lleles in STR typing is possible.
We present a statistical model for estimating the per locws @verall probability of allelic
drop-out using the results of all STR loci in the case samgpleeterence. The methodology of
logistic regression is appropriate for this analysis, aedi@monstrate how to incorporate this in
a forensic genetic framework.

Keywords:
Drop-out probability; forensic genetics; logistic regsies; STR.

6.1 Introduction

When assessing the weight of the evidence of STR typing ienfsic genetics, the arguments
depend on the observable alleles in the crime stain. Howeuerto technical and biochemical
issues, it is possible that a true allele in the sample is etdaded by the genetic typing method,
i.e. allelic drop-out (Gill et al., 2006). The probability this event will &fect the weight of
evidence with a decrease in the power of discrimination asdtiop-out probability increases
since less individuals can be excluded as possible cotdribu

It is well-known that in samples of high quality, i.e. high anmt of DNA (for all contributors
if it is a mixture) and no contamination or degradation, thebability of observing a drop-out
is practically zero. Using logistic regression, we forreadl this intuition by using the results of
all STR loci in the sample as an indicator of the amount of DNAe statistical analysis showed
that the drop-out probability is locus dependent.

The DNA commission of the ISFG stressed the importance os$idening allelic drop-out in
the recommendation on mixture interpretation (Gill et 2006, recommendation 7). In rec-
ommendation 7, the intuition of the logistic model was ekpd, but how to asse$¥D) was

not formalised. The estimation &(D) is important because it influences the estimation of the
weight of the evidence in the calculation of the likelihoatio (LR).

6.2 Material and methods
6.2.1 Data

The analysis was based on 175 controlled experiments ctettlat The Section of Forensic
Genetics, Department of Forensic Medicine, Faculty of He8tiences, University of Copen-
hagen, Denmark. The experiments consisted of pairwiseungigtof four profiles and samples
with only one contributor diluted in water.

Genomic DNA from blood-samples from two males and two femalas extracted by a stan-
dard phenol-chloroform extraction method. DNA was quaadifin triplicates using the Quan-
tifler® Human DNA Quantification kit (Applied Biosystems) with Hum&enomic DNA Male
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(Promega) as the quantification-standard on a ABIPTiZ000. The median DNA concentra-
tions were used. Each sample was diluted in water to 500 pg/BINAhe DNA concentrations

in the diluted samples were measured again in triplicatestia@ median DNA concentration
was used.

Six two-person mixtures of DNA () in proportions 16:1, 8:1, 4.1, 2:1, 1:1, 1:2, 1:4; 1:8 and
1:16 were made of DNA from each of the four persons. The amaiUDNA from each person
in the mixtures was calculated based on the DNA concentratieach sample. Each of the four
samples were serially diluted with water in the proportid6sl, 8:1, 4:1, 2:1 and 1:1.

The amount of DNA in each mixture ranged from 328 to 528 pg DHAd from 24.6 to 410
pg DNA in the diluted samples and were amplified twice with AmepF/STR® SGM Plus-kit
(Applied Biosystems) as recommended by the manufactureniABl GeneAmp 9700 PCR
thermocycler.

One ul of the amplificates in 15 ul HiBiFormamide (Applied Biosystems) was analysed on an
ABI Prism® 3100 Genetic Analyzer using POP4 as the polymer and 5 kVtinjegoltage for 6
seconds. DNA fragments were detected and fragment sizesegéimated with GeneScan 3.7
with a detection threshold of 50 rfu. Genotypes were assigregng GenoTyper 3.7 with the
Kazam macro (Applied Biosystems) with no stutter filter agqbl

We excluded all alleles in stutter positions of true alléteavoid complications of masked drop-
outs due to stutterfiects. Table 6.1 presents the number of observed allelegpdi®and the
proportion of drop-outs for each locus.

Table 6.1: Observed drop-outs in the data set stratified by locus. Alpebuts were single
contributor alleles.

D3 vWA D16 D2 D8 D21 D18 D19 THO FGA

Observed 306 356 322 398 362 375 315 220 258 313
Drop-outs 10 11 11 14 11 7 10 10 17 18
Proportion 003 003 003 004 003 002 003 005 007 006

There was a tendency for the high molecular loci to have moop-duts than the remaining
ones within each fluorescent dye colour. This indicates adaependence of the probability of
drop-out.

6.2.2 Logistic regression model

Let D be the event “The contributor’s allele has dropped out”, 8ndshen no drop-out oc-
curs, implying thatP(D) = 1-P(D). For evidence evaluation, we are interested in quantifyin
the probability of allelic drop-ouP(D). As mentioned in Section 6.1, we wish to model this
probability conditioned on the observed stain.
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Figure 6.1: Locus specific logistic curves (solid) together with an allezstimate (dashed). The
plot is on log-scale ensuring(D/H = 0) = 1. At each panel box-plots are added, summarising
the empirical distribution oH for D andD.

We defineH as the sum obbservecpeak heights divided by a sum of indicators with value two
for homozygous alleles and one for heterozygous, i.ehffteeing theith height measurement
H = (Nhet + 2Mhom) ™t >, hi, wheren = npet+ Nhom is the number of heterozygous and homozy-
gous alleles in the profile. This was previously demonstr&iebe a good proxy for the amount
of DNA contributed to a stain (Tvedebrink et al., 2010). i ttain is a mixture assumed to have
K contributors, we only use the alleles where pergdn= 1,...,K, is a single contributor for
estimatingH®. We useH as a summary statistics for the observed stain in our aisadysl use
logistic regression to mod@l(D|FT), whereH is found fromH as (forkK = 2),

P(DIH), Non-shared het allele
P(DIH) ={ P(D|2H), Non-shared hom allele
P(DIHM+H®), Shared het allele,

whereH® andH® may be weighted by 2 if the contributors of the shared allateshomozy-
gous.
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Logistic regression is a standard way to estimate the pibiiedfor a dichotomous response
stochastic variable when explanatory variables are asstmahange the probability of the event
(McCullagh and Nelder, 1989). The logistic model is paracly simple in this case since we
only have one explanatory variable,

expo + B1log H)

P(DIH) = .,
1+ expBo+B1logH)

wheres; showed to be negative such tH{D|H) decreases d4 increases, and the use  of l5ig
rather tharH, ensures that with; being negativé(D|H = 0) = 1. When we condition ok, we
assume the event of two allelic drop-outs of the same carititare independent, which is also
an underlying assumption of the logistic regression. T&a®(D1, D,|H) = P(D1|H)P(D,|H),
whereD;: “Allele i of the contributor with DNA proxﬁ has dropped out”.

6.3 Results and discussion

The analysis showed that the intercept paramggexaried between loci with a-value of 0.01
indicating a significant dierence between loci (Venables and Ripley, 2002). A simdat for
the slope parametes;, indicated that this parameter did not vary significantlyoas loci (-
value of 049). In addition, there was no significant change of the dropprobability caused
by the allelic number indicating that larger alleles wittire same locus has the same drop-out
probability as smaller alleles. However, in the data set,l#ngest allelic dierence was eight
repeat units. This variability may be to small to demonstitaat a possible allelicfiect is
significant.

The parameters for locusare thus3ys andg; for computingP(D|Ff), where we use the same
H for all loci. The parameter estimate f is —4.35 and the estimates f§ s are given in Table
6.2.

Table 6.2: Estimates 0f8y s andg; based on the experiments of Section 6.2.1.

Locus D3 VWA D16 D2 D8 D21 D18 D19 THO FGA
Bos 18.26 18.43 18.75 1831 18.28 17.45 18.07 19.40 19.40 19.21

Note, thatBy s are larger for the loci of the yellow fluorescent dye bandéating their larger
drop-out probability as observed in Table 6.1. The corradpw logistic curves for the param-
eters of Table 6.2 are plotted in Figure 6.1 together with eerall estimate not stratifying on
loci. The parameters for the overall curve Age= 17.56 andB; = —4.14.

In Figure 6.1, the box-plot added to each panel shows the Dmé\m’—l\ for the drop-outsD)
and observed alleleD). The boxes indicate the inter-quartile range (middle fdfgrcent of
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the data) of the observations and the whiskers extend to tis¢ extreme data points within 1.5
times the lengths of the boxes. Remaining points are markeibts.

Itis clear from Figure 6.1 that there is an overlap of the Wis in the box-plots. This implies
that the classification of drop-outs is associated with ttaggty as one would expect. In partic-
ular, it is true for D21 where all drop-outs observed had amiesight,H, above 70. This may

be due to the specific alleles in our data set (for D21, these 2&, 29, 30, 30.2, 31 and 32.2)
and possible individual specifid¢fects from having only four dierent profiles in the data.

We used the estimated parameters of Table 6.2 in order teeaeable of the mean peak heights
that correspond to the specific drop-out probabilities. therten dfferent loci included in our
data set, these mean heights are presented in Table 6.3.

Table 6.3: Mean peak heights (rfu) for various drop-out probabilif@sten STR loci.

P(DH) D3 VWA D16 D2 D8 D21 D18 D19 THO FGA Overall
0.0001 556 577 622 562 558 461 531 722 723 692 648
0.0005 384 399 430 388 385 318 367 499 499 478 439
0.0010 327 340 366 331 328 271 313 425 426 407 371
0.0050 226 235 253 228 226 187 216 293 294 281 251
0.0100 192 200 215 194 193 159 184 250 250 239 212
0.0500 132 137 147 133 132 109 126 171 171 164 142
0.1000 111 115 124 112 111 92 106 144 144 138 119
0.2000 92 95 103 93 92 76 88 119 120 114 98
0.3000 81 84 91 82 81 67 78 105 106 101 86
0.4000 73 76 82 74 74 61 70 95 95 91 77
0.5000 67 69 75 68 67 55 64 87 87 83 70
0.6000 61 63 68 62 61 50 58 79 79 76 63
0.7000 55 57 62 56 55 46 53 71 71 68 57
0.8000 49 50 54 49 49 40 46 63 63 60 50
0.9000 40 42 45 41 40 33 39 52 52 50 41
0.9500 34 35 38 34 34 28 32 44 44 42 34
09900 23 24 26 23 23 19 22 30 30 29 23

Computing the Brier Score (Brier, 1950) for the estimatemlitospecific model, we find that the
Brier Score= n"t 3" (D; — P(D|H;))? = 0.02, whereD; is indicator for dropout of the allele
of the data andH; is the associated proxy for the amount of DNA. A Brier Scomselto zero
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indicates that the model is adequate. A simulgtegilue of 0156 indicates a satisfying fit of
the model. Furthermore, we tried to improve the model bygibirear splines (Harrell Jr., 2001)
with knots at log(75) and log(100), but these model extersigere not supported by the data.

The use of the logit function implies that the interpretat®made in terms of log odds. The log
odds of the drop-out probability conditioned binis linear in logH,

P(DIH)

Iog|tP(D|H)_Iog ( )

_IBOS"'ﬁllegH

Using H as the explanatory variable implies lower variability oe tANA proxy than if only
using a single peak height observation, e.g. the peak heigtite same locus of a heterozygous
allele that has not dropped-out. Furthermore, in real criames such an allele might not be
observed, since both alleles of a heterozygous might haped-out or the other allele may be
shared with an other contributor if the stain is a mixture.

Gill et al. (2000) discussed the importance of addressiagidk of allelic drop-out and how to
incorporate this into the likelihood ratio. Combining oyopaoach for estimating’(D|FT) with
the methodology of Gill et al. (2000) may be a feasible apgihdar better assessment of the
weight of evidence when the level of the peak heights indicétie possibility of drop-outs.

6.4 Conclusion

We have demonstrated a simple and applicable way of asgetssirdrop-out probabilities of
STR alleles in forensic genetics. The drop-out probaeditomputed using the model concur
with the prior knowledge of the drop-out behaviour varyinighwhe observed peak heights.

Future work consists of testing the model on a larger datansétding more alleles. With a
larger data set, it may also be possible to test whetheealta fragment length has a significant
effect on the drop-out probability as the individual specifieet decreases with the number of
different profiles.

It is worth emphasising that the drop-out probabilities masy between laboratories, machinery
within the same laboratory and typing kits used for profilifdnis is due to dierences in e.g.
the ability to amplify the DNA in the PCR and in the potentialrheasure the light intensities
for the electropherogram. Hence, before applying this outtogy in the likelihood ratio for
evidence calculations, the laboratory needs to perforred@x@nts with known profiles in order
to estimate the parameters in the logistic regression model
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Appendix

6.A Examples

In forensic genetics it is common to use the likelihood rato= P(E[H)/P(E|Hg) as mean to
assess the weight of evidence. HB(&|H) is the probability of observing the evidenEggiven
the hypothesi$i. The prosecutors hypotheslisy, often include more profiles from identified
individuals than under the defence hypothékisHaving a single contributor stald, may state
“The suspect is the only contributor to the crime stain”, ve@sH4: “An unknown individual
unrelated to the suspect is the only contributor to the cstam”.

In the situation where the hypotheses induces that anatletip-out has occurred one needs
to specify the profiles that constitute the observed staordter to compute the profile specific
drop-out probability for bothd, andHg.

6.A.1 Example with data from a controlled experiment

We used the data in Table 6.4 to demonstrate the techniquergiating the drop-out probability
of a given allele. The data originated from a mixture of a ocolfeéd experiment with the two
profilesA and B denoted in Table 6.4 by ande, respectively, wheré contributed with 314
pg/ul andB with 424.6 pg/ul.

Table 6.4: Data used in the example of the Appendix 6.A. The sample wagtaima of the two
profilesA andB (denoted by ande) contributing 314 pg/ul and 4246 pgul, respectively.

Locus Allele Height Area  Locus Allele Height  Area
D3 15 ° 766 7264 D21 28 o 70 660
D3 16 o e 991 9165 D21 29 ° 767 7169
D3 19 o - - D21 30 o 102 1024
VWA 15 o e 788 7631 P21 31 . 889 8283
VWA 17 o e 710 6678 D18 12 o 70 736
DI6 11 e 1765 18858 D18 16 o 127 1341
D16 12 o a _ D18 17 ° 687 7856
D19 13 o e 1525 12862
D2 19 ° 746 8816
D2 25 o e 696 8432 THO 6 o e 836 7333
THO 7 o 82 736
D8 8 ° 967 9145
D8 13 o - — FGA 20 o

FGA 23 o e 638 6507
FGA 24 o 549 5542
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Under the assumption that the data in Table 6.4 originated & two-person mixture, we need
to specify a possible pair of profiles explaining the obsémieles. We compute the individual
DNA proxiesH® andH®) as defined in Section 6.2.2 for the two profikandB of Table 6.4,

H® _ 117+ 70+ 102+ 70+ 127+ 82

5 = 94.67
4O _ 766+ 1765+ 746+ 967+ 895+ 767+ 889+ 766+ 687+ 595+ 549 _ 78267
10+ (2x 1)

Letallele 19 in locus D3 be denoted by f33then from Table 6.4 we found that the homozygous
allele D83 and the following non-shared heterozygous alleles of mdfihad dropped out:
D319, D161, D253, D195, and FGAy.

