Fredag den 14. november 2014, kl. 08:15
Sted: Rum NJV14, 4-117.
Dagens program
Hint:
Assume first that $|f|$ is integrable (we prove it later). We have $f(x)\leq |f(x)|$ and $-f(x)\leq |f(x)|$. Using Theorem 7.2.5 we have $ \int_a^b f(x)dx\leq \int_a^b |f(x)|dx$ and $ -\int_a^b f(x)dx\leq \int_a^b |f(x)|dx$. This is the same as $|\int_a^b f(x)dx|\leq \int_a^b |f(x)| dx$.
Let us now show that $|f|$ is integrable. Let $P$ be a partition of $[a,b]$. If $u$ and $v$ belong to $[x_{j-1},x_j]$, then $f(u)-f(v)\leq M_j(f)-m_j(f)$ and also $f(v)-f(u)\leq M_j(f)-m_j(f)$, thus:
II. Read Theorems 7.3.1 and 7.3.5 in [Lay].
III. Read Example 7.3.2, Corollary 7.3.3, Example 7.3.4 and Practice 7.3.7 in [Lay].
Literatur: Afsnit 7.3. De vigtigste sætninger er sætning 3.1 og 3.5.