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Motivation

I Given a category (or a monoid) C

. presented by generators and relations

. we would like build a (small !) co�brant approximation of C in the category

of (∞, 1)-categories,

- that is, a free (∞, 1)-category homotopically equivalent to C.

I Polygraphic resolutions constructed from a rewriting system that presents C,

(Guiraud-M., 2012).

. Applications: computation of homological invariants

- Baues-Wirsching (co)homology of category C.

I In low dimensions : coherent presentations

. generators, oriented relations, oriented syzygies.

. Applications:

- Explicit description of actions of a monoid on categories (representation theory),

- Coherence theorems for monoids.
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Motivation

I A Coxeter system (W,S) is a data made of a group W with a presentation by a (�nite)

set S of involutions, s2 = 1, satisfying braid relations

tstst . . . = ststs . . .

I Forgetting the involutive character of generators, one gets the Artin's presentation

Art(W) =
〈
S | tstst . . . = ststs . . .

〉
of the Artin monoid B+(W).

Objective.

. Push further Artin's presentation and study the relations amongst the braid relations.

(Brieskorn-Saito, 1972, Deligne, 1972, Deligne, 1997, Tits, 1981, Michel, 1999).
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Motivation

I Set W = S4 the group of permutations of {1, 2, 3, 4}, with S = {r , s, t} where

r = s = t =

I The associated Artin monoid B+(S4) is the monoid of braids on 4 strands:

Art2(S4) =
〈
r , s, t

∣∣ rsr = srs, rt = tr , tst = sts
〉

= = =

I The relations amongst the braid relations on 4 strands are generated by the following

Zamolodchikov relation (Deligne, 1997).

stsrst strsrt srtstr

Zr ,s,t

srstsr rsrtsr

tstrst rstrsr

tsrtst tsrsts trsrts rtstrs rstsrs
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Motivation

I Plactic monoid of rank n

Pn =
〈
1, . . . , n

∣∣ zxy = xzy for all 1 6 x 6 y < z 6 n

yzx = yxz for all 1 6 x < y 6 z 6 n

〉

. algebraic combinatoric, representation theory.

I Coherent presentation for P2

P2 =
〈
1, 2

∣∣ 211 = 121, 221 = 212
〉

. Relations amongst the relations generated by

2211 2121

I For n > 3, combinatorial 'explosion' with the Knuth's presentation.

Objective.

. Compute �nite coherent presentation for Pn.
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Motivation

I The Knuth-Bendix procedure does not terminate for

. B+
3
= 〈 s, t | sts = tst〉 on the two generators s and t, (Kapur-Narendran, 1985)

. P4 on the generators 1, 2, 3, 4, (Kubat-Okni«ski, 2014).

I Computations of coherent presentation for monoids B+
n of Pn need new generators.

I Homotopical completion-reduction procedure adds

. generators,

. oriented relations,

. oriented syzygies

and a way to homotopically reduce them.
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Plan

I. Coherent presentations of categories

- Polygraphs as higher-dimensional rewriting systems

- Coherent presentations as co�brant approximations

II. Homotopical completion-reduction procedure

- Tietze transformations

- Rewriting properties of polygraphs

- Completion-reduction procedure

III. Applications to Artin and plactic monoids
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Part I. Coherent presentations of categories



Polygraphs

I A 1-polygraph is an directed graph (Σ0,Σ1)

Σ0 Σ1

t0
oo

s0
oo

I A 2-polygraph is a triple Σ = (Σ0,Σ1,Σ2) where

. (Σ0,Σ1) is a 1-polygraph,

. Σ2 is a globular extension of the free 1-category Σ∗
1
.

Σ0 Σ∗1
t0

oo

s0
oo

Σ2

t1
oo

s1
oo

α

��

s0s1(α)

=

s0t1(α)

s1(α)

''

t1(α)

77

t0s1(α)

=

t0t1(α)

I A rewriting step is a 2-cell of the free 2-category Σ∗
2
over Σ with shape

where u
α %9 v is a 2-cell of Σ2 and w , w ′ are 1-cells of Σ∗

1
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Polygraphs

I A (3, 1)-polygraph is a pair Σ = (Σ2,Σ3) made of

. a 2-polygraph Σ2,

. a globular extension Σ3 of the free (2, 1)-category Σ>
2
.
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Let C be a category (or a monoid).

