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» Given a category (or a monoid) C
> presented by generators and relations

> we would like build a (small !) cofibrant approximation of C in the category
of (oo, 1)-categories,
- that is, a free (oo, 1)-category homotopically equivalent to C.

» Polygraphic resolutions constructed from a rewriting system that presents C,
(Guiraud-M., 2012).
> Applications: computation of homological invariants
- Baues-Wirsching (co)homology of category C.
» In low dimensions : coherent presentations
> generators, oriented relations, oriented syzygies.

> Applications:
- Explicit description of actions of a monoid on categories (representation theory),
- Coherence theorems for monoids.
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Motivation

» A Coxeter system (W, S) is a data made of a group W with a presentation by a (finite)
set S of involutions, s = 1, satisfying braid relations

tstst... = ststs. ..

» Forgetting the involutive character of generators, one gets the Artin’s presentation
Art(W) = < S | tstst...= ststs...>

of the Artin monoid B* (W).

Objective.
> Push further Artin’s presentation and study the relations amongst the braid relations.
(Brieskorn-Saito, 1972, Deligne, 1972, Deligne, 1997, Tits, 1981, Michel, 1999).
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Motivation

» Set W =S, the group of permutations of {1, 2, 3,4}, with S = {r, s, t} where

=< L os=les | e =112

» The associated Artin monoid B*(S4) is the monoid of braids on 4 strands:

Arta(Sy) = < r,s, t ‘ rsr = srs, rt = tr, tst = sts>

A lRR] RN B
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» The relations amongst the braid relations on 4 strands are generated by the following
Zamolodchikov relation (Deligne, 1997).

stsrst strsrt srtstr srstsr rsrtsr

N
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tstrst Zr st rstrsr
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tsrtst —— tsrsts trsrts rtstrs rstsrs
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» Plactic monoid of rank n

<1 zxy = xzy foralll<x<y<z<n
yzx = yxz foralll<x<y<z<n

> algebraic combinatoric, representation theory.

» Coherent presentation for P,
Py = (1,2 | 211 =121, 221 =212)

> Relations amongst the relations generated by

7 N

2211 2121

AN

» For n > 3, combinatorial 'explosion’ with the Knuth's presentation.

Objective.
> Compute finite coherent presentation for P,.
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Motivation

» The Knuth-Bendix procedure does not terminate for
> B3 = (s, t|sts=tst) on the two generators s and t, (Kapur-Narendran, 1985)

> P4 on the generators 1, 2, 3, 4, (Kubat-Okninski, 2014).
» Computations of coherent presentation for monoids B} of P, need new generators.

» Homotopical completion-reduction procedure adds

> generators,
> oriented relations,
> oriented syzygies

and a way to homotopically reduce them.



Plan

I. Coherent presentations of categories

- Polygraphs as higher-dimensional rewriting systems
- Coherent presentations as cofibrant approximations

Il. Homotopical completion-reduction procedure

- Tietze transformations
- Rewriting properties of polygraphs
- Completion-reduction procedure

I1l. Applications to Artin and plactic monoids

References

- Hage-M., Coherent presentations of plactic monoids, 2015.

- Gaussent-Guiraud-M., Coherent presentations of Artin monoids, 2015.

- Guiraud-M.-Mimram, A homotopical completion procedure with applications to coherence of

monoids, 2013.



Part I. Coherent presentations of categories
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Polygraphs

» A 1-polygraph is an directed graph (X, X1)

So
o, X
to

» A 2-polygraph is a triple ¥ = (X, X1, X2) where
> (X0, Z1) is a 1-polygraph,
> X5 is a globular extension of the free 1-category Xj.
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» A 1-polygraph is an directed graph (X, X1)

S0
>o (7( pY
to

» A 2-polygraph is a triple ¥ = (X, X1, X2) where
> (X0, Z1) is a 1-polygraph,
> X5 is a globular extension of the free 1-category Xj.
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where u % v is a 2-cell of £ and w, w’ are 1-cells of Xj.
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Polygraphs

» A (3,1)-polygraph is a pair Z = (X2, X3) made of
> a 2-polygraph Z»,
> a globular extension X3 of the free (2,1)-category X, .
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Let C be a category (or a monoid).
» A presentation of C is a 2-polygraph X such that

» An extended presentation of C is a (3, 1)-polygraph X such that

C~ 3}/,
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Coherent presentations of categories

» A coherent presentation of C is an extended presentation X of C such that the cellular
extension X3 is a homotopy basis.