The DNA proxy was the same for all the heterozygous drop;&]ts H®, and for the homozy-
gous alleleH = 2H®. The parameter estimates of Table 6.2 were then used int@rdempute
the locus specific drop-out probabilities. Below, we denti@is how to compute the drop-out
probabilities for D3g, D195 and Dg3:

exp(1826-4.3510g(9467))
1+ exp(1826-4.35109(9467))

exp(1940-4.3510g(9467))
1+ exp(1940-4.3510g(9467))

exp(1828-4.3510g(18933))

PPos.lH) = 77 exp(1828-4.35log(18933)) _ 0.011

=0.177,

P(Dps,,|H)

=0.403

P(Dpus,lH)

Suppose we only had information on profee.g. B being the victim of a crime, and that the
profile of the suspec® only gave a partial match. For simplicity, we use the samemhegght
estimate for the suspect as fari.e. H® = H®_ In locus D19, only allele 13 was observed
and a shared allele may have dropped out. Assuming suSpischomozygous for allele 11
and profileB is heterozygous with alleles 11 and 13, the DNA proxyis= 2H®) + H® =
18933+ 78267 = 972 and the drop-out probability is

exp(1940-4.3510g(972)) 269105

P(Oo19.IH) = p(1940-4.35 109(972))

6.A.2 Example in the recommendation of the ISFG Commission
Following the idea of Example 1 given in (Gill et al., 2006, ggndix B.2), we compute the
likelihood ratio using our model for assessing the dropprababilities.

Assume that the genetic stath= (a, ¢, d) and that the prosecutors hypothesis claims that the
suspectGs = (a, b) is a contributor to the stain. For this hypothesis to be,ttlueb allele must
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have dropped out. In this example, we only consider data fsamlocus as in Table 3 of the
ISFG recommendations. We re-use the data from THO in TaBle@rder to exemplify how to
evaluate thé.R. For consistency with the example of Gill et al. (2006), deradlele 7 bya and
let c andd be allele 6 and 8, respectively.

From Table 6.4, we compute the following estimate$iodnd the associate®(D|H) for every
combination of the alleles assuming a two-person mixturgp®se that a contributor has non
shared allelemnand that the DNA proxy for this combinationtt,,. ThenP(Dmn) = P(DIHmn)
is the drop-out probability of eithen or n. Alternatively in the actual case there may be one
shared allelem, and in this cas®(Dmm) = P(DIHmm) = P(DI|Hmnt+Hmo) is the drop-out prob-
ability for allele m when shared by two individuals with the combinations andmo. The
probability P(G|Hp) is _ B

P(SIHp) = 2P(cd)P(Dca)*P(Dan)P(Dab),

since alleleb is assumed to have dropped out.

Assume that an allel&), has dropped out implying that the two profiles are heteromggiot
sharing any allele. That iSQ is any allele ofAtyo \ {&, ¢, d} with allele probabilityP(Q) =
1-[P(a)+P(c)+P(d)], whereAtyo is the set of alleles for locus THO. All of the observed akele
must be paired with the missing allele in order to computesftexific drop-out probabilities as
these difer due to the dierent peak heights. From Table 6.5, itis clear Pd@a0) is the largest
of the three as expected since the peak heightisfonly 82 rfu. When paired with any afor

d, the drop-out probabilities are practically zero as oneldioequire. Hence, the terni¥Dcq)
andP(Dqo) are also indicators of a poor agreement with the heterdeytgalance when pairing
ad andac, respectively.

Table 6.5: DNA proxies and drop-out probabilities for various profiles

Profile(s) Notation H H P(D|H)
aQ P(Dao) 82.0 82.0 5.57101
ac P(Dac) 459.0 459.0 7.0210*
ad P(Dag) 338.5 3385 2.680°
cQ P(Dco) 836.0 836.0 5.1710°
dQ P(Dgo) 595.0 595.0 2.2710*
cd P(Dcq) 7155 7155 1.0210*
aa P(Daa) 82.0 164.0 5.82107?
cc P(Dcc) 836.0 1672.0 2.540°
dd P(Dya) 595.0 1190.0 1.140°

ac,ad P(D..) 459.0,3385 797.5 6.350°5
ac, cd PD.) 459.0,7155 11745 1.180°5
ad, cd P(Dgq) 338.5,7155 1054.0 1.880°5
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The probability of the evidence given the defence hypothasid that one allele has dropped out
is given as

P1(SHa) = 8P(acdQ[P(Dac)*P(Duq)P(Duo) +
P(Dad)2P(Dcg)P(Deq) + P(Ded)?P(Dag)P(Dag)].
where the multiplication by 8 is due to the number of pairnisenbinations of the alleles,

e.g. pairing the alleleac anddQ may be done asa€)(dQ), (ac)(Qd), (ca)(dQ) and €a)(Qd);
interchanging the profiles yields the eight combinations.

The defence hypothesidy, also comprises the scenario where no alleles has droppedits
implies that either an allele is shared or one contributdidmozygous. The probability of
Po(5IHq) is:

Po(SIHa) = P(acd)[P(a) {4P(Daz)P(Dcq)’+8P(Daa) P(Dac) P(Dad)}
+ P(C) {4P(Dcc) P(Dac)*+8P(Dc ) P(Dac) P(Dea)}
+ P(d) {4P(Dga)P(Dac)*+8P(Da.q)P(Dad) P(Dea)} I

It is worth noting that the probabilitieB(D,c) andP(Dyg) are misleading as the combination of
a together withc or d causes substantially imbalances in the profile’s peak leigh

In order to compute the likelihood ratieR, we need only to compute the ratio B{S|Hp) to
P1(S|Hg) + Po(G|Hq). As in Gill et al. (2006), we assume uniform allele probieis of 0.1 for
the observed alleles implying thB{Q) = 0.7, yielding aLR of

P(SIHp) 0.0049

LR= =
P1(GIHg)+Po(SIH4)  0.0014+0.0035

=1.0007.

For the same scenario, Gill et al. (2006) considered unifmwbabilities of 0.02 of the observed
alleles. Using our model, this impliedd of 9.6111.
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6.5 Supplementary remarks

Several authors and commentators in forensic geneticsahi@aaly accepted the model above as
a mean to estimate the probability of allelic drop-out (Baddand Buckleton, 2009; Petricevic
et al., 2009; Gill and Buckleton, 2010a,b). However, as veitly piece of science and each
model criticism has also been put forward. Balding and Beicki (2009) argue that the drop-
out probability of a homozygous allelB(D5), should satisfy the property thR(D,) < P(D)?,
whereP(D) is the drop-out probability of a heterozygous allele far fame DNA profile. Their
argument is based on the fact that the superposition of twoirdensity peaks should have
smaller drop-out probabilities than when peaks are consitieeparately. That is, allelic drop-
out may occur due to absence of molecules associated withtiaypar allele, but may also be
due to the insflicient amount of molecules to trigger the observation of #&lel In the latter
case, the amount of DNA might imply that heterozygous algield peak height observations
close to 50 rfu while homozygous alleles are closer to 80 rfu.

Balding and Buckleton (2009) suggested tRéD,) = oP(D)? for some value of < 1, and was
chosen since it satisfy the their requirement. Based onwegtdrom some forensic laboratories
Balding and Buckleton (2009) suggest= 0.5. However, there are at least two problems with
thea-approach. First, there is not a solid model behind the sstgme and second, how do one
choose the correct value faf? The model fitted to the experimental data in Tvedebrink.et al
(2009) hasP(D,; H) > P(D; H)? for H > 136 rfu. However, the dierences are in the fourth
decimal place and has no practical implications. D. J. Baldpersonal communication, 2010)
suggested to usa/H rather than logfl). This transformation yields a slightly better fit to the
data and postpone the issueR§D»; H) > P(D; H)? to H-values> 201 rfu.

Gill et al. (2005) demonstrated how to simulate DNA mixtubgsmimicking the procedure
carried out by a forensic laboratory: DNA extraction, abtjgsampling, PCR féciency and
measurement variability. A similar approach is listed lelo

(1) Assume that there aié chromosomes extracted for typing.

(2) Of these dag) carry the specific allele of interest, whewg) = bin(N, x/46) wherex = 1
for heterozygous and = 2 for homozygous alleles, respectively.

(3) The PCR process is assumed to be a binomial proegss: ne-1) + bin(Nec-1), 7cr), for
c=1,...,C, cycles, wherer.. is the PCR #iciency for each cycle in the PCR process.

(4) If ncy measured with noise gives reason to peak heights lower tlgavea threshold we
declare a drop-out.

By running (1)-(4) several times with varying initial vakill we get an simulated distribution
of P(D). In Figure 6.2 simulations for heterozygous and homozggleles are simulated for
varying amounts of DNA. In these simulations,s = 0.85,C = 28 and each point is based
on 5,000 simulations. The solid curve is fitted to the hetggomns data points (open points) by
logit P(D; H) = By + B110g(H) and demonstrates that the model fits the data well over tidewh
range of the response. Dashed curves show the same regredtsio/(H) as covariate, and the
probit approach is discussed below. The fitted parameggyg:) were used to draw the curves
for the homozygous simulations (closed points) with ldd)2s covariate. The plot shows good
agreement between the simulation homozygous data poidtshenmodel predictions. The
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Figure 6.2: Simulations using (1)-(4) for varying amounts of DNA. Opagirs are heterozy-
gous simulations, and closed points homozygous. The cargesxplained by the legend.

dotted curve represents thé(D; H)?>-model of Balding and Buckleton (2009) with = 0.5.
The impression is quite fierent from the logistic regression fitted to the data.

Another way to model the probability of allelic drop-out miagy derived taking a slightly tier-

ent approach than above. Létdenote the number of molecules in a aliquot sampled for PCR.
We assume that X is less than some threshold the signal will not be sfiiciently strong to
trigger the CCD camera and thus the signal will be undetdoiptying allelic drop-out.

Assume that the aliquot is sampled from a total number of oubésN in the extract. Fur-
thermore, the spacial pattern is Poisson distributed watignisityA (the A parameter reflects the
concentration of molecules), which implies the positiothefmolecules are independent of each
other. The aliquot proportiop of molecules for PCR processing is sampled from this extract
which again is Poisson distributed with intengity.

Now, X is Poisson distributed with some unknown intengity: p4, sincep is also unknown.
We assume that the average peak heights proportional to the number of sampled molecules,
X, such thaH =~ kX, X ~ Poissong), which implies thai(X) = 8 ~ k"*H = cH. Rather than
assumingP(D) = P(X = 0), i.e. drop-out only happens when no molecules are sampkes
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allow a positive number of molecules to be sampled:

P(D;H) = P(X < M) = P21 M‘CH)WD(M),

Ve - ven ) VR

where the approximation of a Poisson distribution by thenaddistribution is satisfied by the
large value ot H. This implies that probifp(D; H)] = ®~1[P(D; H)] = B1H Y2+ 8,HY2. Fitting
this model using the same dataset as used in Tvedebrink(2080) yields a similar fit as that
of the original article. Similarly, did this approach indte good agreement with the simulations
discussed above (as shown in Figure 6.2). Hence, this methath is more closely related
to the biochemistry than the logistic assumption adds &srfupport to the logistic regression
approach through the similarity in results.

The Section of Forensic Genetics, University of Copenhagemducted after the publication of
Tvedebrink et al. (2009) more experiments with dilutiondA profiles. These experiments
investigated the applicability of the drop-out model tfielient DNA genotyping kits and varying
number of cycles in the PCR process (see summary of the seésulable 6.6).

Table 6.6: Summary of the experiments with diluted samples using thie3kit (Applied
Biosystems). Samples from identical aliquots were usedderoto compare thefiect of in-
creasing number of PCR cycles.

Cycles Classification D3 vWA D16 D2 D8 SE33 D19 THO FGA D21 D18

28 Observed 151 152 116 139 153 127 134 148 115 130 108
Drop-outs 17 16 11 29 15 19 15 20 10 16 17

29 Observed 165 156 125 162 165 141 144 160 120 141 122

Drop-outs 7 16 5 10 7 9 8 12 8 9 6
30 Observed 170 168 127 168 168 148 151 167 126 148 124
Drop-outs 2 4 3 4 4 2 1 5 2 2 4

The overall properties of the model did not change, only draggrm caused by the cycle-factor
was included:

logitP(D; H,C) = (Bo;s + yoc) + (B1 + y1c) log(H)

Hence, the overall interpretation of the model is the sarhé Wworth mentioning thajgso <
Y029 < Yo28 = 0 and 0= 9128 < Y120 < ¥130. This implies that for the same locus and
Ho > 60 rfu fixed:

P(D; H = Ho,C = 28) < P(D; H = Ho,C = 29) < P(D; H = Ho, C = 30).

This seems counter-intuitive since more PCR cycles impiigker peaks. However, witH =
Ho for all three levels ofC, it is more likely to have drop-out fa€ = 30 thanC = 28 since one
would expect that peaks with 30 cycles on average are highaerpeaks from a 28 cycle PCR
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process. In Figure 6.3 a plot similar to Figure 6.1 summatfiesestimated model. Each panel
shows a box plot of the drop-out events for the associbtegstimate with the fitted logistic

curves superimposed.
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Figure 6.3: Box-plots of theH-estimates stratified by drop-out event. The boxes arecadigti
shifted for visual comprehension. Black: 28 cycles, darkygr29 cycles and light gray: 30

cycles.

For low amounts of DNA there might be a potential bias whemegingH. This is due to the
fact that for a profile with many drop-outs, the peaks wittghé& above the detection threshold,
are “outliers” with respect to the peak height distributioHence, estimates based on these
observations tends to systematically overestimate thauatad DNA through biased estimates
of H. However, for a moderate number of drop-outs the bias is abngoncern.

6.5.1 Mixture separation allowing for allelic drop-out

The models for DNA mixtures presented in Chapters 4 and 5 dallwov for allelic drop-out in
their original formulation. However, they are both expdnlddor handling this sort of issues, in
particular the mixture separating model which is discussetitails below.



6.5 Supplementary remarks 131

For two-person mixtures, the possibility of allelic droptamplies that for loci with three and
two observed alleles, the possible list of contributing DN@files should be extended with
“wild cards”. That is, observing alleles, b andc, genotypes involving an additional allele
different from the three needs to be considered. In practicgjniplies thatj, and 3 from
Table 5.3 should be extended as shown in Table 6.7 (degotaadJ?;). Note that the columns
in g7, assuming allelic drop-out are identical to thoseJgfandJ, with the first row(s) (lowest
peak heightsmallest peak areas) removed. Similarly the additionalroalingj relative togs
refers to the lowest peak intensity of the minor contribinas dropped out (first row ¢f;). The

number of expected allelell, is given over each block, where the number of drop-outslsqua
Ns — Ns.