I A presentation of C is a 2-polygraph Σ such that

C ' Σ∗1/Σ2

I An extended presentation of C is a (3, 1)-polygraph Σ such that

C ' Σ∗1/Σ2
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Coherent presentations of categories

I A coherent presentation of C is an extended presentation Σ of C such that the cellular

extension Σ3 is a homotopy basis.

In other words:

. the quotient (2, 1)-category Σ>
2
/Σ3 is aspherical,

. the congruence generated by Σ3 on the (2, 1)-category Σ>
2

contains every pair of

parallel 2-cells.

. 3-cells of Σ3 generate a tiling of Σ>
2
.

Theorem. [Gaussent-Guiraud-M., 2015]

Let Σ be an extended presentation of a category C. For the Lack's model structure on

2-categories, the following assertions are equivalent:

i) The (3, 1)-polygraph Σ is a coherent presentation of C.

ii) The (2, 1)-category Σ>
2
/Σ3 is a co�brant approximation of C, that is, a co�brant

2-category weakly equivalent to C.
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Examples

I Free monoid : no relation, an empty homotopy basis:〈
x1, . . . , xn

∣∣ ∅ ∣∣ ∅ 〉

I Free commutative monoid of rank 3:

. the full coherent presentation:

〈
r , s, t

∣∣ sr
γrs %9 rs, ts

γst %9 st, tr
γrt %9 rt |

all the

2-spheres
·
u	 �)
Ui 5I ·

〉

. a homotopy basis can be made with only one 3-cell

〈
r , s, t

∣∣ sr
γrs %9 rs, ts

γst %9 st, tr
γrt %9 rt

∣∣ Zr ,s,t
〉

where the 3-cell Zr ,s,t is the permutohedron

str
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�$
tsr

γst r (<

tγrs "6

rst

trs
γrts

%9 rts rγst

:NZr ,s,t���
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Examples

I Artin monoid B+(S3)

s = t = ⇒

Art3(S3) =
〈
s, t

∣∣ tst
γst %9 sts

∣∣ ∅ 〉
I Artin monoid B+(S4)

Art3(S4) =
〈
r , s, t

∣∣ rsr
γsr %9 srs, rt

γtr %9 tr , tst
γst %9 sts

∣∣ Zr ,s,t
〉

strsrt
sγrtsγ

−
rt%9 srtstr

srγst r %9

Zr ,s,t���

srstsr
γrs tsr

�$
stsrst

stγrs t
*>

rsrtsr

tstrst

γst rst

EY

tsγrtst

��

rstrsr

rsγrtsr

EY

tsrtst

tsrγst  4
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rstγrs

EY

tsrsts
tγrs ts

%9 trsrts
γrtsγ

−
rts

%9 rtstrs
rγst rs

:N
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Coherent presentations

Problems.

1. How to compute a coherent presentation ?

2. How to transform a coherent presentation ?



Part II. Homotopical completion-reduction procedure



Tietze transformations



Tietze transformations

I Two (3, 1)-polygraphs Σ and Υ are Tietze-equivalent if there is an equivalence of

2-categories

Σ>2 /Σ3

≈−→ Υ>2 /Υ3

inducing an isomorphism on presented categories: Σ∗
1
' Υ∗

1
.

I An elementary Tietze transformation of a (3, 1)-polygraph Σ is a 3-functor with

source Σ>
3

that belongs to one of the following pairs of dual operations:
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Tietze transformations

Theorem. [Gaussent-Guiraud-M., 2015]

Two (�nite) (3, 1)-polygraphs Σ and Υ are Tietze equivalent if, and only if, there exists a

(�nite) Tietze transformation

T : Σ> −→ Υ>

Consequence.

If Σ is a coherent presentation of a category C and if there exists a Tietze transformation

T : Σ> −→ Υ>

then Υ is a coherent presentation of C.
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Rewriting properties of 2-polygraphs

Let Σ = (Σ0,Σ1,Σ2) be a 2-polygraph.

I Σ terminates if it does not generate any in�nite reduction sequence

u1 %9 u2 %9 · · · %9 un %9 · · ·

I A branching of Σ is a pair (f , g) of 2-cells of Σ∗
2
with a common source

v

u

f &:

g $8 w

I Σ is con�uent if all of its branchings are con�uent:

v f ′

�(
u

f &:

g $8

u ′

w
g ′

5I

I Σ is convergent if it terminates and it is con�uent.
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I A branching
v
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g $8 w

is local if f and g are rewriting steps.