In other words:

b the quotient (2,1)-category £J /X3 is aspherical,

> the congruence generated by X3 on the (2,1)-category ZZT contains every pair of
parallel 2-cells.
> 3-cells of X3 generate a tiling of £, .

Theorem. [Gaussent-Guiraud-M., 2015]
Let ~ be an extended presentation of a category C. For the Lack’s model structure on
2-categories, the following assertions are equivalent:

i) The (3,1)-polygraph X is a coherent presentation of C.

ii) The (2,1)-category £J /%3 is a cofibrant approximation of C, that is, a cofibrant
2-category weakly equivalent to C.
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Examples

» Free monoid : no relation, an empty homotopy basis:
(xt,...,xn | 0 ] 0)

» Free commutative monoid of rank 3:
> the full coherent presentation:

B
PR RA

> a homotopy basis can be made with only one 3-cell

(ris;t | sr Li rs, ts 25 st, tr 25 rt | Zise)

where the 3-cell Z, s ; is the permutohedron

SYrt

Ystr str =—— srt \yﬁt
// \w

tsr Z, st rst

AN /

tYrs trs ———> rts st

YrtS
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Examples

» Artin monoid B (S3)

oS | ee] rki:t,{

Art3(S3) = (st ‘ tst g sts ‘ 0)
» Artin monoid B+ (S;)

Art3(Sq) = (r,s,t | rsr L—s} srs, rt Y% tr, tst 2& sts | Zrse)

SYrtSY e SrYsel
strsrt ——3' srtstr ——— srstsr

StYrst Yrstsr
stsrst rsrtsr
Vserst ISY reSr
tstrst Mzr‘s,t rstrsr
tsyrest rstyrs
tsrtst rstsrs
tsryse rYsers

tsrsts % trsrts === rtstrs
LY st -

s YrtSY S



Coherent presentations

Problems.
1. How to compute a coherent presentation ?

2. How to transform a coherent presentation ?
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» Two (3,1)-polygraphs Z and Y are Tietze-equivalent if there is an equivalence of
2-categories

23 /%3 Y3 /Y3
inducing an isomorphism on presented categories: X ~ V7.
» An elementary Tietze transformation of a (3,1)-polygraph X is a 3-functor with
source ¥, that belongs to one of the following pairs of dual operations:
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Tietze transformations

» Two (3,1)-polygraphs Z and Y are Tietze-equivalent if there is an equivalence of
2-categories
23 /%3 Y3 /Y3
inducing an isomorphism on presented categories: X ~ V7.
» An elementary Tietze transformation of a (3,1)-polygraph X is a 3-functor with
source ¥, that belongs to one of the following pairs of dual operations:
» add a relation: for a 2-cell f in £, , add a generating 2-cell os add a generating 3-cell Af

f

u Af‘u} v

&f
» remove a relation: for a 3-cell A with « in X5, remove « and A
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Tietze transformations

» Two (3,1)-polygraphs Z and Y are Tietze-equivalent if there is an equivalence of
2-categories
I3/%3 =53 /Y3

inducing an isomorphism on presented categories: X ~ V7.

» An elementary Tietze transformation of a (3,1)-polygraph X is a 3-functor with
source ¥, that belongs to one of the following pairs of dual operations:

» add a 3-cell: for 3-cells B, add a generating 3-cell A: f = g
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Tietze transformations

» Two (3,1)-polygraphs Z and Y are Tietze-equivalent if there is an equivalence of
2-categories
I3/%3 =53 /Y3

inducing an isomorphism on presented categories: X ~ V7.

» An elementary Tietze transformation of a (3,1)-polygraph X is a 3-functor with
source ¥, that belongs to one of the following pairs of dual operations:

» add a 3-cell: for 3-cells B, add a generating 3-cell A: f = g

/i\
S L
g
» remove a 3-cell: for a generating 3-cell A: f = g remove A
f
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Tietze transformations

Theorem. [Gaussent-Guiraud-M., 2015]
Two (finite) (3,1)-polygraphs = and Y are Tietze equivalent if, and only if, there exists a
(finite) Tietze transformation
T:2T — T

Consequence.
If £ is a coherent presentation of a category C and if there exists a Tietze transformation

T:xT ——vT

then Y is a coherent presentation of C.
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Rewriting properties of 2-polygraphs

Let ¥ = (Xg, X1, X2) be a 2-polygraph.
» X terminates if it does not generate any infinite reduction sequence

== ==

» A branching of I is a pair (f, g) of 2-cells of X3 with a common source
"
u
S

» X is confluent if all of its branchings are confluent:
L
u u’
X w %

» X is convergent if it terminates and it is confluent.
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Rewriting properties of 2-polygraphs

» A branching

f/>v

u

S

is local if f and g are rewriting steps.