Table 6.7: Extension ofJ, andJs of Table 5.3 allowing for drop-outs. The number of drop-outs
is equal toNs — ns, whereNs is the expected number of alleles.

Expected number of alleles: Ng=2 Ns=3 Ns=4
Number of drop-outs: 0 1 2

b~ P, PP PP PP PP PP PP PP PP P

Asqy 1 1 2 01 0 01 01 1 0 O 1 O 1 0 1
Aspy 11 0 2 1 2 21 0102 112 00 1
Expected number of alleles: Ng=3 Ns=4
Number of drop-outs: 0 1

Jo: AP, PP, PP, PP, PP,

Aqpg 2 0 1.0 1 0 0 1 1 0
Ay 01 1.0 0 1 0 1 0 1
A 01 0 2 1 1 2 0 0 1

The statistical formulation of mean and variance are idgahtdrop-out allowed or not. However,
due to the missing data problem induced by the assumptioleditalrop-out we must impute

the missing data. An ad-hoc way to do this has been implerdeme showed reasonably good
results:

Ns = 4 andns = 3: The missing data is imputed by repeating fag)-data row.
s = 4 andns = 2: The algorithm will always choose the leftmost configuwatof 7/, sinceDs
will be similar to that of the rightmost configuration, i.eetdiference between the observed
and expected peak areas is similar when conditioned on thus lsum As,.. However, the
ratio of the likelihood values will approximately BDs/H®)? due to the two drop-outs for
Ns = 4.

Ns = 3 andng = 2: There are four dierent configurations that need to be considered (numbers
refer to order irg’, whereNs = 3):
(1) Ifahomozygous allele drops-out the situation is theesamabove foNs = 4 andns = 2.
(2) The missing data is imputed by repeating fag)-row.



132 Estimating the probability of allelic drop-out of STR alleles in forensic genetics

(3) The missing data is imputed as thé&elience of theé\s(z)- andAs2)-row.
(4) The missing data is imputed by repeating fag)-row.

A more rigorous approach would be to use the EM-algorithmewer, for practical purposes it
is believed, that there would be no substantididence.

Furthermore, the likelihood now includes an extra té?(®; H), whereH is calculated as de-
scribed above. Assume that only alleles of the minor comtoibhave dropped out, then al-
lowing for drop-outs in mixture separation, implies that gelection criterion needs to evaluate
P(D; H=HM)": P(D; H=2HW)™. 7N wherenp, andnp, respectively are the number of het-
erozygous and homozygous drop-outs.

Example

Table 6.8 lists the STR data of a two-person mixture wherersgllelic drop-out has occurred.
In fact only three of the minor profile’s (marked byn Table 6.8) alleles not shared by the major
profile (¢) had peak heights above the 50 rfu limit of detection.

Table 6.8: Observed STR data of a two-person DNA mixture. The estimbtadlues were
respectively 60.3 rfu (Profile) and 765.8 rfu ). The profiles denoted by squares and triangles
are respectively iditified without drop-out allowed anditekdrop-out into consideration.

Locus Allele  Profiles  Height Area Locus Allele  Profiles  Height Area

D3 15 e wmo aa 884 7787 D21 28 o - -
D3 16 e0 WO a4 816 7140 D21 29 e mo an 773 6867
D3 19 o A - - D21 30 o

VWWA 15 eomo ss 519 5067 P2t 31 e = s 6375867

VWA 17 eo WO A4 530 4928 D18 12 o - -
D16 10 R D18 15 e mo an 762 8449

i - Dis 16 o o & 52 663
D16 11 e w®mo aa 137314302 D18 17 o = a 644 7316
D16 12 o - -

D19 13 eo mo as 1163 9550

D2 19 e m=oss 565 6635

e O : > 0835 plg 15 o o . 51 631
D2 25 eomo s 518 6120 THO 6 eomoas 5534691
D8 8 « =os: 9938720 q1h0 g . ao.. 5724936
D8 12 o = s+ 807 7320

D8 13 o o A 78 891 FGA 20 o

A - -
FGA 23 O WO A 403 4024
FGA 24 e mo a 363 3651

The drop-out probabilities of one of minor profile’s allelEs the various loci are listed in
Table 6.9. From this table we see that it is likely that one orerof the minor profile’s alleles
has dropped out.
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Table 6.9: Drop-out probabilities for the minor contributor (see &bl8). The probabilities
were computed using{o, 31) from Tvedebrink et al. (2009).

Locus D3 VvWA D16 D2 D8 D21 D18 D19 THO FGA

P(DIH®M=603) 0.61 0.65 0.72 0.62 0.61 0.41 0.56 0.83 0.83 0.80

We may analyse the data of Table 6.8 using the mixture sepgralgorithm. We first anal-
yse the data assuming no allelic drop-out and next allowargaflelic drop-out. The likeli-
hood value when not allowing for allelic drop-outs i908<10-1° which corresponds to =
7.65. The identified profiles when drop-outs are neglected areotéd by square-symbols
in Table 6.8. Similarly, when allowing for drop-outs = 5.82 and the likelihood value is
1.178<10°°. Since the best matching profiles when allowing for dropsduats three drop-outs
(see the identified profiles in Table 6.8 marked by triangles)ikelihood value is computed as
7 NP(Dps|H®)P(Dpl HD)P(Desal HY), with the locus specific drop-out probabilities listed in
Table 6.9.

Even though the algorithm allowing for drop-out correctigitified three allelic drop-outs, the
number of correctly identified loci for the two methods ammasét the same. This is due to the
peak height imbalances of the peaks of the major profile. rOfte shared allele of the two
true contributors is smaller than the one where the majdilgiis the only contributor (e.qg. loci
D3, D2 and THO in Table 6.8). Hence, for D3 and D2 the largeheftivo observed alleles is
assumed to be a shared allele.

In addition to the example above, we also simulated data ckimg a two-person DNA mixture.
The minor contributor had a fixed mean peak height of 60 rfulexthe major component had
peak heights of 2000, 1500, 1000, 750, 500, 250, 150, 100%rfd.7The reason for decreasing
the peak height of the major contributor is that since théavae is proportional to the mean, the
contribution from the minor component isaskedin the variability for large peak intensities.
That s, it is not possible to detect whether the minor congmbihas dropped out or if it shares
alleles with the major profile. Hence, the smaller the peadrnisities of the major, the easier
it should become to detect allelic drop-out. For each meduevaf the major peak height, the
standard deviation, takes integer values from 0 to 10. The locus where an alfedaur-allele
locus has dropped out, the methods detects most of the drigfar small values of and the
mean values of the major profile. For three-allele loci thehwoe is less successful even for
moderate values afand low major peak heights.

Both experimental data and the simulations indicate thatdifficult to identify allelic drop-out
of a contributor to a DNA mixture. The problem with allelicagi-out is not only due to limited
amount of DNA in the sample. Lowering the limit of detecticaturally decreases the number of
drop-outs. However, this might come with the cost of incegbdrop-in peaks. In the following
paper we discuss how the background noise can be used tonitetex limit of detection using
the sample itself as reference.
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Abstract:

The discrimination between positive and negative resulfsriensic genetic STR DNA analyses
is of outmost importance. We present a method for identifioatf STR alleles that is based on
(1) discrimination between positive and negative STR teghht are specific for the sample and
each STR locus, (2) correction of stuttéieets and (3) correction of pull-ugtects. The sample
and STR locus specific discrimination was based on a floatireshold that was estimated by
means of distribution analysis of the true negative dataefds, i.e. the noise component. The
correction of stutter féects and pull-ups was based on regression analysis. Thedetas
developed on the basis of STR data of serial dilutions of D& four persons in amounts
ranging from 24.6 to 410 pg DNA. The method was tested on twesyof data: (1) controlled
experiments with two-person mixtures of DNA in proportidi&s1, 8:1, 4:1, 2:1, 1:1, 1:2, 1:4;
1:8 and 1:16 with a total of 328 to 528 pg DNA in the two-persartares, and (2) data from
fingernail swabs from real crime cases.

The method yielded a 16% increase in allele assignment cadpa that of a conventional
assignment of STR alleles for the two-person DNA mixtures$ 24% increase for the fingernail
data. A further gain from the method was a more precise ifiesion of the STR types of
contaminated or otherwise compromised DNA samples.

Keywords:

STR typing; Allele assignment; Investigation specific flogtthreshold; Stutters; Pull-up ef-
fects.

7.1 Introduction

DNA typing with Short Tandem Repeat (STR) alleles is tydichhsed on multiplex Polymerase
Chain Reaction (PCR) amplification of the relevant STR DNapittary electrophoresis and
fluorescence detection of the resulting PCR products. loaan DNA crime case laboratories,
the AMpR'STR SGM Plus kit (Applied Biosystems - AB) is widely used. Tdiscrimination
between positive and negative STR results may rely on theithail judgement of the scientist
responsible for the STR typing or on fixed criteria like a offtof 50 relative fluorescent units
(rfu) between positive and negative responses as reconeddndthe supplier of the kit. A
fixed cut-df level may be very useful for practical routine work, but fixad-of values may
ignore specific circumstances of the investigation beirgexh out and introduce errors in the
interpretation of the results.

A fixed cut-df of 50 rfu is used in many laboratories for the analysis ofirmitesults although
other methods based on e.g. the signal-to-noise ratio magdae(Gilder et al., 2007). A number
of factors influence the general magnitude of the fluoressigntl, e.g. (1) the amount of am-
plifiable DNA in the PCR, (2) the amount of fluorochrome molesbound to the oligo-DNA
molecules acting as primers in the PCR, (3) the number of P@Rs, (4) the amount of de-
tectable, amplified PCR products injected into the elettoopsis capillary typically controlled
by the injection voltage and injection time, (5) the sem#itiof the fluorescent detections system
and (6) other factors. The level of irrelevant signals, tbis@ component, is determined by fac-
tors like impurities of the fluorochrome not attached to thmphlfied DNA molecules, impurities
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of the primers and conglomerates of the primers, congloteed fluorochromes and other sub-
stances that may be present in the post-PCR reaction vohahestinjected into the capillaries.

The PCR amplification with the fluorescent primers is usua$ponsible for the majority of the

noise signal. Large variations may exist from kit to kit anginfi batch to batch. Other contrib-
utors to irrelevant noise signals include impurities in BY¢A preparations and other chemical
reagents than the STR kit, the DNA sequencer equipmentidirgy the electronic detection and
amplification system and other components of minor impaean

In multiplex PCR STR kits, a number of fluorochromes are tgjhycused, and the balance
between signal and noise between the fluorochromes varysighal intensities of the various
STR loci also vary. Thus, systematic variations such as e I8t, the batch, batches of other
reagents, the DNA sample, the DNA sequencers with attadleetr@nic equipment, etc., may
influence the level of discrimination between positive amgative reactions in STR typing.
Therefore, it is desirable to develop methods that can aeterthe threshold between positive
and negative reactions for each of the investigated DNA $ssrgnd for each STR locus.

Systematic extra reactions such as “stutters”, which avsexh by infidelity of the Taq poly-
merase in the PCR resulting in amplification products tylichbase pairs (bp) shorter than the
true PCR products, and “pull-ups” that are caused by sdenteslap of the fluorochromes used
for the detection of the PCR products must also be handldadgitive interpretation of the STR
results. Stutters are often compensated for by ignoringtsekelow a certain ratio of the signal
of the “parental peak”, i.e. the DNA fragment supposed tcsedhe stutter signal. Stutter filter
ratios are usually decided for each STR locus based on avelatg from initial investigations
of small numbers of samples performed by the supplier of T Kt and, thus, not necessarily
optimal for all laboratories aridr all alleles in an STR locus. Correction for pull-ups is mos
often done by visual inspection although IT-based experg@ammes may be used to remove
signals that most likely are caused by pull-ufeets.

We have developed a new method for the discrimination betvpasitive and negative STR
results based primarily on analyses of the “noise compdéitie data that represent true neg-
ative STR results. The positive results were further araayts identify and correct for stutters
and pull-up &ects. We used distribution analysis of the noise compomesrder to separate the
negative and positive results. Algorithms based on regnessalysis were developed to correct
for stutter éfects of each STR locus and pull-ufiexts of each sample. The method makes it
possible to analyze the STR results of a sample accordirgetoesults that are specific for the
sample and each STR locus.

The results of the method were compared to those obtaindehyéthod recommended by the
manufacturer of the SGM Plus kit with fixed cuiefor positive reactions (50 rfu) and stutters.
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7.2 Materials and methods

7.2.1 Data

Controlled experiments

The laboratory investigations were performed at the Seaifd-orensic Genetics, Department
of Forensic Medicine, Faculty of Health Sciences, Uniugref Copenhagen and approved by
the local ethical committee (KF-01-088). Genomic DNA from blood samples from two males
and two females was extracted by a standard phenol-chionadatraction method. The DNA
was quantified in triplicates using the Quantifiler Human DRAantification kit (AB) with
Human Genomic DNA Male (Promega) as the quantificationesteshon an ABI Prism 7000
(AB). The median DNA concentrations were used. Each samatedijuted in water to approx-
imately 500 pg DNAul. The DNA concentrations in the diluted samples were mesasagain

in triplicates and the medians of the DNA concentrationsawecorded for further use.

DNA from each of the four persons was serially diluted withtevan the proportions 16:1, 8:1,
4:1, 2:1 and 1:1 for the training STR data set, cf. below.-Ré@se two-person mixtures of DNA
(w/v) in proportions 16:1, 8:1, 4:1, 2:1, 1:1, 1:2, 1:4; 1.8 antblwere made of DNA from each
pair of the four persons for the validation STR data set, efoW.

The amount of DNA from each person in the diluted single da@amples and the two-person
mixtures was calculated based on the measured DNA contientd each sample. The total
amount of DNA ranged from 24.6 to 410 pg DNA in the dilutionssafgle donor samples and
from 328 to 528 pg DNA in two-person mixtures. The DNA was aiffgd with the AmMpRESTR
SGM Plus kit (AB) in a GeneAmp 9700 PCR thermocycler (AB) aoramended by the man-
ufacturer.

One ul of the amplificate in 15 ul HiDi Formamide (AB) was argdy on an ABI Prism 3100
Genetic Analyzer (AB) using POP4 (AB) as the polymer and 3 ijédtion voltage for 6 sec-
onds.

DNA fragments were detected and fragment sizes were estimaith GeneScan 3.7 (AB).
Genotypes were assigned using GenoTyper 3.7 (AB). The data analyzed in two ways: (1)
With the method recommended by the manufacturer of the SGigl gt with a fixed cut- of

50 Relative Fluorescence Units (rfu) for the discriminati@tween positive and negative results
and the recommended stutter filter, and (2) by the presemtatin threshold method. The data
for the floating method were generated by GeneScan 3.7 witktection threshold of 5 rfu.
Genotypes were assigned using GenoTyper 3.7 with no sfiltéerapplied.

