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A set S is partially ordered if there exists an order relation < which is
reflexive (x < z for all z), antisymmetric (if < y and y < z then z = y) and
transitive (z < y and y < z implies z < z). If z <y and x # y, then we write
T <yory>a.

A chain in S is a subset C' in which any two elements are comparable, that
is for every x,y € C' then either x <y or y < z.

An element m € S is called maximal if there is no other x € S such that
m < x. This does not mean that m is the largest element, which would be an
element M € S such that x < M for every x € S.

Theorem 0.1. (Zorn’s lemma). Let S be a partially ordered set in which every
chain has an upper bound. Then S has at least one mazximal element.

Proof. We first prove a weaker version, in which we assume that every chain
has a least upper bound (supremum). More precisely, for every chain C' there
exists an element called sup(C) which (i) is an upper bound for C, i.e. for every
x € C we have x < sup(C), and (ii) is the smallest upper bound, i.e. for every
x € C such that x < sup(C') there exists z € C such that z < z < sup(C).

Proposition 0.2. Let S be a partially ordered set in which every chain has a
supremum. Then S has at least one maximal element.

Proof. Define a ”successor” operation on S as follows: if z is non-maximal,
choose some y > z and set ¢(x) = y. If  is maximal, put ¢(z) = z. Note that
the existence of ¢ is insured by the axiom of choice.

Now we say that a subset N C S is a tower if we have the following two
properties:

P1. If z € N, then ¢(x) € N;
P2. For any chain C' C N, then sup(C) € N.

Let us note that S itself is a tower, and the intersection of any family of
towers is a tower (exercise). In particular, the intersection of all possible towers
is a tower. Denote the smallest (non-empty) tower of S with M.

Definition 0.3. (P3) We say that x € M has the property P3 if for anyy € M,
we either have y < x ory > ¢(x).

Lemma 0.4. Assume that P3 holds for all x € M. Then M is a chain, and
M has a largest element which also is a mazimal element of S.

Proof. Let us prove that M is chain. For, take x,y € M. Then P3 applied for
x says that if we do not have y < z, then we must have ¢(x) < y. But ¢(x) € M
due to P1, and = < ¢(x). The transitivity then gives x < y, hence M is a chain.
Now because M is a chain, then due to P2 it must contain its supremum sup(M).
But then sup(M) is a maximal element, because on one hand ¢(sup(M)) >



sup(M), and on the other hand due to P1 we have that ¢(sup(M)) € M hence
¢(sup(M)) < sup(M). The antisymmetry gives ¢(sup(M)) = sup(M) and we
get our maximal element, thus proving the lemma. O

From the above lemma we see that the proposition is proved if we can show
that P3 holds for all point of M. In order to do that, we first need another
definition:

Definition 0.5. (P4) We say that © € M has property P4 if for any y € M
with y < x we have ¢(y) < x.

Lemma 0.6. If x € M obeys P4, then it also obeys P3.

Proof. Let
M :={yeM: y<z or y>¢)}

If we can prove that M’ is a tower, then M’ = M because M is the smallest
tower of S. So we need to verify P1 and P2 for M’. We start with P1, that
is we need to show that for any y € M’ we have ¢(y) € M’. Indeed, if y € M’
then we either have a) y < z, b) y =z or ¢) y > ¢(x). If a) holds, then P4(x)
says that ¢(y) < x hence ¢(y) € M’, thus P1 holds. If either b) or c) holds,
then we trivially have ¢(y) > ¢(x), thus ¢(y) € M’, hence P1 holds.

In order to verify P2, we need to show that if C' € M’ is a chain, then
sup(C) € M'. Clearly, because C is also a chain in M, we have that sup(C) € M.