I A critical branching is a local branching of the form

f
EY
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Homotopical completion procedure

Let Σ be a terminating 2-polygraph (with a total termination order).

I The homotopical completion of Σ is the (3, 1)-polygraph S(Σ) obtained from Σ by

successive application of following Tietze transformations
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w
g ′

3G
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w
g ′

3G
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compute f ′ and g ′ reducing to some normal forms.
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. if v̂ < ŵ , add the 2-cell αf ,g and the 3-cell Af ,g

v
f ′ %9

Af ,g���

v̂

u

f %9

g $8 w
g ′
%9 ŵ
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Homotopical completion procedure

I Potential adjunction of additional 2-cells αf ,g can create new critical branchings,

. whose con�uence must also be examined,

. possibly generating the adjunction of additional 2-cells and 3-cells

. ...

I This de�nes an increasing sequence of (3, 1)-polygraphs

Σ = Σ0 ⊆ Σ1 ⊆ · · · ⊆ Σn ⊆ Σn+1 ⊆ · · ·

I The homotopical completion of Σ is the (3, 1)-polygraph

S(Σ) =
⋃
n>0

Σn.

Theorem. [Gaussent-Guiraud-M., 2015]

For a terminating presentation Σ of a category C, the homotopical completion S(Σ) of Σ

is a coherent convergent presentation of C.

Proof.

. S(Σ) obtained from Σ by successive application of Knuth-Bendix's procedure

. Squier's coherence theorem.
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Homotopical completion procedure

Example. The Kapur-Narendran's presentation of B+(S3), obtained from Artin's

presentation by coherent adjunction of the Coxeter element st

ΣKN2 =
〈
s, t, a

∣∣ ta
α %9 as, st

β %9 a
〉

The deglex order generated by t > s > a proves the termination of ΣKN
2

.

S(ΣKN2 ) =
〈
s, t, a

∣∣ ta
α %9 as, st

β %9 a, sas
γ %9 aa, saa δ %9 aat

∣∣ A, B, C , D
〉

aa

sta

βa ';

sα #7 sas

aat

sast

γt ';

saβ
#7 saa

aaas

sasas

γas )=

saγ !5 saaa

aaaa

sasaa

γaa (<

saδ
!5 saaat

However. The extended presentation S(ΣKN
2

) obtained is bigger than necessary.
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Homotopical completion-reduction procedure

INPUT: A terminating 2-polygraph Σ.

Step 1. Compute the homotopical completion S(Σ) (convergent and coherent).

Step 2. Apply the homotopical reduction to S(Σ) with a collapsible part Γ made of

. 3-spheres induced by some of the generating triple con�uences of S(Σ),

. the 3-cells adjoined with a 2-cell by homotopical completion to reach con�uence,

. some collapsible 2-cells or 3-cells already present in the initial presentation Σ.
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INPUT: A terminating 2-polygraph Σ.

Step 1. Compute the homotopical completion S(Σ) (convergent and coherent).

Step 2. Apply the homotopical reduction to S(Σ) with a collapsible part Γ made of

. 3-spheres induced by some of the generating triple con�uences of S(Σ),

. the 3-cells adjoined with a 2-cell by homotopical completion to reach con�uence,

. some collapsible 2-cells or 3-cells already present in the initial presentation Σ.

The homotopical completion-reduction of terminating 2-polygraph Σ is the (3, 1)-polygraph

R(Σ) = πΓ (S(Σ))

Theorem. [Gaussent-Guiraud-M., 2015]

For every terminating presentation Σ of a category C, the homotopical

completion-reduction R(Σ) of Σ is a coherent presentation of C.



The homotopical completion-reduction procedure

Example.
ΣKN2 =

〈
s, t, a

∣∣ ta
α %9 as, st

β %9 a
〉
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β %9 a, sas
γ %9 aa, saa δ %9 aat | A,B,C ,D

〉
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β %9 a, sas
γ %9 aa, saa δ %9 aat | A,B,C ,D
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The homotopical completion-reduction procedure

Example.
ΣKN2 =

〈
s, t, a

∣∣ ta
α %9 as, st

β %9 a
〉

S(ΣKN2 ) =
〈
s, t, a

∣∣ ta
α %9 as, st

β %9 a, sas
γ %9 aa, saa δ %9 aat | A,B,C ,D

〉
〈
s, t, a

∣∣ ta
α %9 as , st

β %9 a, sas
γ %9 aa, saa δ %9 aat | A,B,�ZC ,D

〉
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. Critical triple branching on sasta proves that C is redundant:
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The homotopical completion-reduction procedure

Example.
ΣKN2 =

〈
s, t, a
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α %9 as, st

β %9 a
〉

S(ΣKN2 ) =
〈
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=
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With presentation Art2(S3) two proofs

of the same equality in B+
3

are equal.