Crime scene fingernail swabs

In addition to the DNA mixtures from controlled experimentgh known contributors, the
methodology were also tested on samples from real crimescBe¢A transfer between a victim
and suspect frequently occurs during violent crimes. Beiooim fingernail swabs are routinely
analysed in many crime cases such as rapes, assaults andiokiet crimes. Often the contri-
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bution of DNA from the suspect is limited and low peak int¢iesi of alleles associated with the
suspect’s DNA profile will be produced on analysis.

Data from fingernail swabs from 98 real crime cases were agdl{l) using the standard pro-
tocol with a 50 rfu cut-& and the recommended stutter filter (2) and a 5 rfu detectiwskold
and no stutter filters, similar to that of the experimentaada

With DNA from a single person, the SGM Plus STR kit detects T&R3oci and X- and Y-
specific (amelogenin) DNA fragments resulting in a maximdr@2data elements representing
DNA fragments. The data from single donor dilutions (tragndata) were used for developing
the various mathematical models, while the data from thepgemson mixtures and crime case
samples from fingernail swabs were used to evaluate therpaafaéefficiency of the mathe-
matical models.

7.2.2 Data model

The statistical model was derived from STR data from eaclowf donors (training data). The
model assumes the following major components of STR data:

(1) True positive results from the STRs.

(2) So-called “stutters” (cf. below) that are DNA artefacteated during the investigations.

(3) So-called “pull-ups” (cf. below) that are artefactsatesl during the detection of the various
signals of the fluorochromes that contribute to the idemtiift of the signals of each of the
STR alleles.

(4) Back-ground noise of various kinds.

The quantitative STR data is a mixture of contributions freemious sources. Apart from the
signals from true alleles, the signals consist of at leastéwor components from (1) the PCR
amplification (stutters) and (2) the measurement techriguié ups). Stutters are PCR products
typically four base pairs (bp) shorter and to some extend bgulonger than the true PCR
product (“back-stutters”). Stutters originate from prinmeis-pairing in the PCR amplification
creating PCR products that mimic alleles typically one e¢ghorter than the true peak (Butler,
2005). In Figure 7.1, the stutter products are shown witiices on both the true peaks (“Signal
+ stutter”) and on the noise. In the “double stutter” situatithe stutter peak is caused by stutter
effects from both peaks to the right of the stutter peak. Thisesuthe double stutter peak to
be larger than single stutter peaks because a doublergpeti is the stutter product of two
peaks. However, theffiect of double stutters is not directly implemented in our elpHut it is
accounted for in the parameter estimates used in the digo(ection 7.2.4).

The quantitative signals are obtained by a very sensitivequell (CCD camera) detecting the
intensity of light emitted from a fluorochrome on DNA moleesilcorresponding to alleles of
each STR locus. The signal intensities are measured as rfie t@noise in the apparatus,
the observed signal contains a continuous noise part thatemete background noise (peaks
designated “Noise” in Figure 7.1). The light-detectingteys also causes a systematic error
component, namely the pull-ugtfects. This is caused by overlap of the spectra of the light
emitted from the various fluorochromes as illustrated iruFeg/.2. The pull-upféectis observed
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Figure 7.1: Picture of the non-signal components of a STR DNA trace.
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Figure 7.2: Fluorescent dye bands: Blue (dasfsetni-gray), green (solidark-gray), yellow
(dot-dashedight-gray) and red (dott¢dhite). The shaded areas under each curve indicate the
amount of spectral overlap between the various dyes. Reapeatifrom Applied Biosystems
(2000).

as an increase in the intensities of both the backgroun ramid true peaks. The shaded areas
in Figure 7.2 represent the amount of overlapping lightdiestries of the four diierent colours
(blue, green, yellow and red) used in the SGM Plus kit. Thegases caused by pull-ufiects
are pictured in Figure 7.1 as “Pull-ujfect”.

In our model, pull-up fects cannot cause stutters, whereas stutters may induegppeffects
on other dye bands.
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7.2.3 Determination of floating threshold

For each STR locus and amelogenin of a sample, we wanted anabset of negative data in
order to model the negative data elements and develop dtidgfer discrimination of positive
and negative signals based on the distribution of the negsitjnals. We used the training data
set for the development of the mathematical model. The peahhobservations (intensities
of fluorescent signals) below 5 rfu were removed at the fiegt sf analysis with the Genescan
software because the software was unable to handle thedargent of data elements below 5
rfu. The remaining signals comprised both background rexisemore systematic components.
We removed (1) all peaks on the allelic ladder that primaglyresent true alleles and (2) aff-o
ladder signals in pull-up positions. This ensured that émaining data points represented true
noise. The peaks designated “Noise” in Figure 7.1 illustthe data used for the determination
of the threshold.

Inspection of the data indicated that the noise followedgatrskewed distribution. In order
to obtain a normal distribution, the peak heights were fansed by log(peak height- 4.5).
The distribution of the noise data fitted the log-normalritisition, and the fit was not better
with distributions like the exponential, Fisher-Tippétgreto, Rayleigh, or Weibull distributions.
Figure 7.3 shows the distribution of the observed peak ligighthe noise for each locus of a
sample after the data had been transformed by(pegk height in rfu- 4.5) against a standard
normal distribution in a QQ-plot. Note that the “outliersi'the upper tail of the distribution are
in fact the true positive signal. The plots demonstratetittie@anoise (shifted by4.5) followed a
log-normal distribution with individual parametersandos for each locuss. These parameters
determined the intercept and slope of the superimposedq@ahd were estimated by

~ X)) ~ Xs(qp)
0—5 -
Zq1) ~ o)

wherexgq andzg are the empirical and standard nornaduantiles, respectively. We used
these quantile estimators rather than the ordinary maxiiketihood estimators in order to
increase the robustness of the method.

and s = Xg(qo) — 's%qp)»

Figure 7.3 shows that the fit to normality was better for theghbr values of
log.(peak heightin rfu- 4.5) than for the lower ones. The observations in the upper gfart
the peak heights of the noise are those of main interest éoestimation of the threshold. Thus,
we chose to use the, g1) = (50% 90%)-interval for the estimation of the threshold. The
threshold was determined by the mean plus 3.29 times thdatéudeviation. The locus specific
threshold can be written as:

Threshold for locus = exp(3295s + fis) + 4.5.

Approximately 9995% of the noise will be below the threshold and, thus, willché&egorized
as noise. However,.05% of the true negative results will be above the threshotf thus, will
be categorized as positive signals. For practical purpdkesmajority of such false positive
assignments will be infé-ladder positions rather than in allele positions.

Figure 7.3 shows that only few noise data elements werededdior amelogenin. This is due
to the fact that the interval, in which noise could be recdrdeound the X- and Y-windows of
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Figure 7.3: QQ-plots of the observed peaks. Note thatent thresholds computed using the
data of the locus itself as reference. For this particulanse, the fixed 50 rfu-threshold causes
five drop-outs (in loci D3, D2, D19, D2 and FGA) and two drop-¢u loci D19 and D21)
with the locus specific threshold (one true peak in locus D&d dpeak height of 22 rfu and is
embedded in the noise).

amelogenin, is small. However, amelogenin and D8 are mank#fdthe same fluorochrome
and D8 alleles are only slightly longer than the DNA fragnseoit X- and Y-amelogenin. The
distributions of noise in amelogenin and D8 were ratherlsintd each other and, therefore, the
threshold of D8 was also used for amelogenin.

7.2.4 Stutter correction

Figure 7.4 shows threeftierent situations involving stutters. The background n(msey peaks)
is the same in all three scenarios, but the parental peaksrarg] the stutter peaks (black peaks)
differ in sizes.

We used the training data set to develop the mathematicathbaded on a regression model on
the peak intensities of the parental peaks. Assuming additf the noise and stutter product,
we take into account that peaks in stutter positions in fobstmall peaks mainly consist of noise
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Figure 7.4: Stutter peaks caused byfidirent parental peaks (in black). The grey peaks picture
the noise and the dashed line the median of the noise.

as pictured in Figure 7.4. The model of the expected stuttigthtt, hsutter IS given by

Nstutter = hNoises + (Bs + '}’st;ps)hParem (7-1)

wherehyoises 1S the knowridetermined median of theffeladder peaks not in pull-up position
on locuss (see Section 7.2.3) arftharentis the parental peak’s height. The parameters were
estimated by a weighted least square fit with weighitsdent due to the proportionality of the
mean and variance of the peak heights (Tvedebrink et al0)2am the latter termbps is the
base pair deviation from the mean base g, on locuss, bp, = bp, — bp,. The parametess

is the average stutteffect at a given locuss. By including the base pairs in the model, we are
able to have dferent stutter fractions for various alleles within a logtisgcessary.

Table 7.1: Estimates ofys andBs in the stutter model (7.1).

Locus D3 vWA D16 D2 D8 D21 D18 D19 THO FGA

Bsx10? 7209 6714 6101 7712 4996 6359 7031 7252 2031 6508
SE(Bs)<10° 0.930 0.883 0.874 0.848 0.645 0.836 0.776 1.348 1.310 1.221

ys<10? 0.104 0203 Q0212 Q091 Q09 Q075 Q172 0215 Q069 Q123
SE(ys)10° 0.112 0.118 0.137 0.064 0.069 0.140 0.099 0.215 0.184 0.139

The previously observed increase in stutter percentagdwasction of allele number (Applied
Biosystems, 2006) was reproduced by the positive estinuditesin Table 7.1. The STR locus
specificBs parameters in Table 7.1 are in accordance with the pictutieeirmanufacturer’s kit
documentation (Applied Biosystems, 2006, Figure 9-5, %6 8-7), where e.g. the average
stutter éfect,StHo, in THO is the weakest.

Figure 7.5 shows the stutter peak heights predicted by tlteehoompared to the observed stutter
peak heights. The plot demonstrates that the model in (3.&ifficient in order to describe
the stutters. For adjacent heterozygous alleles, the tmsetppically difer by only a limited
number of bp, which minimizes théfect of the length of the DNA fragment estimated-jay

Additional examinations of the data also made it clear tlaakbstutters were present typically
in the position 4 bp larger than the parental peak. The madbdck-stutters and correction
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Figure 7.5: Predicted stutter peak heights plotted against obseruétgispeak heights with the
identity line superimposed. The scale of the plot is theararé stabilising square-root transfor-
mation.

is based on the same idea as those concerning conventiattatstwith a noise level and an
additional éfect from the parental peak, i.e.

hBackstuner: hNoises +ﬁshParent (7-2)

Table 7.2 shows the parameter estimates. The lack of horosyajleles in some of the loci in
the actual data set implied that the estimate@afere insignificant for these loci. This is due to
the fact that the parental peak needs to reach a certainttigigtcally well above 1,000 rfu) for
the back-stutter to exceed the noise level. For the samengbase pairs were not included in
the back-stutter model as only a few base pair lengths weresented in the back stutter data.

Double stutters originating from two adjacent alleles sefeal by 4 bp in a heterozygous indi-
vidual behave slightly dierently from single stutters. In Appendix 7.A, we evaludte tatio

of the stutter peak to the mean of the two parental peakstuatgins where the heterozygous
alleles are not adjacent (separated by more than 4 bp) or wistutter originates from a ho-

mozygous allele, for practical purposes, we only need taicken the ratio of the stutter peak to
the parental peak.
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Table 7.2: Parameter estimates of the backstutter model (7.2). Ldbi wsignificantgs esti-
mates due to lack of homozygous alleles were removed.

Locus D3 VvWA Dil6 D2 D8 D21 D18 FGA

Bs*10? 0233 0211 0428 0187 0293 0615 Q560 0638
SE(Bs)x10° 0.643 0.738 0.628 0.627 0.551 0.625 0.561 0.747

7.2.5 Pull-up correction

We defined pull-ups as peaks orifdrent dye bands withie0.5 bp of the parental bp lengths.
Only the peaks not being true alleles or possible stutteesdifierent dye band than the parental
peak were included in the data analyses. Figure 7.1 showscagrise of the noise level (right-
most on the upper band) and a true peak (heterozygote indmglefitmost on the upper band).
We used the training data set to develop the mathematicathbaded on regression.

Figure 7.6 shows examples of pull-up values as function ®itdues of the parental peaks for
the various colours. The magnitudes of the observed pudifigats were in accordance with the
spectral overlap in Figure 7.2, i.e. th@exts of green signals in the yellow spectrum and of green
signals in the blue spectrum were the two largest, and yedigwals had the smallesffect in

the blue spectrum.

For predictive purposes, we fitted a linear model to the oleskedata in Figure 7.6. Of the in-
cluded data points, only a limited subset comprised ddtéefaull-up peaks, while the remaining
observations were background noise in pull-up positiong. @odel takes this into account by
having a noise dependent intercémieises, for locuss (median of the noise data described in
Section 7.2.3). This approach is similar to the one usedemtbdel for correction of stutter
effects. In the formulation of the model, the notatidn— d reflects that the parental peak is in
fluorescent dye band and the pull-up peak is located in the fluorescent dye b&nd,

hpull-up = Nnoises + Bo—dhParent (7.3)

where parameters were estimated by a weighted least-sfijudiable 7.3 shows the parameter
estimates oBp_.4. The superimposed lines in Figure 7.6 were based on the pteapstimates
of Table 7.3. Thus, the superimposed lines are in accordaithehe spectral overlaps in Fig-
ure 7.2 except foBs_.g, which is smaller than expected. This may be due to the pdatialleles
included in our data set.

Table 7.3: Parameter estimates of the various overlapping fluoresiyest

Dye—dye B—»G B-»Y G-»B G->Y Y-B Y-G

Bo—q <107 1.039 0449 Q342 Q978 0322 Q597
SE(pq)10° 0.405 0.357 0.411 0.341 0.560 0.482
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Figure 7.6: Pull-up dfects stratified by overlapping fluorescent dyes. The sumpersed lines
indicate the estimated model. The scale of the plot is thawee stabilising square-root trans-
formation.

7.3 Results

The parameters for correction of pull-up and stuttée@s were estimated using the dilutions of
non mixture samples, whereas the overall performance dflteewas based on analysis of all
possible combinations of pairwise two-person mixtureoaf profiles in mixture ratios ranging
from 1:16 to 1:1.

The procedure of events were the following:

(1) Determination of the floating threshold: Determine theeshold and detect potential stut-
ters, pull up &ects and true peaks, i.e. alleles with peak heights abowatashold.

(2) Pull-up correction: Correcting for pull-ugfects caused by peaks above the threshold deter-
mined in (1).

(3) Stutter correction: Correcting for stuttefects caused by peaks above the threshold deter-
mined in (1).

(4) Allele assignment: Assignment of alleles accordingh® determined floating threshold in
(1) and the allelic ladder.

