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What is persistent homology?

Persistent homology is the homology of a filtration.

- Afiltration is a certain diagram K : R — Top.

- Atopological space K; foreach t € R
+ Aninclusion map K; = K; foreachs<teR

- Ris the poset category of (R, <)
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Homology inference using persistent homology

Ps = Bs(P): 6-neighborhood (union of balls) around P

Theorem (Cohen-Steiner, Edelsbrunner, Harer 2005)
Let Q) c R4, Let P c Q) be such that
- Q ¢ Psforsome é > 0and
- bothH,(Q < Qs) and H,(Qs < Q,5) are isomorphisms.
Then
H.(Q) 2im H,(Ps < Pys).
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- matching A - B: bijection of subsets A’ ¢ A, B’ ¢ B
- d-matching of barcodes:

- matched intervals have endpoints within distance < §
+ unmatched intervals have length < 26
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Let
- F, = f(=o0,1],
« G, =g (—o0,t].
If |f — g]o < 8 then F, € G;,s and G, € Fi,5.

So the sublevel sets are §-interleaved:

Fy ——— Frs

NN
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11/28



Interleavings of sublevel sets

Let
© Fy=f"(-o00,1],
° Gt :g_l(—oo,t].

If |f — gl < dthenF; € G5 and G; C Fyys.

So the sublevel sets are §-interleaved:

H.(F;) —— H.(Fis2s)

NN

H,(Gis) —— H.(Gii35)

Homology is a functor: homology groups are interleaved too.
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A persistence module M is a diagram (functor) R — Vect:
- avector space M; for each ¢ € R (in this talk: dim M; < o0)
- alinear map M; — M, for each s < ¢ (transition maps)
- respecting identity: (M; — M,) = idy,,
and composition: (M; - M,) o (M, - M) = (M, - M,)

A morphism f : M — N is a natural transformation:
- alinearmap f; : M; - N, foreacht ¢ R
- morphism and transition maps commute:

M, —— M,

b

Ny —— N;
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Let K be a field. For an arbitrary interval I ¢ R,
define the interval persistence module C(I) by

K iftel,
C(I)t = .

0 otherwise;
IdK if S, te I,

C(I); - C(I); = {

0 otherwise.
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The structure of persistence modules

Theorem (Crawley-Boewey 2012)

Let M be a persistence module with dim M; < oo for all t.
Then M is interval-decomposable:
there exists a unique collection of intervals B(M) such that

Mz @ C(I).

IeB(M)

B(M) is called the barcode of M.

- Motivates use of homology with field coefficients

14/28



Interleavings of persistence modules

Definition
Two persistence modules M and N are §-interleaved

15/28



Interleavings of persistence modules

Definition
Two persistence modules M and N are §-interleaved
if there are morphisms

f:M~—>N(5),  g:N->M(9)

15/28



Interleavings of persistence modules

Definition
Two persistence modules M and N are §-interleaved
if there are morphisms

f:M—>N(8),  g:N->M(9)

such that this diagrams commutes for all ¢:

M; ————— M2

ft / ft+28
\ 8t+6

Nips ———— Nuss

15/28



Interleavings of persistence modules

Definition
Two persistence modules M and N are §-interleaved
if there are morphisms

f:M—>N(8),  g:N->M(9)

such that this diagrams commutes for all ¢:

M; ————— M2

ff / ft+28
\ 8t+6

Niys ——— Nuss
- define M(J) by M(68), = M,

15/28



Interleavings of persistence modules

Definition
Two persistence modules M and N are §-interleaved
if there are morphisms

f:M—>N(8),  g:N->M(9)

such that this diagrams commutes for all ¢:

M; ————— M2

ff / ft+25
\ 8t+6

Nips ———— Nuss

- define M(6) by M(68); = My.s — B
(shift barcode to the left by ¢) I Q)

A

15/28
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Theorem (Chazal et al. 2009, 2012)
If two persistence modules are §-interleaved,
then there exists a §-matching of their barcodes.
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- converse statement also holds (isometry theorem)

- indirect proof, 8o page paper (Chazal et al. 2012)
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Our approach

Our proof takes a different approach:
- direct proof (no interpolation, matching immediately
from interleaving)
- shows how morphism induces a matching

- stability follows from properties of a single morphism,
not just from a pair of morphisms

- relies on partial functoriality of the induced matching
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A matching o : S - T is a bijection 8’ - T/, where 8’ c S, T’ c T.

18/28



The matching category

A matching o : S - T'is a bijection &’ - T’, where 8’ c §, T' c T.

Composition of matchingso: S - Tand 7: T - U:

18/28



The matching category

A matching o : S - T'is a bijection &’ - T’, where 8’ c §, T' c T.

Composition of matchingso: S - Tand 7: T - U:

[ ] ] [ ] {
[ ] ([ ] —> [ ] ([ ]
([ ] [ ] [ ] ([ ]

Matchings form a category Mch
- objects: sets

- morphisms: matchings

18/28
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Barcodes as matching diagrams

We can regard a barcode B as a functor R - Mch:
- For each real number t, let B, be those intervals of B that
contain ¢, and

- for each s < t, define the matching B, - B,
to be the identity on B, n B,.

