Essential self-adjointness of symmetric first-order differential systems and confinement of Dirac particles on bounded domains in \mathbb{R}^d

Speaker: Gheorghe Nenciu (Romanian Academy)

Abstract

We prove essential self-adjointness of Dirac operators with Lorentz scalar potentials which grow sufficiently fast near the boundary $\partial\Omega$ of the spatial domain $\Omega \subset \mathbb{R}^d$. On the way, we first consider general symmetric first order differential systems, for which we identify a new, large class of potentials, called scalar potentials, ensuring essential self-adjointness. Furthermore, using the supersymmetric structure of the Dirac operator in the two dimensional case, we prove confinement of Dirac particles, i.e. essential self-adjointness of the operator, solely by magnetic fields \mathcal{B} assumed to grow, near $\partial\Omega$, faster than $1/(2 \operatorname{dist}(x, \partial\Omega)^2)$. This is joint work with Irina Nenciu and Ryan Obermeyer.