Note, that the corrections for pull-ufffects were made before the stutter correction was applied,
because stutters may cause pull-ups while pull-ups canake stutters.
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7.3.1 DNA mixtures from controlled experiments

We used our floating threshold, stutter and pull-up coroecthethod on 107 two-person mix-
tures. In Table 7.4, we summarise the performance of theatiiter. It is worth emphasising
that 263 of the true alleles dropped out and that the stulter ¢t 6 stutters and no backstutters
slip through. In addition to the stutter peaks, another 25d@p-ins and 4 pull-ups) on-ladder
peaks were classified as proper peaks of the samples.

Table 7.4: Filtered and passed peaks classified by type.

Classification Assigned negative result Assigned positgellt
True allele 263 3,308
Stutter 2,167 6
Backstutter 1,260 0
Noise 62,669 324
On-ladder 11,619 21
Off-ladder 51,050 303
Pull-u 3,825 14
On-ladder 982 4
Off-ladder 2,843 10

The remaining peaks passing the filter were all fitladder positions and removed from the
analysis afterwards. The data were also analysed follothi@gtandard protocol of The Section
of Forensic Genetics, Department of Forensic Medicineufaof Health Sciences, University

of Copenhagen. Using the technique recommended by the atordr, 312 drop-outs were

observed together with 27 stutters and 7 pull-up peaks. ,Tthesnumber of drop-outs of true

alleles was 16% lower with locus specific filtering than witfixed 50 rfu threshold.

The classification tables for the two methods are listed bield@.5. In the classification tables

each observation is categorised by its classification atihbclass. In Table 7.5 the diagonals
are the correctly classified observations, while tifedtagonals are the misclassified. The lower
the counts in thef-diagonal cells the better is the classification methodplog

To summarize the classification table in a single value weayssigthe misclassification rate,
which is the total of misclassified observations to the tofatorrectly classified observations.
From the misclassification rates (bottom lines in Table W&)see that the floating threshold
method yields a better classification than the fixed 50 rfeghold.

Table 7.5: Classification tables for the two methods: Fixed 50 rfu anatiitmg threshold.

Floating threshold Fixed 50 rfu threshold

Expected + + Expected + +

Observed + 3308 31 Observed + 3259 34
= 263 69,921 = 312 69,918

Misclassification rate: a01% Misclassification rate: a73%
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7.3.2 Fingernail swabs from crime cases

Data from 98 crime cases were analysed using the approasérpeel. The Section of Forensic
Genetics, University of Copenhagen, supplied the data frarcrime cases together with ref-
erence samples associated with the crime. These referamg@es may explain the observed
stain, but since contamination from other biological mateand debris may accumulate under
the fingernails, the number of “random” drop-ins may be naidleg (Cook and Dixon, 2006).

From Table 7.6 we see that the number of drop-outs decregs&lbevents from 912 using the
standard protocol to 692 using the samples specific setupdase of 24%). However, this gain
in fewer drop-outs comes with a cost in more drop-ins. Thedsed protocol gave 15 drop-ins
versus 90 using our approach. In the experiment conduct€xbby and Dixon (2006), foreign
DNA were detected in 13% of the fingernail swabs taken frompasicipating individuals.
Hence, the higher number of drop-ins using our more seesitiethodology may be caused
by foreign DNA. These alleles are actually true alleles eatihan drop-ins, however, this is
impossible to conclude from the available data.

Table 7.6: Classification tables for the two methods: Fixed 50 rfu anatiitm threshold.

Floating threshold Fixed 50 rfu threshold

Expected + + Expected + +

Observed + 1,460 90 Observed + 1,240 15
= 692 82,497 + 912 82,572

Misclassification rate: 031% Misclassification rate: 106%

The misclassification rates in Table 7.6 are more than twieerates of Table 7.5. This is
a consequence of the data being from real crime cases witly degraded samples and low
amounts of DNA. Hence, the number of drop-outs is larger arid the number of partial DNA
profiles.

In addition Table 7.7 compare the drop-outs and drop-ins@two methods. We see that 236
of the drop-outs under the standard protocol were corratgblared as true alleles using the
floating threshold method. However, sixteen of the allet@pdouts from the floating threshold
method did not drop-out using standard methods. More thHohidese “new” drop-outs were
located in locus D3 which tends to have a higher noise levelpaoed to the other loci in this
dataset. This may be due to primer residue increasing tHegbaend noise for the shorter loci
in the electrophoresis.

Table 7.7: Comparisons of the drop-ins and drop-outs produced by thertethods.

Dropped out Dropped in
Fixed 50 rfu threshold Yes No Yes No
Floating threshold Yes 676 16 7 83

No 236 1,224 8 -
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7.4 Discussion

Previously Gilder et al. (2007) indicated that using oba#ons from the negative controls from
the same run as the samples could be used to extract informedtout the noise level. However,
their approach did not take variation between the capdamto account. From our analysis
there are significant @fierences between the capillaries with negative controlsimvgach run,
and also significant éierences between the same capillaries with negative ceritnotlifferent
runs. This suggest that the noise distribution is neithastant within runs nor for the same
capillary for consecutive runs. Hence, our approach whereise the sample itself in order to
determine the noise distribution is recommended, as itieéites the between run and capillary
variation. Furthermore, the stratification on loci for detening the threshold clearly improves
the noise filtering as indicated by Figure 7.3.

The fixed 50 rfu-threshold yields in many cases the same nuwibérop-outs as the locus
specific floating threshold. In Figure 7.7, the box-plotsvghioe thresholds of the 107 mixture
samples. For all loci, the median of the floating thresholidvger than the fixed 50 rfu limit.
Note that within each dye band, the threshold median tendedrease with the base pair length.
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Figure 7.7: Box-plots of the estimated locus specific floating threstoldthe 107 mixture
cases.
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An advantage of the locus specific threshold is that it ersable case worker to assess the noise
level of the sample. Hence, for cases where a peak lies jisii® rfu, the magnitude of the
locus specific threshold indicates whether it is reasortabteclude the peak in the signal or not.

Furthermore, in cases where the transformed peak heigiépéak height- 4.5), deviate sub-
stantially from normality, the data indicate that the saenphy be subject to extensive noise or
contamination of some kind. This may be used as sample gukdignostic in order to deter-
mine if a re-analysis is necessary. This deviation may berves from the QQ-plots and other
usual diagnostics to validate assumptions of normality.

Since the stutter and pull-up corrections are based on assign model, the parameters has
been tuned for this specific data set. In general, the pasametust be determined for each
laboratory, kit and DNA sequencer.

However, the trend in parameter magnitudes for tikeddnt pull-up directions is expected to be
satisfied in general - possibly with an increase inggeg-parameter estimate. It is also worth
emphasising the dependency on the kit used for DNA typing. ddta used in our analyses were
obtained using the SGM-Plus kit from Applied Biosysteme.,Ithe parameters of stutter and
pull-up filters are not directly applicable to other kits.

7.5 Conclusion

The methodology of regression and distributional analgéie noise yielded satisfactory re-
sults in order to deduce a sample and investigation spediécfior STR DNA typing. Compar-
isons of the results with those based on the recommendatiding manufacturers indicated that
the number of drop-outs for the two validation datasetsebes®d by 16% and 24%, respectively.
Studies of diferent data sets supported this improvement and suggesta¢haethodology of
the threshold determination is adequate for the noiseifijesf STR quantitative data.

The filters for pull-up &ects and stutters based on regression analysis trainedremixture
data also showed applicability to mixed DNA samples. As noetd in Section 7.4, the pa-
rameter estimates in the filter were tuned for this specifia dat and the alleles of included
profiles. Hence, the estimation of the parameters must be afpelaboratory’s internal quality
assessment, where the consistency of the estimates oeeatérguality indicators.

Appendix

7.A Double stutters

In Gill et al. (2005), the authors argue that, once a stutisrideen formed, its replication during
subsequent PCR cycles perform as an ordinary allele. Wetigege the behaviour of stutters,
when we have two adjacent alleles of a heterozygous proéleyhat we called a double stutter.

Let h; denote the expected value of pre-PCR peak height of alléleen for two adjacent alleles
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nandn+1 from the same contributor, we halge= h,,1 = handh,_; = 0 for the stutter position
n-1. Let? denote the gect of one PCR-cycle, then aftePCR-cycles, the expected value of
post-PCR peak heights” is given by,

.
(hszrl’ h?, hsll) = P'(h,h,0)",

wherex™ denotes the transpose of the vector? may be specified in terms of the PCRie
ciency in one cyclep, and the one-cycle stutter percentage,

%) [+p 0 0 ]¢(h (1+p)" 0 0 ](h
0| — _ t-1 t

W (=] 6 1+p 0 ||h|=| t5(1+p) (1+p) 0 |lh
hY, 0 & 1+p/(0) [(3)0%+p)? to(1+p)t (1+p)|lO

The second equality can be shown using some linear algebeind® = t6/(1+p) to be the
stutter percentage for the entire PCR process comprisiygles. This definition ensures that
the stutter percentage increases with the number of cyslestaed in the literature (Gill et al.,
2000). The expression can then be rewritten as

) [1 0 O(h ho
h ~|B 1 O{ho]: ho(1 +5) (7.4)
W) 15 5 1\0) (he(s+%)

wherehg = (1+p)th and thex is due tot(t—1)/2 ~ t?/2 from the binomial coficient. The error
induced from this approximation is negligible for 28 cycles.

The peak heighty, can be interpreted as tlaetualpeak height after the PCR process. In Gill
et al. (2005), the authors uge= 0.8 as the #iciency of a PCR cycle, hence indicating the
theoretical doublingfect (requires thap = 1) from each cycle is not met in practice. Note, that
there is a dference to the work of Gill et al. (2005) where they model thé&kRfCocess at the
nucleic level. Our approach is in terms of quantitative mees of peak heights.

Often it is assumed that the peak at positiai, ﬁfﬂrl, equals some “true” heigrﬁ], aftert PCR
cycles. Due to stuttering, the peak at posiu’oequalsﬁ plus an additional fractiorg, from the
n+1-position peakh? = (1+8)hY, = (1+B)h. Furthermore, the peak height of stutter peak at
positionn-1ish®, = gAY = (3+5?)h. This can be written using matrices as

Y. (10 ofh

hyY |=|8 1 oflh (7.5)
n(t 2

hY, B 10

where the dierence §2/2 + %) between the matrices in (7.5) and (7.4) is induced by thaydel
of one cycle in the stutter product from the 1-position peak to the stutter peak in positimn
Hence, the relative contribution from tihe 1-peak is smaller than modelled in (7.5) since when
formed, the stutter peak is amplified as a regular peak (Gall. e2005), which is captured using
(7.4).
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When referring to the stutter percentagewe define it as the percentage of the parental peak

that is transferred to the stutter pegks h® , /h{). However, having two true alleles located at
positionn andn + 1, we find

L e
h ho(1+5) '

In this situation, the ratio of the stutter peak to the meatheftwo parental peaks yields the
stutter percentage,

h(t)_l B hoB (1+§)

hO,  heg(1+5)  hes(1+5)
L(hO+h0,)  3ho(L+B)+ho)  ho(1+5)

In situations where the heterozygous alleles are not adjgseparated by more than 4 base
pairs) or when stutter originates from a homozygous alle&eneed for practical purposes only
to consider the direct ratia”, /h{ in order to estimatg.
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7.6 Supplementary remarks

The three-person mixtures discussed in Section 5.10 weseaahlysed using the floating thresh-
old methodology. As in Section 5.10 we discarded 17 out ofil®@samples due to preparation
or run errors. For the remaining cases, the minimum amouDNZ contributed to a true allele
was approximately 77.5 pg. Hence, the number of peak hegbse to the limit of detection
(50 rfu) is expected to be low, since experience show thdit abiout 50 pg pre-PCR product the
average peak heights are close to this limit.

When using the standard protocol with a fixed 50 rfu threshblere was observed 8 drop-outs
and 80 extra peaks not assigned to the contributors. Thesadigtributed as 47 stutters, 10 pull-
ups and 23 drop-ins. For the floating threshold there wer@g-duts and 85 extra peaks, which
were categorised as 27 stutters, 2 pull-ups and 56 drogHiesce, the performance of the two
methods were almost identical with respect to the misdiaaion rates, which were 0.123%
and 0.124%, respectively. This non-significarftelience in assignment of alleles indicates that
the fixed 50 rfu threshold is very reasonable for standarticgijons.

However, the methodology may be useful in situations wehe amount of DNA contributed by
a suspect is limited. Given such circumstances the peahsities associated with the suspect’s
profile may be close to the fixed limit of detection, e.g. wiike majority of peak heights in the
range 40 rfu to 60 rfu. Peaks below the limit of detection, f0say, would conventionally be
declared as drop-outs. However, if the level of the nois@etip a floating threshold limit of 30
rfu such considerations need not to be made, since no alleleksl drop-out in this case. Often
a case worker is able to visually detect peaks belongingastispect in the EPG below the limit
of detection. However, lowering the limit of detection irder to include the suspect is clearly
very erroneous and unfavourable to the defendant, sinea takthe extreme, any DNA profile
could be included in the crime related stain.

Furthermore, the method of adjusting for the contributibstatter and pull-up #ects is more
accurate than just removing the peaks due to so-called ngsk{eeping all relevant in the
system is desirable since having a peak in stutter postiatafter adjustment has a peak height
of 35 rfu, say, is more informative than having a NA obsevatiue to removal of a potential
stutter.
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Abstract:

DNA samples found at a scene of crime or obtained from theisleba mass disaster accident
are often subject to degradation. When using the STR DNAn@lclgy the DNA profile is
observed via a so called electropherogram (EPG), wherdléiesaare identified as signal peaks
above a signal to noise threshold. Degradation impliesttieste peak intensities decrease in
strength for longer repeat sequences. Consequently, [BRJ&i possibly fail to produce peak
heights above the limit of detection resulting in alleliopfouts.

In this paper we present at method for measuring the degrédegrbdation of a sample and
demonstrate how to incorporate this in estimating the goiibaof allelic drop-out. This is
done by extending an existing method derived for non-desgtaamples. The performance of
the methodology is evaluated using data from degraded DN&revbases with varying amounts
of DNA and levels of degradation are investigated.

Keywords:
Forensic genetics; STR DNA; Degraded DNA,; Allelic dropout.

8.1 Introduction

This paper presents a statistical analysis of degraded SYR $amples. The model derived
in the subsequent sections is based on analysis of degradadrdm body tissue kept under
various non-optimal conditions. This implies that the DNAdfected by degradation, which
is a commonly occurring event in crime cases, where evidéncellected after it has been
exposed to e.g. sunlight, humidity and other degrading itiong (see e.g. Alaeddini et al.,
2010). Furthermore, when identifying body remains in masasier cases, the samples are often
found in the debris of the accident or in mass graves. Sangtes under these circumstances
are often highly degraded and it is often hard to obtain fiNl¥Dprofiles from longer STR loci
(Schneider et al., 2004; Bender et al., 2004; Alonso et AD52Dixon et al., 2006; Irwin et al.,
2007; Prinz et al., 2007; Colotte et al., 2009).