1 1
0.1 0.2 0.4 0.8

19/28



Barcode matchings as natural transformations

We can regard certain matchings of barcodes o : A > B
as natural transformations of functors R — Mch.

- consider restrictions o, : A, - B; of 0 to A; x B;:

AS_’%AI‘

B, —— B,
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Barcode matchings as natural transformations

We can regard certain matchings of barcodes o : A > B
as natural transformations of functors R — Mch.

- consider restrictions o, : A, - B; of 0 to A; x B;:

AS_’%AI‘

B, —— B,

- requirement on the matching o:
if I € A is matched to J € B, then I overlaps J to the right.
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Barcode matchings as interleavings

We can regard a §-matching of barcodes 6 : A - B
as a d-interleaving of functors R - Mch:

Ay ———— A

NN

Bt+5 —_— Bt+38

- each matching A; - B, is the restriction of ¢
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Stability via functoriality?

B(H.(F:)) — B(H.(Fi:20))

NN

B(H*(GH&)) — B(H*(Gt+35))
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Theorem (B, Lesnick 2014)
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Non-functoriality of the persistence barcode

Theorem (B, Lesnick 2014)

There exists no functor Vect® — Mch sending each persistence
module to its barcode.

Proposition

There exists no functor Vect — Mch sending each vector space of
dimension d to a set of cardinality d.

+ Such a functor would necessarily send a linear map of
rank r to a matching of cardinality r.

- In particular, there is no natural choice of basis for vector
spaces

23/28



Structure of submodules and quotient modules

Proposition (B, Lesnick 2013)
For a persistence submodule K < M:
- B(K) is obtained from B(M) by —_— )
moving left endpoints to the right, B(K)
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Structure of submodules and quotient modules

Proposition (B, Lesnick 2013)
For a persistence submodule K < M:

- B(K) is obtained from B(M) by

B(M)
moving left endpoints to the right, B(K)
- B(M/K) is obtained from B(M) by B(M)

moving right endpoints to the left.
This yields canonical matchings between the barcodes:
match bars with the same right endpoint (resp. left endpoint)

- If multiple bars have same endpoint:
match in order of decreasing length

24/28



Induced matchings

For any morphism f : M — N between persistence modules:

- decompose into M - imf < N
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Induced matchings

For any morphism f : M — N between persistence modules:
- decompose into M -» imf - N
- imf = M/kerf is a quotient of M B(M)

- imf is a submodule of N B(N)

« Composing the canonical matchings yields
a matching B(f) : B(M) - B(N) induced by f
This matching is functorial for injections: B

B(K - M) = B(L > M) o B(K = L)

B(K)

Similar for surjections.

25/28



The induced matching theorem
Define M¢ by shrinking bars of B(M) from the right by e.
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Letf : M — N be a morphism such thatker f is e-trivial
(all bars of B(ker f) are shorter than e).

Then M is a quotient module of im .

M ¢—— imf
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The induced matching theorem
Define N by shrinking bars of B(N) from the left by e.

Lemma
Letf : M — N be a morphism such that coker f is e-trivial

(all bars of B(coker f) are shorter than e).
Then N is a submodule of im f.

€

<« B(EN)

B(N)

/ N\

imf ¢—— N
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The induced matching theorem
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The induced matching theorem
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The induced matching theorem

26/2



The induced matching theorem

Theorem (B, Lesnick 2013)
Letf : M — N be a morphism with ker f and coker f e-trivial.
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The induced matching theorem

Theorem (B, Lesnick 2013)
Letf : M — N be a morphism with ker f and coker f e-trivial.
Then each interval of length > e is matched by B(f).
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The induced matching theorem

Theorem (B, Lesnick 2013)

Letf : M — N be a morphism with ker f and coker f e-trivial.
Then each interval of length > e is matched by B(f).

If B(f) matches [b,d) e B(M) to[b',d") € B(N), then
b'<b<b +eand d—e<d <d.

€

<>
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The induced matching theorem
Let f : M — N(J) be an interleaving morphism.
Then ker f and coker f are 24-trivial.

20
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The induced matching theorem
Let f : M — N(J) be an interleaving morphism.
Then ker f and coker f are 24-trivial.
Corollary (Algebraic stability via induced matchings)

A d-interleaving between persistence modules induces
a 8-matching of their persistence barcodes.

+0
<« B(M)
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Stability via induced matchings

B(M)

B(N)
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Stability via induced matchings

B(M)

B(N(9))
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B(M)

B(N(9))
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B(M)

B(N(9))
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Stability via induced matchings

B(M)
— B(N(9))
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Stability via induced matchings

B(M)
— B(N(9))
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Stability via induced matchings

B(M)
B(N)
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Stability via induced matchings

B(M)
— B(N)

Thanks for your attention!
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