» A critical branching is a local branching of the form

£

&l
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» The 2-polygraph
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Example

» The 2-polygraph

Arta(Sa) = (r,s,t | sr Li rs, ts 25 st, tr Lﬁ rt)

> It has only one critical branching

SYn
str —— srt
Ystl
tsr
t’Yrs
trs rts



Example

» The 2-polygraph

Arta(Sa) = (r,s,t | sr Li rs, ts 25 st, tr Lﬁ rt)

> It has only one critical branching

SYrt

VN
t&%

Vrts
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> for every critical branching

f/v%v
g\>W?W
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Homotopical completion procedure

» Potential adjunction of additional 2-cells o¢f o can create new critical branchings,
> whose confluence must also be examined,
> possibly generating the adjunction of additional 2-cells and 3-cells
> ...

» This defines an increasing sequence of (3, 1)-polygraphs

Z:ZOQZIg”.ananHg.”

» The homotopical completion of X is the (3,1)-polygraph
8(z)=Jz"

n>0

Theorem. [Gaussent-Guiraud-M., 2015]
For a terminating presentation X of a category C, the homotopical completion S(X) of X
is a coherent convergent presentation of C.

Proof.
> 8(X) obtained from X by successive application of Knuth-Bendix’'s procedure
> Squier’s coherence theorem.
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Example. The Kapur-Narendran’s presentation of B (S3), obtained from Artin's
presentation by coherent adjunction of the Coxeter element st

Z§N2<s,t,a | ta % as, st :B> a)

The deglex order generated by t > s > a proves the termination of ZXN.

S(Z?N):<s,t,a ‘ ta % as, st :ﬁ> a, sas % aa, saa :6> aat | A B, C

Ba/ aa %} aat W% aaas %cx
‘ .
%
4
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Homotopical completion procedure

Example. The Kapur-Narendran’s presentation of B (S3), obtained from Artin's
presentation by coherent adjunction of the Coxeter element st

Z§N2<s,t,a | ta % as, st :B> a)

The deglex order generated by t > s > a proves the termination of ZXN.

aa /} W% aaas %oc
) )

2
mm
o
Ls
W

sast sasas aata
% saa/ s.a% saaa
W% aaaaag aaast

sasaa :i aaxt

/

saaat aatat
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Homotopical completion procedure

Example. The Kapur-Narendran’s presentation of B (S3), obtained from Artin's
presentation by coherent adjunction of the Coxeter element st

Z§N2<s,t,a | ta é as, st :B> a)

The deglex order generated by t > s > a proves the termination of ZXN.

B%} aa %} aat W% aaas %cx
sta MA Y sast MB 7}5 sasas iU,C aata
k} sas % saa s.a% saaa 4
aga
Y23 aaaa <:Baaast
sasaa YD Il aacct

)

saaat aatat
sad 5?1:

However. The extended presentation 8 (ZXN) obtained is bigger than necessary.
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INPUT: A terminating 2-polygraph .
Step 1. Compute the homotopical completion S(X) (convergent and coherent).

Step 2. Apply the homotopical reduction to §(X) with a collapsible part I" made of

> 3-spheres induced by some of the generating triple confluences of §(X),

fi fi
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) YArs //g?f ,/ \fzN cll \*\/
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Step 1. Compute the homotopical completion S(X) (convergent and coherent).

Step 2. Apply the homotopical reduction to §(X) with a collapsible part I" made of

> 3-spheres induced by some of the generating triple confluences of §(X)
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Homotopical completion-reduction procedure

INPUT: A terminating 2-polygraph .
Step 1. Compute the homotopical completion S(X) (convergent and coherent).

Step 2. Apply the homotopical reduction to §(X) with a collapsible part I" made of
> 3-spheres induced by some of the generating triple confluences of §(X),
> the 3-cells adjoined with a 2-cell by homotopical completion to reach confluence,

> some collapsible 2-cells or 3-cells already present in the initial presentation X.