Part III. Applications : Artin and plactic monoids



Artin monoids: Garside's presentation

I Let W be a Coxeter group

W =
〈
S

∣∣ s2 = 1, 〈ts〉mst = 〈st〉mst

〉
where 〈ts〉mst stands for the word tsts . . . with mst letters.

I Artin's presentation of the Artin monoid B+(W)

Art2(W) =
〈
S

∣∣ 〈ts〉mst = 〈st〉mst

〉
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Artin monoids: Garside's presentation

I Garside's extended presentation of the Artin monoid B+(W)

. 1-cells:

Gar1(W) = W \ {1}

. 2-cells:

Gar2(W) =
{

u|v
αu,v%9 uv whenever l(uv) = l(u) + l(v)

}
where uv is the product in W and u|v is the product in the free monoid over W.

. Gar3(W) made of one 3-cell

uv |w αuv ,w

�*
Au,v ,w���

u|v |w

αu,v |w (<

u|αv ,w
"6

uvw

u|vw αu,vw

4H

for every u, v , w in W \ {1} such that the lengths can be added.

Theorem. [Gaussent-Guiraud-M., 2015]

Gar3(W) is a coherent presentation the Artin monoid B+(W)

Proof.

By homotopical completion-reduction of the 2-polygraph Gar2(W).



Artin monoids: Garside's presentation

I Garside's extended presentation of the Artin monoid B+(W)

. 1-cells:

Gar1(W) = W \ {1}

. 2-cells:

Gar2(W) =
{

u|v
αu,v%9 uv whenever l(uv) = l(u) + l(v)

}
where uv is the product in W and u|v is the product in the free monoid over W.

. Gar3(W) made of one 3-cell

uv |w αuv ,w

�*
Au,v ,w���

u|v |w

αu,v |w (<

u|αv ,w
"6

uvw

u|vw αu,vw

4H

for every u, v , w in W \ {1} such that the lengths can be added.

Theorem. [Gaussent-Guiraud-M., 2015]

Gar3(W) is a coherent presentation the Artin monoid B+(W)

Proof.

By homotopical completion-reduction of the 2-polygraph Gar2(W).



Artin monoids: Garside's presentation

I Garside's extended presentation of the Artin monoid B+(W)

. 1-cells:

Gar1(W) = W \ {1}

. 2-cells:

Gar2(W) =
{

u|v
αu,v%9 uv whenever l(uv) = l(u) + l(v)

}
where uv is the product in W and u|v is the product in the free monoid over W.

. Gar3(W) made of one 3-cell

uv |w αuv ,w

�*
Au,v ,w���

u|v |w

αu,v |w (<

u|αv ,w
"6

uvw

u|vw αu,vw

4H

for every u, v , w in W \ {1} such that the lengths can be added.

Theorem. [Gaussent-Guiraud-M., 2015]

Gar3(W) is a coherent presentation the Artin monoid B+(W)

Proof.

By homotopical completion-reduction of the 2-polygraph Gar2(W).



Artin monoids: Garside's presentation

I Garside's extended presentation of the Artin monoid B+(W)

. 1-cells:

Gar1(W) = W \ {1}

. 2-cells:

Gar2(W) =
{

u|v
αu,v%9 uv whenever l(uv) = l(u) + l(v)

}
where uv is the product in W and u|v is the product in the free monoid over W.

. Gar3(W) made of one 3-cell

uv |w αuv ,w

�*
Au,v ,w���

u|v |w

αu,v |w (<

u|αv ,w
"6

uvw

u|vw αu,vw

4H

for every u, v , w in W \ {1} such that the lengths can be added.

Theorem. [Gaussent-Guiraud-M., 2015]

Gar3(W) is a coherent presentation the Artin monoid B+(W)

Proof.

By homotopical completion-reduction of the 2-polygraph Gar2(W).