In samples with degraded DNA, the signal intensities forSA® fragments decreases with the
fragment length, due to the higher likelihood of the longagfments to be degraded compared
to the shorter fragments. Consequently, signals for thgdenalleles are frequently missing, a
phenomena called allelic drop-out. Allelic drop-out of fbag alleles can also occur in sam-
ples with apparently moderate amount of DNA since the abkdlguantification kits (Plexor,
Applied Biosystems, and QHum, Qiagen) are based on amgliess than 200 bp (Green et al.,
2005), which is about half the length of the longest ampl&ciore.g. the SGM Plus kit (Applied
Biosystems).

In order to assign weight to the evidence in cases involvegraded samples, the case worker
needs to be able to account for the fact that alleles or log ld@opped out. |.e. alleles of the
true DNA profile fail to cause peak heights large enough t@ jpdanit of detection. Tvedebrink
et al. (2009) presented a method for estimating the prababil allelic drop-out based on a
logistic regression. However, the analysis was based aredilsamples from “healthy” DNA
samples where degradation was absent. Here we show howendettte drop-out model of
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Tvedebrink et al. (2009) to handle degraded samples by tadjuthe proxy for the amount of
DNA to correct for degradation.

8.2 Materials and methods

8.2.1 Data

The data used in this study were investigated by The Secfibormnsic Genetics, Department
of Forensic Medicine, Faculty of Health Sciences, Uniugref Copenhagen. DNA profiles
from 47 crime case samples were identified as degraded dbe ttetreasing signal intensities
in the electropherogram (EPG) for longer fragments in th&3&8us analysis. Of these were
eight samples discarded due to obvious inhibition and ferg&mples the amount of DNA were
limited such that the observed peak heights were in the rdfige 15 rfu. The remaining 34
samples originated from saliva on a shirt (three sampléspdostains on paper (eight samples),
blood sample from a decomposed body (five samples), a spleenad decomposed body (one
sample) and pafAn-embedded tissue (17 samples). The amounts of DNA varied 17 pg to
1244 pg as quantified with Plexor (Applied Biosystems) andi®@HQiagen) quantification kits.
We used the methodology of Chapter 7 for filtering the rawaligmhere the detection limit was
set to 5 rfu in GeneScan. The Kazam macro in Genotyper wasfosatiele designation.

8.2.2 Model

It is well known to case workers investigating DNA from crireeenes that the DNA often is
subject to degradation to some degree. The most comiffiect & an observable decrease in
peak intensities for increasing base pair length of the enops. A probable explanation for
this is that the longer the repeat sequence the higher thmpiliy of a breakage in the primer
binding sequence. Lat denote the probability that there is no breakage betweenDivA
bases (A, T, C or G). For simplicity we assumpéo be constant with respect to length and the
two adjacent DNA bases. That is, the probability of breakagfeveen A and G is the same as T
and C, and so on. Furthermore, by a constant probabilityedhage as a function of base pair,
bp, we do not assume any region of the genome to be more sidedptoreakage than others.
Hence, this simple model does notinclude the possibiliy fitoteins may protect some regions
or segments of the DNA from degradation. Therefore, the dortige primer binding site the
more possibilities exists for the occurrence of just on@kage. |.e. longer sequences increase
the probability of damaged DNA:

P(No degradationy P(No breakage between any base pair)
= P(No breakage between a given base pB&ir)
= p,
where we from the first to second line used that the probwlitbreakage is constant and

that the probability of breakage between any two pairs isirassl independent of the con-
stitution between all other pairs. Singe< 1 the functionp® is a decreasing function of
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bp. This implies that the longer amplicon (larger bp-vajudse smaller is the probability of
no degradation. Conversely this increases the probabilifegradation a®(Degradation)=
1 - P(No degradation} 1 — p°P.

For healthy DNA samples the peak heights for the variousdoeialmost constant. This is due
to the fact that there is no degradation acting in healthypdasnwithp ~ 1. This led Tvedebrink
et al. (2009) to argue that the amount of DNA is well modellsihg the average peak heighit

n
Amount of DNA o« H = (Nt + Z”hom)_lzi_l hi, (8.1)

wheren = nhet + Nhom is the number of observed heterozygous and homozygousslteithe
profile. This was previously demonstrated to be a good proxghie amount of DNA contributed
to a stain (Tvedebrink et al., 2010).

However, in degraded samples one need to take the varyingdpécount when modelling the
mean peak height. Rather than being constant, the peakibeigh&ected byp and bp. By
modelling the mean peak height as

H(bp) = cp™, (8.2)
wherec is some proportionality factor, depending e.g. on the arhofiDNA in the sample,

we obtain an expression for the mean peak heights in degsategdles. Note that for healthy
sampleg ~ 1 which implies that ~ H as defined in (8.1).

Hence,p may be taken as a measure of the level degradation of a givgpleathe smallep the
more severe is the degradation, whereas values close tdchiaanly moderate degradation.
Taking logs on both sides of (8.2), we get:

logH(bp) = log(c) + log(p)bp = ag + a1bp. (8.3)

This implies a linear relationship between bp andht{gp). However, the assumption of linear-
ity does not correct for the possibility of homozygocity.ride, peak heights from homozygous
loci needs to be divided by 2 in order for the model to be applie to all loci. In Figure 8.1
we see that the model is supported by the data given in Table/halysis of all the samples
described in Section 8.2.1 indicated that linearity wetisBad for all samples (plots similar to
Figure 8.1 are provided as supplementary on-line matekéflen applying this methodology to
analyse degraded samples, it is important to verify the iinfitd®y graphical diagnostics (as in
Figure 8.1) and th&?-statistic of the linear model in (8.3). This is due to thetfhat a linear
model may be fitted to any data set, but without reasonabidityathe interpretation might be
dubious.

This model formulation is in itself simple and intuitive. fduermore, equation (8.3) enables
direct implementation in the model of Tvedebrink et al. (2Pfdr estimating dropout probabil-
ities P(D), whereD indicates a drop-out event. Since the probability of dropis primarily
determined by the amount of DNA, it is natural to implemers ihto the model for drop-out
probabilities. In Tvedebrink et al. (2009) the authors destated that a logistic regression with
H as explanatory variable yield an applicable model to edéntize drop-out probability for a
given value oH:

P(D; H)

logit P(D; H) = log P A)

= Bos +B1logH, (8.4)
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Figure 8.1: Peak heights on logarithmic scale plotted against basglpair The black points
are assigned true peaks by the floating threshold methog¢lzapter 7) and the grey points
are assigned noise (negative signal). The numbers in bsackehe ordinate are the rfu values.
The dashed horizontal line shows the fixed 50 rfu detectiogstiold.

whereH = H andH = 2H for heterozygous and homozygous loci, respectively. Thsaipt
sin Bos indicate that this parameter is locus specific whegzas not (Tvedebrink et al., 2009).
Since the model in (8.3) measures the degree of degradatomay adjust the estimate Efby
H(bp), such that the model for dropout also is applicable gralded DNA samples withi(bp)
as explanatory variable.

8.2.3 Implementation of degradation in drop-out probability estimation

The definition ofH in Tvedebrink et al. (2009) assumes tlithis estimated based on all peak
height observations (see (8.1)). However, since the peigkheéecreases for increasing bp in a
degraded DNA sample, the assumptions for the drop-out nibdet satisfied. To compensate
for the decrease in peak heights and thereby increase inalrggrobability, we incorporate the
level of degradation in the drop-out model. &t be the profile of a given individual, e.g. the
suspect of a crime case. First, the peaks related to theabeiginating fronGs is determined,
and thex-parameters of the degradation model, (8.3), are estinietseld on a linear regression
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Table 8.1: Data used in Figures 8.1 and 8.2. The drop-out probabilitgligie 24 in locus
D2 (shaded row) is assessed in the example of Section 8.3cdlbimn 'Corrected height’ is
computed using the method discussed in Section 8.6.

Dye Locus bp Allele Height log(Height) Corrected height
Blue D3 12022 14 334900 812 479012
Blue D3 14066 19 229%2 774 471449
Blue VWA 17858 17 127269 715 511407
Blue vWA 18685 19 14700 7.29 683808
Blue D16 24678 9 62700 644 842495
Blue D16 26274 13 37700 593 671933
Blue D2 30757 19 7740 435 305041
Blue D2 327.87 24 42.00 3.74 237Q77
Green AME 1037 1 718876 888 761712
Green D8 1404 12 330301 810 679326
Green D8 1444 13 302&21 802 668060
Green D21 2027 29 58191 637 375030
Green D21 2047 30 73710 660 509000
Green D18 3009 18 17550 517 696780
Green D18 3122 19 17354 516 741275
Yellow D19 12267 14 2853%3 7.96 426248
Yellow D19 12667 15 254679 784 408325
Yellow THO 18590 9.3 12170 710 556679
Yellow FGA 22493 20 46000 613 419852
Yellow FGA 24176 24 35500 587 436455

of log peak height on bp. Th&s-specific regressiomg, @1)-parameters are inserted in (8.3)
together with the bp-value for the allele under investigafor drop-out. For théh allele ofGg
the adjustedd-estimate isH(bp) = exp(o + @1bp) which we then insert in (8.4):

logit P[Di; H(bp)] = Bos + 1 log H(bR) (8.5)

whereH(bg) = H(bp) or I:I(bq) = 2H(bp) depending on whethdD; represents a drop-out
on a heterozygous or homozygous loci, respectively. Tharinétion about bpand homozy-
gougheterozygous locus is given by the specified profile. Hengéoathe drop-out model of
Tvedebrink et al. (2009) the drop-out probabilities areedeined for a specific profile since the
drop-out probability depends on the observed peak heiglstscéated to that particular profile.

8.3 Results

In Figure 8.2, the observed peak heights of Table 8.1 ar¢epl@tgainst their base pair lengths
(the peak heights of homozygous loci are divided by 2 in FediR). The superimposed curves
represents the adjusteld(bp), observed mean peak heights,and the fixed 50 rfu detection
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Figure 8.2: Peak heights plotted against base pair length. The solikecsitow the adjusted
mean peak height, the dotted line the observed mean peadhtlagid the dashed line the fixed
50 rfu detection threshold.

threshold, respectively. Note that the profile of Table 8. hamozygous for Amelogenin (fe-
male) and THO. This implies that the observed peak heightthése two loci are divided by 2
before the linear model (8.3) is fitted to the data.

In Table 8.1, the row with a grey shading show the peak belevixed 50 rfu detection threshold

which is represented by the dashed line in Figures 8.1 andH#®®ever, using the methodology

of Chapter 7, it is possible to have locus specific threshetdling detection of all the alleles

in Table 8.1. In the following we assume that the identifiddlas in Table 8.1 represents a true
DNA profile, e.g. identified from a blood stain left by the saspfound at the scene of crime.

The drop-out model and fitted parameters in Tvedebrink €2809) are calibrated for the event
D = {peak heighk 50 rfu} for non-degraded DNA. Hence, tlt-estimate must only be based

on the peak heights above 50 rfu for the drop-out model to péagble. Under the assumption

that the alleles in Table 8.1 constitute the profile, i.e. shgpect profile is heterozygous for all
loci but Amelogenin and THO, we find thet = 146041 rfu. Most of the observed peak heights
deviates substantially frotd due to degradation (see dotted line in Figure 8.2).

For evidential computations we need the probability thiel@l4 in locus D2 has dropped out.
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The methodology of Tvedebrink et al. (2009) makes this caatmn straight forward using
the estimatedH-value. By plugging-in the estimatdd in (8.4) and taking the inverse of the
logit-function, logit*(x) = exp(x)/[1+ exp(x)], we obtain the drop-out probabili§(Dpy,,; H =
146Q41) = 1.54-10°5, where we usefop, = 18.31 andsy = —4.35 from Table 2 of Tvedebrink
et al. (2009). This is an extremely low drop-out probabilityen considering the fact that allele
19 in the same locus has a peak height of 77 rfu.

From graphical inspections of the (simplified) EPG in Fig8r2 it is obvious that the DNA
sample is subject to degradation. In order to take the degjcadof the DNA into account we
adjust the estimated. The solid line in Figure 8.1 has§ d1) = (10.262 —0.0177) withR? =
0.931 which together with Figures 8.1 and 8.2 and other grapkii@gnostics indicate a good
agreement with the model. Since the fragment length, bpll@ea&4 in locus D2 is by, , =
327.87 (see Table 8.1), the adjusteidvalue yieldsH(bp) = exp(10262 - 0.0177-327.87) =
85.25rfu. This estimated peak height is reasonably close toliserved peak height (77 rfu)
for the other allele in the same locus (Table 8.1). The es@thpeak height is plugged into
(8.5) which implies thaP[Dpy,,; H(bp) = 85.25] = 0.26. This drop-out probability is more
reasonable thaR(D; H) not taking degradation into account.

Note from (8.3) we may compute from the estimate of1, p = exp(1) = exp-0.0177)=
0.982. From experience (see the supplementary materiadhnigple is moderately degraded.

8.4 Discussion

Since most DNA samples are analysed in replicates (or at ieatuplicates), an additional
source of information is the consistency of the estimateplatiation parameter across replicates.
For replicates the amount of DNA may vary, however, tiiis@s (in principle) onlyyy, whereas
a1 should remain constant. For most of the samples analysbatsipdper the were no significant
difference between the levels of degradapgnand pr, for different replicate® andR;, i # j.
Similarly, for samples originating from the same body tessu fluid, the degradation pattern
should be reasonably similar across samples taken fronathe source of the crime scene. This
were supported by the data, however, some cases had sighdiffarences between tisgtlaid
samples.

The likelihood ratio is defined dsR = P(E|Hp)/P(E|Hq), whereH, andHq are two competing
hypotheses that could represents the statements of thecpitos and defence. L&s be the
DNA profile of the suspect, which in the example of Sectionéj@als the profile in Table 8.1.

In order to evaluat®(E[H) whereH, claims thaGs is the donor of the observed stain, an allelic
drop-out need to have occurred in order to explain the nasafhallele in locus D2. Hence, the
probability P(Dp2,,) enters in the numerator @R. Thus, the smaller this probability the smaller
the LR. Hence, the prosecutor will claim that degradation is presence the probability of
allelic drop-out is approximately 20arger when assuming degradation, compared to the non-
degraded probability of allelic drop-out.