The homotopical completion-reduction of terminating 2-polygraph X is the (3, 1)-polygraph

Theorem. [Gaussent-Guiraud-M., 2015]
For every terminating presentation ¥ of a category C, the homotopical
completion-reduction R(X) of X is a coherent presentation of C.
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The homotopical completion-reduction procedure

Example.

XN = (s ta | ta =X a5, st :B> a)

$(z¥Ny=(st,a | ta == s, st :B> a, sas L} aa, saa :5> aat | A, B,C,D)
<s,t,a } ta % as , st :B> a, sas % aa, saa :6> aat\A,B,XD)

» There are four critical triple branchings, overlapping on

sasta, sasast, sasasas, sasasaa.

> Critical triple branching on sasta proves that C is redundant:

aax
Yta aata ——— aaas
MBa /))63

sasta =saf3 a> saaa

bos o

sasx sasas

C =sasx !

/

sasta 1l
5& sasas

say

é
1\

/s

*1 (Ba*1 aax) x2 (saA x1 dax1 aax)

yta/ aata ﬁ(x

w )7

aaas

e

Saaa

aa

aata

-~



The homotopical completion-reduction procedure

Example. KN —(sta | ta = as, st :B> a)
KN B Y 5
S(Z3N)={(st,a | ta =X a5, st => a,sas —> aa, saa —> aat | A, B,C,D)
(sit,a | ta % as , st :B> a, sas % aa, saa :6> aat | A, B, X B()
» There are four critical triple branchings, overlapping on

sasta, sasast, sasasas, sasasaa.

> Critical triple branching on sasast proves that D is redundant:

aaafd
yast aaasK:} aaaa % aaast ﬁ?ﬁ

Ctm aaO\ 7 Y gaaf
sasast I aaaa & aaast
sasast =sayt> saaat :> aatat =

\> %2
MsaB sa sasaf3 7 sasaa a;,,‘,r

AN
sasaf3 sasaa \>
sad > saaat ﬁ aatat

/
/

D = sasaP ! x1 ((Ct x1 2aaP) 2 (saB 1 Sat x1 aacct 1 22af3))



The homotopical completion-reduction procedure

Example. ):%(N:(s’ ta } ta % as, st :B> 3>
S(ZXN)=(st.a | ta = s, st :B> a, sas % aa, saa :5> 2at| A B.C.D)
S R A A

> The 3-cells A and B are collapsible and the rules v and & are redundant.

Ba aa vt aat

sta MA /\}!Y sast MB >‘§,6

k} sas/ % saa



The homotopical completion-reduction procedure

Example. ):%(N _ < st a } ta % as, st :B> 3>

$(ZXN)=(st,a | ta == s, st :B> a, sas % aa, saa :5> aat | A, B,C,D)

(st a | ta % as , st :ﬁ> a,%MX,}{KﬁQ

> The 3-cells A and B are collapsible and the rules v and & are redundant.



The homotopical completion-reduction procedure

Example. ):%(N _ < st a } ta % as, st :B> 3>

$(ZXN)=(st,a | ta == s, st :B> a, sas % aa, saa :5> aat | A, B,C,D)

(st} | ta =% %%%mxm

B . . .
> The rule st = ais collapsible and the generator a is redundant.



The homotopical completion-reduction procedure

Example. Z?N — < st a ta % as, st :B> 3>

S(ZKN = (st a ta as, st a, sas aa, saa :> aat | A,B,C,D
2

(s,t,X | st = sts%%%l%ﬁ)&f@

R(ZgN)=< st | st % sts

= Art3(S3)

SRR RIS |0



The homotopical completion-reduction procedure

Example. Z?N _ < st a

S(ZXN) =(s,t,a

ta%as st:[5>a>
ta%as st:>asas:>aasaa:>aat|ABCD>

(s,t,X | st = sts%%%l%ﬂ)&f@

R(ZgN) :< s, t

= Art3(S3)

=(~= 1.

/%égég\
\H

/
XX
|
o
K55E

tst = sts

TISEYE

With presentation Art;(S3) two proofs
of the same equality in B; are equal.
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Artin monoids: Garside’s presentation

» Garside's extended presentation of the Artin monoid B* (W)
> 1-cells:
Gary (W) =W\ {1}
> 2-cells:
O(‘Ll v
Gara(W) = { ulv = uv whenever [(uv) = I(u) + I(v) }

where uv is the product in W and u|v is the product in the free monoid over W.
> Garz (W) made of one 3-cell

ulviw MAL,,,,,W uvw
um ulvw %’

for every u, v, w in W \ {1} such that the lengths can be added.