Now we have two possibilities: a) z < x for all z € C, and b) there exists
some z € C, z > x. If a) holds, then z is an upper bound hence sup(C) < =z,
thus sup(C) € M’. If b) holds, then because z > x and z € M’ implies that
z > ¢(x), hence sup(C) > ¢(x), thus sup(C) € M’. Since P2 is also verified,
then M’ is a tower and M = M'. O

The last step in the proof of the proposition, is showing that P4 holds true
for every x € M. For, denote by N the set of points € M which obey P4. As
above, it suffices to show that IV is a tower.

We start with proving P1 for N. Take x € N, and we want to show that
¢(x) € N. For that, look at all y € M with y < ¢(x) and try to show that
6(y) < 6(x).

Because we know from Lemma 0.6 that x obeys P3, the only possibility is
to have y < z. Then a) y < x or b) y = z. If a) holds, then because = was
supposed to obey P4 we get ¢(y) < x, hence ¢(y) < ¢(x). If b) holds, then
trivially ¢(y) < ¢(z). In both cases we proved that ¢(z) € N hence P1 is
fulfilled.

We now prove that P2 holds. Consider a chain C' C N; we want to show
that sup(C) € N, i.e. sup(C) has the property P4. In other words, for every
y € M with y < sup(C) we need to show that ¢(y) < sup(C). Now from
y < sup(C) it means that y is not an upper bound for C, so it exists z € C
such that z £ y. This means that either a) y and z are not comparable, or b)
y < z. But z € N has property P4 and hence P3 (from Lemma 0.6), thus z and
y € M are comparable, hence b) holds. Now apply P4(z): it gives ¢(y) < z,
hence ¢(y) < sup(C). Therefore sup(C') € N, and P2 is verified. We conclude
that IV is a tower, therefore N = M.



Finishing the proof of Proposition 0.2. We have just shown that all points
of M have the property P4. Lemma 0.6 showed that P4 implies P3. Then
Lemma 0.4 says that M must have a largest element, which was shown to be a
maximal element of S. Thus Proposition 0.2 is proved. [

We now use Proposition 0.2 for proving the Hausdorff mazimal principle:

Lemma 0.7. (The Hausdorff maximal principle). Let Q be a partially ordered
set. Then Q contains a maximal chain (i.e. a chain which is not contained in
a bigger chain).

Proof. Define S to be the set of all chains of @, partially ordered with respect
to the set inclusion. More precisely, if C; and Cy are chains in @ (and elements
of S), then we say that C1 <g Cy in S if C; C Cs in Q. It is easy to prove that
<g is a partial order (exercise).

Another important property is that the intersection in @) of two chains is a
chain, and in fact an arbitrary intersection of chains from @ is a chain (exercise).

Now let us denote an arbitrary chain in S by K. Note that the elements of
K in S consist of chains in (). Denote by #K the set K seen as a set formed
of elements of Q; clearly, #K is a chain in Q. If @ has no maximal chain, then
there should exist at least one element k € @) such that x <g k for all x € #K.
Then #K := #K U {k} is a chain in Q, and K := K U {k} is an upper bound
for K in S.

Now if A; and As in S are upper bounds for K, then A; N A, is also an
upper bound for K (exercise). Define sup(K) as the intersection of all possible
upper bounds of K; then sup(K) is a chain in @, and by construction it is a
least upper bound for K.

Therefore S is a partially ordered set where all chains K have a supremum.
Proposition 0.2 now states that there exists a maximal element K € S. But
this is the same with saying that #K is a chain in @) which is not included in
a longer chain, and the proof of this lemma is over.

Finishing the proof of Zorn’s Lemma. We can now lift the extra-condition
in Proposition 0.2. Assume that S is a partially ordered set, where every chain
has an upper bound. According to the Hausdorff maximum principle, there
exists a maximal chain C C S. Being a chain, C' must have an upper bound
x € S, and this means that C' U {z} is another chain in S. But C' is maximal,
therefore x € C'. Moreover, x must be the largest element of C'. Finally, x is
a maximal element in S and ¢(z) = z, because if ¢(x) > = we can consider
C U {¢(z)} which would contradict the maximality of C. The proof of the
theorem is over. O