P(E|Hg) is evaluated by summation over the set of possible unknawfilgs with or without
allelic drop-out. Whether or not it is favourable for the elefe to consider unknown profiles
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with drop-outs depend on the allele probabilities for thenbaygous loci. That is, if

k
P(D; 2H)P(AA) < P(D; H)P(D; H) )" P(AA)

j#i

thenP(E|Hy) is increased by allowing for drop-out which results in ardesed_R. This con-
sideration applies whether or not the sample is degradedelier, the drop-out probabilities
will only increase when considering degradation siF¢bp) = cp®® < H andP(D; H) increases
asH decreases. On the other hand, the probability of alleleslrogiping out is possibly larger
when correcting for possible degradati®{D; H(bp)) < P(D; H), sinceH(bp) may be larger
thanH for short amplicons.

8.5 Conclusion

We presented a method for the decay in the peak intensitisgerisic STR loci as a function
of increasing base pairs, bp. The model showed satisfaatimgement to data and is simple and
intuitive. Furthermore, we demonstrated how to implemieatinformation of degradation in the
computation of the probability of allelic drop-out in theéusition of degraded samples.
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8.6 Supplementary remarks

Degradation fiects the mean of the peak heights and areas. Since degraidativery common
situation in forensic case work, the models developed shibelable to handle degradation. As
with the extension of the mixture separation method to atgvior allelic drop-out, the method
is extensible to correct for degradation.

Assume that the biological material contributed by the dens of similar type, e.g. blood,
tissue, body fluids, etc., and that the material has beensexptm similar conditions over an
approximate identical time span. Based on these assumsptisreasonable to assume that the
level of degradation is common for the DNA and that the pe&dnisities may be modelled by
o pPP, wherecy reflects the amount of DNA contributed by tkié individual andp is common
forallk=1,...,m.

In cases of degradation, thffect on a four peak locus might be such that the highest andstowe
peak heights relate to the major component and the two alieih intermediate peak heights
belong to the minor contributor of a two-person DNA mixtuféis could happen if the highest
and lowest peaks are in each end of the ladder interval anmhttvenediate in between. Fig-
ure 8.3 shows examples of this situation for the base pairiat from 125 bp to 280 bp for the
SGM Plus kit.

The plot in Figure 8.3 exemplifies a two-person DNA mixturehap = 0.98 and amounts of
DNA corresponding approximately to an 1:2 mixture. Thattiee expected peak heights of

Ileterozygous loci are given H)]z() =C pbp(ki) hich 'mpl'es ha 4 loghs; = 2(l(+) +a bp
i k sy wni | | t E|:l g S,| 0 1 S, +1

Hence, a regression Qti“:l loghs; on bp,, would give estimates ofaé)*),al). However, ad-
ditivity of peak heights on natural-scale does not trangfeadditivity on log-scale. Homozy-
gous allele peak heights are Ioff) = log2+ o}’ + a1bpl and shared alleles has Ibg, =

log(c: + ¢2) + albp(s;)i,, where in particular the shared alleles implies that theesgion of
Z{‘jl loghs; on bp,, would yield locus dependent intercept.

Thus, diterent means for estimatingfor DNA mixtures need to be considered. By simulating
a large number (e.g. 1,000) DNA mixtures with known profisiounts of DNA and level of
degradationpy, it was possible numerically to compare the performancefédient estimators
of p. Of the investigated methods a regression of log to the méaeak heights, lof), on
the mean of base pairbp,, yielded a good approximation based on simulations with %-95
confidence interval 0f{8.58x107°, 4.62x10°) for the diference betweepy andp.

The relevant observation window for the loci included in 8®M Plus kit (AB) starts around
100 bp. Using this fi-set the observed peak intensities may be adjusted for dagpa by
compensating by the fitted decay. Givaraind the peak heightit is possible to compute the
degradation corrected peak hei@hBy multiplying the observed peak heights by expf(bp—
100)] the dfect of degradation is inverted resulting in less imbalaroetsveen Ioci,ﬁsi =
hsi exp[-aa(bps; — 100)].

In the example of Section 8.3; = —0.0177 and by using the approach above we get the peak
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Figure 8.3: Degradation of a two-person DNA mixture. The highest ancelstpeaks belong to
the major component. The shaded areas below the first axisthiearange of the allelic ladder
for the various STR loci in the 125-280 bp window of the SGMis>kit (Applied Biosystems,
AB).

heights reported in the 'Corrected height’-column of Table. There is still evidence of peak
height imbalances within loci. However, the heterozygatiabce Hb, which is the ratio of the
heterozygous peak heights (see e.g. Bill et al., 2005), séred by the correction, where the
range ofHb for the observed peak heights is (0.54, 0.99) it is (0.748)a®er the peak height
correction.

In order for the models for DNA mixtures of Chapters 4 and 5eovalid, the proportionalities
of peak heights and peak areas need to be preserved. Howevenrrection of peak heights
is also applicable to peak areas, heage="as; exp[-a1(bps; — 100)] which ensures the same
proportionality as before the correction. Therefore, nanges are needed in the sgtdor the
mixture separator when the peak intensities are adjustatkefygradation.

In the next chapter the model for degraded DNA is combinel thie models from the previous
chapters in a 'unifying likelihood ratio’. That is, a likblbod ratio were all the discussed com-
plications can be included and accounted for when assetfgngeight of the DNA evidence in
crime cases.



CHAPTER 9

Epilogue

9.1 Conclusion

In the preceding seven chapters (Chapters 2-8) the corertoott this present PhD thesis has
been presented. The main focus of the PhD project has beesvébop statistical models ap-
plicable to the quantitative part of the STR analysis andariipular DNA mixtures. However,
since the genetic part (qualitative allelic data) of thedewice constitutes the fundamental inputs
in evidential weight calculations, it wasfiicult not to treat this topic. This lead to the interest for
IBD and the éect of population structures when computing the evidemtgght. As pointed
out by one of the reviewers of the paper in Chapter 2 ('Oveetision in allelic counts ang
correction in forensic genetics’ to appear in Theoretiagbfation Biology) does the forensic
databases not constitute the databases of interest. Mosgalgopulation surveys should be
used when making inference ab@ye.g. random samples taken from well-defined subpopula-
tions on a high resolution. For the Danish population thigldde samples taken from small
villages or islands since these subpopulations may catge ddlelic divergence and thus yield
f-estimates in the higher end of the plausible range (Bald&085). From Figure 2.1 we saw
that this in practise would lead to conservative evaluatibthe evidence. Furthermore, this is
equivalent to the fact that the probability of a “random rhéi@ profile match of two unrelated
individuals) increases witf.

For the quantitative part, the work was initiated by assgmio complications of stutters, pull-up
effects, allelic drop-out or degradation. Under these settiingas possible to derive two models
for DNA mixtures, where the simplest of the two were wrapp@d ia greedy algorithm which
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efficiently separated DNA mixtures. For the particular datadusethe paper the algorithm
was at least as successful as three experienced case woH®@sever, the analysis did also
emphasise that the results should be interpreted withaaufl his was especially important
for samples close to 1:1-mixture proportion and when ther@dt was about the minor profile.
The analysis of three-person mixtures repeated this gictitnere the success rate for the 1:2:4-
mixture proportion was rather low for the mid and minor pesil

Having done this, a natural extension of the models was tdlkailelic drop-out and degraded
DNA samples as these phenomena are frequently occurringaincrime case work. From
the remarks of Sections 6.5.1 and 8.6 it was demonstratedttpwresented models may be
combined in order to handle these complications. In the rksiawas only exemplified how
to modify the statistical model and mixture separating atgm for two-person DNA mixtures.
However, the cases of more contributors follow along theeséines. The work with allelic
drop-out also made it evident that there were possibilfiegefinement of the determination
of the signal-to-noise ratio. The use of a fixed threshold imagome cases discard important
information regarding the distribution of the noise comgifrom the measurement technique.
The model proposed to determine this threshold was basedsionpde analysis of quartiles in
order to estimate the parameters of the log-normal digtdbu However, for some situations
this approach seemed to be too simple as a sudden incredse rdite level was detected for
a short bp-interval. This temporally increase in the backgd noise caused non-linearity in
the QQ-plots and in some cases increased the variance essuoizstantially. Loess-curves were
investigated to handles this non-linearity. However, ttigynot improve the overall performance
significantly. Further work may suggest ways to adjust fag fact, but one has to focus the
attention on newer typing kits, as these should have bégjealsto-noise ratios than the SGM-
Plus kit (Applied Biosystems).

9.2 Weight of evidence calculations

In the preceding chapters it has been demonstrated howdrpioiate the quantitative part of the
STR typing results in the likelihood ratio approach. Thepiple was to assign a weight to each
quantitative term of theR, where the weight should reflect the compliance betweendbected
and observed peak intensities. Terms with minor disagrae(eey. due to measurement errors)
should receive a large weight whereas profile combinatieadihg to substantial fierences
would be weighted by a quantity close to zero.

This extendability of thé.Ris one of the many arguments for using this approach ratherttie
“Random man not excluded”-approach (often abbreviated EMidproach in the literature). |
will not discuss the philosophicalfiiérences or many advantaged &over RMNE, since these
are irrelevant at this point. However, it should be noted the models discussed above is of no
use when assessing the weight of evidence through RMNEaénwith many others (e.g. Evett
and Weir, 1998; Balding, 2005; Buckleton et al., 2005; Gilak, 2006; Buckleton and Curran,
2008) | strongly recommend tHeR-approach in evidential calculations carried out in forens
genetics.

ThelLRis formed by evaluating the evidence (crime scene evidemt&entified profiles) under
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competing hypothesis, often denotel and Hq for the prosecutor and defence hypotheses.
SinceHp andHq are only mutually exclusive, and not exhaustive, one needsdall that there
are severalRs - one for everyKi;,, H})-pair of hypotheses. Hence, the fact that Lefavours

Hp overHy does not imply that there cannot existg for which LR = P(E|Hp)/P(E[H)) < 1
(Balding, 2005).

The extensions of theR derived in Chapters 4 and 5 only considered cases assumialigfio
drop-outs. However, as previously argued does this assomgtten fail together with the 'no
degradation’-assumption. Hence, for proper inclusionhef available data and applicability
to most types of crime cases, th&® needs to be extended further. Let= (Qmis, Qoby and

G = (Gmis> Gobs), Where the subscripts refer to dropped-out and obserledsl That isQqpsare

the observed peak intensities, wherBag denotes the event of an allelic drop-out, i.e. the peak
failed to be detected. Similarly aBns andGmis the associated types of alleles, where the need
for Qmis andSGnis is induced by the hypothesis under consideration.

Given a specific hypothesis the set of plausible profile comimnsC is induced. That is, if the
prosecutors hypothesi$y claims that the observed crime scene stain originates frgiotian,

V, and suspeck thenCp = {(Gv, Gs)}, where respectiveliy andGs are the profiles oW/
andS. In connection to this hypothesis the defence states thad ‘Observed crime scene stain
originates from the victim and an unknown profile” then= {Gy : (Gv, Gy) = Hg}, with Gy
being the profile of the unknown contributor. This definition ofCq does not limitGy to be
consistent with Qops, Sons), hence drop-out df’s alleles is allowed with this formulation. Note
that this definition of® is different from that of Sections 4.3 and 5.5 where the plausilogles

in C needed to be consistent with the observed alleles, i.e lelicalrop-outs were allowed.

Additionally, drop-ins, stutters and pull-up peaks polgsiauses more alleles to be observed
than those of the true contributors. However, as claimedeicti®n 5.9 are stutters (and pull-
up peaks) profile independent. Hence, given the peak irtyeimdormation in allele position

n it is (in principle) possible to predict and adjust for thetstr contribution to the peak in
positionn—1. Similarly, the pull-up contribution can be removed froeags with overlapping
bp-values. However, not all such peaks were successfuttpved as 6 stutters and 4 pull-ups
were observed above the signal-to-noise threshold (TaB)efatr the two-person mixtures, and
for the three-person mixtures 27 stutters and 2 pull-upgwetected. Hence, peaks other than
those belonging to the true donors must be incorporateckifuttifying’ model to be consistent
with the observed data.

9.3 Unifying likelihood ratio

The evaluation of thé&.R consists of computing the probability of the evidence urtbdertwo
hypothesis and form their ratio. Since tlesets are discrete the probabil®(&|H) may be
evaluated using the law of total probabil®(E|H) = > oce P(EIG)P(G), whereG is short for

the profiles involved, e.gz = (Gy, Gs) under the prosecutors hypothesis in the example above.
In order to discuss the evidential weight there need to beastlone identified DNA profile,
namely the suspect’s profil8s. For general purposes I& be the known DNA profiles as-
sociated with the case, e.& = (Gy, Gs) above. Then the evidenéeconsists of¢; and K,
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whereé&. were the crime scene evidence including both the quanttaind qualitative parts,
Ec = (Q,9). First we note that the crime scene eviderigeand the known profilesk are as-
sumed conditionally independent giveh) &). That s, givenG € € and§ the known profilesk
has no influence on the crime scene stain. Hence, using thetidefiof conditional probability
we can forG € C factoriseP(&|G) as:

PEIG) = P(&e, KIG) = P(Q, G, K|G) = P(QlS, &)P(SIK, G)P(KI|G). (9.1)

In (9.1) theP(Q|9, G)-term measures the agreement of the observed and expeszkdnen-
sities under some model. If the detected allele§ iaquals those o& neither drop-out nor
drop-in (including stutters and pull-ups) have caused imgssr additional alleles to be present
in the signal. HenceR?(Q|9, G) = P(Q|G) may be evaluated by the one of models as presented
in Chapters 4 or 5, and sin€e= (5N G) = G, i.e. the profiles are consisteR(S|G) = 1.

However, in cases with stutters, pull-ups or drop-ins preseis split into two parts ascribed
respectively toG = § N G andG = G\ (9§ N G). The evaluation is done bR(Q|G, G) =
P(Qzl9¢, 9, G)P(Q¢|G), where in cases of possible stutteriRRz|Q4, G, G) assigns prob-
ability to this event. In this thesis such models have nonbdiscussed, however, a logistic
regression (similar to that of the drop-out model) may beveer where the explanatory vari-
able for stutters and pull-ups would be the parental peakénsities. For drop-ins (additional
peaks not possible to categorise as stutters or pull-upshaise level of the sample might be
an appropriate covariate.

Furthermore, ifG implies allelic drop-ouf) can be decomposed intB s, Qons) and the quan-
titative term then factorises furth®(Q|S, G) = P(Qmis|Qobs 9, G)P(Qond 9, G). The probability

of an allelic drop-outP(Qmis|Qobs 9, G), is computed given the observations and information
about the sample’s genotypes. An allelic drop-out is edeintao the event that the peak height
is less than the limit of detection. Hend®&(Qn,s|-) could be evaluated b)%TP(hl-) dh, whereT
andh are the limit of detection and peak height, respectivelyweler, the drop-out model of
Chapter 6 is an approximation to this integral and sinceégisier to compute we us¥D; H)

to quantifyP(Qmis| Qops G, G).