Artin monoids: Garside's presentation

I Garside's extended presentation of the Artin monoid B+(W)

. 1-cells:

Gar1(W) = W \ {1}

. 2-cells:

Gar2(W) =
{

u|v
αu,v%9 uv whenever l(uv) = l(u) + l(v)

}
where uv is the product in W and u|v is the product in the free monoid over W.

. Gar3(W) made of one 3-cell

uv |w αuv ,w

�*
Au,v ,w���

u|v |w

αu,v |w (<

u|αv ,w
"6

uvw

u|vw αu,vw

4H

for every u, v , w in W \ {1} such that the lengths can be added.

Theorem. [Gaussent-Guiraud-M., 2015]
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Proof.
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Artin monoids: Artin's coherent presentation

Theorem. [Gaussent-Guiraud-M., 2015]

The Artin monoid B+(W) admits the coherent presentation Art3(W) made of

. Artin's presentation

Art2(W) =
〈
S

∣∣ 〈ts〉mst = 〈st〉mst

〉
. one 3-cell Zr ,s,t for every t > s > r in S such that the subgroup W{r ,s,t} is �nite.



Artin monoids: Zamolodchikov Zr ,s,t according to Coxeter type

Type A3

strsrt
sγrtsγ

−
rt%9 srtstr

srγst r %9

Zr ,s,t���

srstsr
γrs tsr

�$
stsrst

stγrs t
*>
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EY
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��
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rsγrtsr
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tsrγst  4
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tsrsts
tγrs ts

%9 trsrts
γrtsγ

−
rts

%9 rtstrs
rγst rs

:N

Type B3
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−
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−
st
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rt
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Type H3
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Type A1×A1×A1
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!
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γrts
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Type I2(p)×A1, p > 3,

st〈rs〉p−1
sγrt〈rs〉p−2

%9 (· · · ) %9

Zr ,s,t���

〈sr〉pt γrs t

�'
t〈sr〉p
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Plactic monoids

I Knuth's presentation of the plactic monoid Pn

. 1-cells:

Knuth1(n) = { 1, . . . , n }

. 2-cells are Knuth relations:

Knuth2(n) =
{ zxy = xzy for all 1 6 x 6 y < z 6 n

yzx = yxz for all 1 6 x < y 6 z 6 n

}

I For n > 4, there is no �nite completion of Knuth2(n) on Knuth1(n).

I Any 1-cell w in Knuth∗1(n) is equals to its Schensted's tableau P(w):

1 1 1 2 2 3 4
2 2 3 3 4 6
4 5 6 6
6 7

I Column presentation (Cain-Gray-Malheiro, 2015)

. add columns as generators:

cu = xp . . . x2x1 ∈ Knuth∗1(n) such that xp > . . . > x2 > x1.
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Plactic monoids: column presentation

I Column extended presentation of the plactic monoid Pn

. 1-cells:

Col1(n) =
{
cu
∣∣ u is a column

}
. 2-cells: Col2(n) is the set of 2-cells

cucv
αu,v%9 cw cw ′

such that u and v are columns, the planar representation of the Schensted tableau P(uv) is

not the juxtaposition of columns u and v and where w and w ′ are respectively the left and

right columns of P(uv).

. 3-cells:

cece ′ct
ceαe ′,t%9

Xx ,v ,t���

cecbcb ′ αe,bcb ′

�3TTTTT
TTTTT

cxcv ct

αx ,v ct +?jjjjjj jjjjjj

cuαv ,t
�3TTTTTT

TTTTTT cacdcb ′

cxcw cw ′
αx ,w cw ′

%9 caca′cw ′
caαa′,w ′

+?jjjjj jjjjj

with x in Knuth1(n) and v , t are columns.

Theorem. [Hage-M., 2015]

For n > 2, Col3(n) is a �nite coherent presentation of the plactic monoid Pn.

Proof.

By homotopical completion-reduction of the 2-polygraph Col2(n).
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Conclusion

I Computations of polygraphic resolutions

. Inductive constructions from coherent presentations, (Guiraud-M., 2012),

. Objective: explicit resolutions for B+
n and Pn.

I Cubical coherent presentation and cubical polygraphic resolutions.

. Cubical polygraphic resolutions could help to explicit formulas for higher syzygies of B+
n

and Pn.

I Prototype implementation of homotopical completion-reduction procedure, (Mimram, 2013)

. http://www.pps.univ-paris-diderot.fr/~smimram/rewr

. Objective: computations for higher ranks and higher syzygies.

http://www.pps.univ-paris-diderot.fr/~smimram/rewr
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