Theorem. [Gaussent-Guiraud-M., 2015]
Garz (W) is a coherent presentation the Artin monoid BT (W)

Proof.
By homotopical completion-reduction of the 2-polygraph Gar, (W).



Artin monoids: Artin’s coherent presentation

Theorem. [Gaussent-Guiraud-M., 2015]
The Artin monoid B™ (W) admits the coherent presentation Art3 (W) made of

> Artin’s presentation

Arta (W) = (S | (ts)™st = (st)™st )

> one 3-cell Z, ¢+ for every t > s > r in S such that the subgroup W(, . ., is finite.



Artin monoids: Zamolodchikov Z, s ; according to Coxeter type

Type A3
strsrt LIVt gy SV sy

Type B3

srtsystr sy srstyet srsyregrst
Stymt Yotsr s srtsrtsts e srtstrsts L Srstorsrt s srstrerst my srsrtsrst Xﬁrﬂ
ersrat rerstarst
stsrst rrtsr sty Prarvaesse
Yarst - esrarter rertstest
— -
tstrst MZ, st rstrsr tstrsrtse Zyse rsrtsrtst
tsynst rotye vasvsr Trsvaesrrae
tertstesr retrersts
tsrtst rstsrs ervar | Prevemes
tsrstarsr retararts
tsryae TYars _ ey
STV tarstrsrs = tarsrters trerstors == rtsrtatrs == restrstrs rYseesyees
tsrsts = trsrts ——> rtstrs A T e et == rttrs =
Vs Yrsv.s - B

Type H3

%
t(sr)P

Type A1 X A1 X A1

SYr

str == srt
‘% Xﬂr

trs — rts
YreS

Type h(p) x A1, p 2 3,

Syalrs)P 2

V%)smsyﬂ:w ) =— ()t ot

[ ()°e

K P 3 et ——3 ) /

Ve lsr)P Fyae(sr)P
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Plactic monoids
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Plactic monoids

» Knuth’s presentation of the plactic monoid P,,

> 1-cells:
Knuthy(n) = {1,...,n}

> 2-cells are Knuth relations:

Knuthy (n) = { 20 2@ foraltsxsy=zsn
yzx = yxz foralll<x<y<z<n

» For n > 4, there is no finite completion of Knuths (n) on Knuthy (n).

» Any 1-cell w in Knuthj(n) is equals to its Schensted’s tableau P(w):

1[1]1]2]2[3]4]
2[2]3]3]4]6
4]5]6]6

6|7

» Column presentation (Cain-Gray-Malheiro, 2015)
> add columns as generators:

Cy = Xp...x2x1 € Knuthi(n) such that x, >...> x2 > x1.
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» Column extended presentation of the plactic monoid P,
> 1-cells:
Coly(n) = { ¢y | vis a column }

> 2-cells: Coly(n) is the set of 2-cells

CXUV
CuCy = CwCyr

such that v and v are columns, the planar representation of the Schensted tableau P(uv) is
not the juxtaposition of columns v and v and where w and w’ are respectively the left and
right columns of P(uv).

> 3-cells:

CeXe/ ¢
Gy CeCe/Ct ———> CeCpChr e

CxCyCt mxx‘v't CaCdCp/

Cyox Kol
UV C Gyt % €2CarCypyr 270NW
o, wCy !

with x in Knuthy(n) and v, t are columns.

Theorem. [Hage-M., 2015]
For n > 2, Col3(n) is a finite coherent presentation of the plactic monoid P,.

Proof.
By homotopical completion-reduction of the 2-polygraph Colx(n).
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Conclusion

» Computations of polygraphic resolutions
> Inductive constructions from coherent presentations, (Guiraud-M., 2012),

> Objective: explicit resolutions for B} and P,,.

» Cubical coherent presentation and cubical polygraphic resolutions.
> Cubical polygraphic resolutions could help to explicit formulas for higher syzygies of B}
and P,,.
» Prototype implementation of homotopical completion-reduction procedure, (Mimram, 2013)
> http://www.pps.univ-paris-diderot.fr/~smimram/rewr

> Objective: computations for higher ranks and higher syzygies.


http://www.pps.univ-paris-diderot.fr/~smimram/rewr