Thus combining (9.1) with the extension for drop-outs anditahal alleles compared G the
‘unifying likelihood ratio’ can be defined as:

P(EIHp)
LR =
P(E[Haq)
Z@ P(Qmis|QobSn G) P(QobsaQobsG, 9, G) P(QobsG|G) P(9|K, G) P(K|G) P(G)
_ GeCp
B Z(? P(Qmis|Qob& GI)P(QobsaQobsG, 9, G')P(QobsG|G')P(9|K, GI)P(K|G')P(G')
G'eCy

(9.2)

This LR is constructed such that it (in principle) is applicable inpmssible scenarios arising
from crime cases.

For the example above witH,: (Gy, Gs) andHq: (Gv, Gy) the known profiles are thug =
(Gv, Gs). Assume thaGs has alleles not present fhimplying that allelic drop-out must have
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occurred if the suspect is a true contributor to the staimthieumore, all alleles i§ is accounted
for by (Gy, Gs). Then theLR s given by:

P(QIS, Gv, Gs)P(SIGv, Gs)P(Gv, Gs)
> P(QIG, Gy, Gu)P(SIGy, Gu)P(Gs|Gy, Gu)P(Gu, Gv)

GU e@d
P(QmIS|QObS» 9’ GV’ GS) P(Qostg’ GV’ GS) P(ngS’ SObAGV’ GS)

. Ze P(Qmis| Qobs: G Gv» Gu)P(Q0bd S, Gv» Gu)P(Imis: SobdGv» Gu)P(GulGy, Gs)’
uv€Cd

LR=

whereP(Smis, SobdGv, Gs) = 1 since Gv, Gs) = (Gmis; Gobs). Assume further thaty = {Gy :
(Gv,Gu) = Yong, i.e. the set of possible unknown profiles is restricted tacesistent with
the observed alleles when combined w@f. Thus,P(Sobs SmislGv, Gu) = 1 andLR reduces
further:

_ P(Qmis|Qob& 9,Gv, GS)P(QODSIS’ Gv, GS)

GZL P(QobdGv, Gu)P(GulGy, Gs)
u€Cy

LR

9.4 Future research

9.4.1 Replicates

When a sample is taken from a crime scene the number of melemay be limited, e.g. does
dead hair follicles only contain limited amounts of DNA arnh#arly for 'touch DNA" which

is biological material transferred by physical contactl(@nd Buckleton, 2010a). LW be
the number of DNA molecules present after extraction arn the number of replicateR,,
made based on thid molecules. For the replicates to be comparable in terms of drop-outs
(and possibly stutters and contamination) it is desirabiettie amount of DNA to be evenly
distributed among;, . .., R, e.g. forn = 3 one could imagine to have approximately 30% in
each replicate leaving 10% of the extracted DNA in the tube.

Let 7a denote the aliquot proportion, then this sampling schemmsié® thatR; ~ bin(N, 7a)
and R|Ry,...,R-1) ~ bin(N — Z',-;ll Rj, ma/[1 = (i=L)ma]) for j = 2,...,n. Itis easy to verify
that this construction yields the expected values as dbgi@;) = Nz and

[N - (i—l)Nﬂ'A]ﬂ'A _
1-(i-Lwn

E(R) = E[E(RIRy,...,R-1)] = N7a.

Furthermore, this implies thal, Q) = (Ry, ..., Ry, Q) ~ mult(N, {17a, 1 — nma}), whereQ is
the remaining extract. Assume that there need td/bmolecules of an allele prior to PCR in
order to be detected by the CCD camera in the electropharesibine post-PCR. Hence, for
the allele to be detected in each replicate we requireRhatM for all i

N-ry N-r,

N
P(Ri>MRy > M. . Ry>M)= > > - Y PR =1,R=rs,....,R =1p), (9.3)

ri>Mro>M >M
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wherer, = i“;llri. This probability depends on several factors but most iy 6 =
N—nM. For smalls the probability that the allele has dropped out in at leastafrihe replicates
is considerable, and for negativeve are sure to have drop-outs. However, when> 0 the
probability of drop-outs in any of the replicates is minima. when the amount of DNA is large
all the replicates should have all alleles present.

In low template DNA (LT-DNA, formerly known as Low Copy NumbBNA, LCN-DNA, Gill
and Buckleton (2010a)) itis common to use the 'biologicatieloto form a so-called 'consensus
profile’ (Buckleton et al., 2005, Chapter 8). That is, onlkels present in at least two replicates
are reported in the consensus profile (Gill et al., 2000). &l@x, from the probability in (9.3)
it is for small N very likely that an allele present in some replicates is abseothers. Hence,
the definition of a consensus profile may not be the best appnofen it is expected that the
replicates will show dterent alleles for small amounts of DNA, which is the case TBEINA. A
better method would be to model the negative correlatiowéen peak intensities of replicates.

In the left panel of Figure 9.1 the probability that the cormes profile excludes a true al-
lele is plotted for two and three replicates against thel tataount of extracted DNA, i.e.
2xP(Ri<M, Ry>M) and 3<P(Ri<M, R.<M, Rz>M), where permutation of replicates induce the
multiplication of weights. It is assumed that in order tggrer the observation of an allele using
a 50 rfu threshold it is required to have 50 pg of DNA materigipto PCR. Furthermore, for
the two replicate case all of the extracted DNA is used in eguunts. For the three replicate
situation it is intended to assign 30% of the total DNA to eggtiicate.

—— Two replicates = = Three replicates

1.0
1.0

0.0

0.8
0.8
-0.2

0.6
0.6
-0.4

0.4
0.4

Pairwise correlation of replicates
-0.6

0.2
0.2
-0.8

-1.0

0.0
0.0

Probability that exactly one replicate shows the allele
Probability that at least two replicates show the allele

T T T T T T T T T T T T
50 100 150 200 250 50 100 150 200 250 50 100 150 200 250
Amount of extraced DNA (pg) Amount of extraced DNA (pg) Amount of extracted DNA (pg)

Figure 9.1: Left: Probability that the 'consensus profile’ excludesieetallele for two and three
replicates. Centre: Probability that the allele will belired in the 'consensus profile’ for two
and three replicates. Right: Pairwise correlation betwssrsensus profile inducing replicates.

From the curves in the left panel of Figure 9.1 it is eviderdt thor small and large amounts
of DNA the probabilities are féectively zero. For the small values this is because neither o
the replicates have observed alleles (no allele in consgursiile due to drop-out in both repli-
cates), whereas for the large values it is because the @leleserved in all replicates (allele in
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consensus profile). The maximum are respectively at 101 gd.&d pg while the ranges where
the probabilities are larger thanFaare 75-136 pg and 112-201 pg, for two and three replicates.

In the centre panel of Figure 9.1 the probability that thesemsus profile will include the allele
for two and three-replicates is plotted against the amofiextvacted DNA. For an allele to be
present in the consensus profile it must be detected at leiast t

P(R; > M,R; > M) and IPRL<M,R>MR3> M)+ PRy > MR, >M,R3 > M)

To be 99.9% certain that an allele is present in the consgm®ie the minimum required
amount of extracted DNA are 140 pg for two replicates and ZJHopthree replicates using the
assumed aliquot sampling scheme.

Define the indicator variableg which are 1 ifRi > M and 0 otherwise. Hencéd; indicates
whether replicateé triggers the observation of an allele above the thresholie “Eonsensus
inducing correlations” are thuSor(Ty, T») for two replicates and similarlor(T, T,|T3 = 0)
for three replicates. The latter correlation is naturallpjsct to permutation of replicates, but
since the amount of DNA for one replicate, h&sg is less tharM, the two other replicates need
to show the allele for it to be included in the consensus @ofllhe right panel of Figure 9.1
shows the negative correlations as expected due to thetrmihount of DNA. For two replicates
the pairwise correlation is approximately equal to the tigggrobability of the left panel of
Figure 9.1.

The general picture from the model and analysis of replgcatdicate that the concept of the
consensus profile (or biological model) is flawed, due to tisprdportion between expected
peak intensities and consensus profile construction. Hervéshould be added that the figures
above are computed without taking measurement error, RiddReacy variation, quantification
inaccuracy, etc. into account. A more refined model shoudtlige these and other factors to be
applicable to real STR data.

9.4.2 The number of contributors

When evaluating DNA mixtures a source of uncertainty is tbenber of contributors. Lau-
ritzen and Mortera (2002) derived an upper bound on the nurmbenknown contributors
worth considering (typically) undeldy. That is, the bound is computed such that if the
number of unknown profiles is larger than[b], the evidence is less favourable to the de-
fendant than withx = [b]. However, this bound is computed without taking the quantit
tive part of the evidence into consideration and may theeefdeld an inaccurate bound for
LR =P(Q, 9, K|Hp)/P(Q, G, K|Hg).

9.4.3 Distribution of maxz L(Q|G) - optimisation over a discrete space

In relation to the problem above, it is relevant to be ableuardify the distribution oL (9|G).
How does one measure the significance inltf@!G)-value when changing the number of con-
tributorsm? And how is this related to the mixture proportian® For a fixed combination of
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profiles, going frommto m— 1 contributors is equivalent to settimg = 0. However, since the
greedy algorithm searches over all possible combinatidhdrdiscrete spacg, it may be inap-
propriate to rely on asymptotic theory or other common apphes to testy: a1 = 0 against
Hi:aq > 0.

9.4.4 Estimation of P(D) using the floating threshold methodology

In the drop-out model of Chapter 6 the limit of detection #ield was fixed at 50 rfu. How-
ever, if the STR signal is assigned positive and negativénbyfloating threshold methodology
(Chapter 7), the threshold is not fixed and the previous diefimdf a dropoutD = {h < 50},
does not apply. The definition of the drop-out probabilitymage 170 as an integral may be
used in this setting. That is, the quantitative data is spith two disjoint partitions where
the noise part (-ladder observation not in pull-up position) is used to detee T and is
therefore independent of the quantitative signal in theaiaing part. Hence, it would be pos-
sible to estimate a meap;,, and standard deviatiomy;,, for the peak heights and evaluate

P(D; ptn, ) = PN < T pn, ) = [ (1%, o) ch.

9.4.5 Evaluating the entire signal

As mentioned in Chapter 1 the use of threshold or limit of ciéd@ imply the possibility for
drop-out. In that chapter the argument for using a thressiétegy in this thesis were to limit
the set of possible combinations that were needed to eedlatHowever, it may be possible to
evaluate the entire STR signal by including all observatianove a given limit, 5 rfu say. This
would lead to more complicated expressions forltRehowever with a gain in conceptual clarity
since assignment of positifreegative alleles is superfluous. Using this methodologye@slly
the P(€|Hq) could imply a summation over a huge set which would be coatfarally intense.

However, the terms iR(E|H,) andP(E[Hg) that would have numerical impact on thR would

be those including the observed alleles with the stronggetiks. Often this would be those
associated with the alleles . However this need not to be the case, but searching for a best
matching pair of profiles would still be possible. For thelaation of LR to be operational, it
might be necessary to use importance sampling in order lo&esthe sum in the denominator
since fewer known profiles is specified by than byH,. Assume that the hypothesik states

that the observed crime scene stain was a two-person DNAimeixthen correcting for stutters
and pull-up ects, it may be possible to determine a best matching pairaffigs G. This

best matching configuration is then applicable as “refezgrofiles” for importance sampling
similar to the construction in Section 5.6.

Let & denote the signal obtained from the EPG based on a crimedetaimple, e.g. a sample
taken from a scene of crime. When evaluating the sample wiaterested irP(E|H,) for some
Ha-hypothesisH, induces a discrete set of DNA profiles and we denotedhis {G : G = Hg}.
FurthermoreH, may specify further evidence in terms of DNA profiles of idéed individuals.
Let K denote the common set of known profiles of the two hypothesdsated in theeR. For
example, in a two-person DNA mixtur& may be the profiles of a victim and the suspect,
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K = (Gy, Gs). Thus the likelihood ratio iR = P(€, K|Hp)/P(€, K|Hg). ThisLRis evaluated
by summing in both numerator and denominator over profileés,iandCq, respectively. That
is, P(€, KIHa) = Y cee, P(E, KIG)P(G).

We assume that give@ no other profiles fiect the observed signal. In particular this is true for
the known profileskK. Hence,£ and K are conditionally independent givew: P(&, K|G) =
P(E|G)P(K|G). For each set of profile§ € C, a set of stutters and on-ladder pull-up peaks
are induced. LeSs and Ps denote these “derivatives”, whe&; includes both stutters (first,
second, third, etc.) and back-stutters. Furthermore,dohe&' the allelic ladderL, is known
and fixed.

GivenG the observed signaf,, may decomposed into five parts that constitute a STR signal:

e Off-ladder noise £} which are all intensity observations irffdadder position and not in
possible pull-up positiorg}; is fixed for allG since the it only rely on the fixed laddér,

The signal due to the proposed profile<dn €.

The signal due to stutters induced by profilegin s, .

The signal due to pull-up peaks induced by profile&iandS¢: €p, .

On-ladder noisegt which are all on-ladder observations not ascribed'tand its derivatives.

Using this decomposition we have fare C,:

P(EIG) = P(ELIE g -E 50 E L5 GIP(E PG € s € ERG)P(E s 1€ E5.G)P(EGIES.G)PESIR)
=P(EIER.G)PE pele s - En.G)P(EsclEc.En.G)P(EGIERG)P(ER), (9.4)

whereP(E5G) = P(EL) since it is fixed for all profilegr and thus cancels out when forming the
likelihood ratio. It is likely that some of the terms in (9@8n be simplified due to conditional in-
dependence give®. For example, may the on-ladder noiég, be independent of theffeladder
noise £k, givenG when the parameters B{E}) is determined, i.eP(EL|EL, G) = P(ELIEL, G).
ThelLRis formed by a hypothesis specific ratio of the expressioR ih)(

Y P(ELIEL.G)P(E pel€sg Earh.G)P(EsulEa EL.G)P(E IS G)P(KIG)P(G)

GeCyq

R= — — — —
Y PEKIEL.GP(Ep, €54 -Ec-ER.G)P(Es4l€ e E5.G)P(Ee |EL.G)P(KIG)P(G)

G’eCy

As in Section 9.3 we consider a two-person DNA mixture witlown victim profileGy and
suspect profilegGs where Hp:(Gy, Gs) and Hg: (Gv,Gy). Due to limited space we define
Gys = (Gy, Gs) andGys = (Gy, Gs), then the likelihood ratio is

P(SI’I;'ng;’GV,S) P(SPGVS |8SG\/,S ’SG\/,S ’ng;’GV,S) P(E'SGVS |8Gvs ’8rI;’GV,S) P(SGVS |8h,GV,S)

;ZCP(SHEE,GV,U)P(epgvuwsgw L6 E5.GVU)P(E s, e ER-GVU)P(E ey |ER.Gvu)
u€ld : : :
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