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Discrete Morse functions

M regular (locally) finite cell complex (simplicial, cubical, . . . )

A discrete Morse function F on M is a labelling of the cells such
that

I F (τ) ≤ Fσ for all τ < σ

I F−1(t) contains at most two cells τ < σ for all t ∈ R.

Introduced by Robin Forman in the 1990’s

If F−1(F (σ)) = {σ} then σ is critical,

if F (τ) = F (σ), and τ < σ then τ is of codimension 1 in σ, and
(τ, σ) is a regular pair, denoted by an arrow τ → σ.
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A discrete Morse function defines an acyclic matching on the
cells of M.

That is, the cells of M are partitioned into three classes:

critical cells C,

arrow tails A,

arrow heads B,

with a bijection r : A→ B,

such that adjoining sequences of arrows (gradient paths)

τ0 → σ0 > τ1 → σ1 · · · τn → σn > τn+1

do not form cycles.

Any acyclic matching comes from a discrete Morse function.
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The homotopy type of the cell complex is determined by the
critical data:

Theorem (Forman)
A cell complex with a discrete Morse function has the homotopy
type of a CW complex with one cell of dimension p for every
critical cell of the function of dimension p.

In particular, the homology of M can be computed from the
Morse chain complex with:

chain groups generated by critical cells and

boundary homomorphisms given by gradient paths starting in
the boundary of a critical p-cell and ending in a critical p − 1
cell (p > 0).
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This gives rise to efficient algorithms for computing homology,
homology generators, as well as homology homomorphisms
generated by smooth maps

Harker, Mischaikow, Mrozek, Nanda, Dłotko, Wagner,
Kaczynski,. . .

Good implementations of these algorithms exist as well:

Perseus, CHomP, RedHom, . . .

The complexity of the computation of homology after reducing
the complex depends on the number of critical cells.
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Discrete Morse theory provides a strategy: cancelling critical
cells.

Given two critical cells σp and τp−1 of consecutive dimensions
with only one gradient path connecting them

σ = σ0 > τ1 → σ1 · · · τn → σn > τn+1 = τ,

switch the arrows along the gradient path:

σ = σ0 → τ1 < σ1 · · · τn < σn → τn+1 = τ

The beginning and ending cells are not critical any more, no
cycles are produced so we still have an acylic matching.
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If the values of F on vertices correspond to some data
measurements then,

these can be extended to a discrete Morse function on the
complex (which can be some reconstruction from the data
points),

cancelling up to a certain threshold ε provides a smoothing
algorithms for the data.

Cancelling with ε =∞ produces a smaller, in some cases even
the minimal, number of critical cells.
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Perfect discrete Morse functions
Morse inequalities:

M a manifold of dimension n with Betti numbers (with respect to
some coefficient ring K ) bk , k = 0,1, . . . ,n,
F is a discrete Morse function on M with ck critical cells of
dimension k , k = 0,1, . . . ,n. Then

1. ck ≥ bk for all k ,
2. ck − ck−1 + · · · ± c0 ≥ bk − bk−1 + · · · ± b0, for all k ,
3. c0 − c1 + · · ·+ (−1)ncn = b0 − b1 + · · ·+ (−1)nbn = χ(M).

A discrete Morse function on M is perfect (with respect to the
coefficient ring K ) if the Morse inequalities are equalities.

A perfect discrete Morse function has in each dimension the
number of critical cells equal to the Betti number of the
complex.
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An example of a Z2-perfect discrete Morse function on the
projective plane RP2 . . .

Some ovious nonexistence results:

No nonorientable manifold can admit a Z-perfect discrete
Morse function. More generally, any torsion in homology is an
obstruction to existence of Z-perfect discrete Morse functions.

Complexes that are contractible but not collapsible do not admit
perfect discrete Morse functions with respect to any
coefficients, since:

a regular cell complex with a discrete Morse function with only
one critical cell is collapsible,

the collapsing strategy is given by the gradient paths.



An example of a Z2-perfect discrete Morse function on the
projective plane RP2 . . .

Some ovious nonexistence results:

No nonorientable manifold can admit a Z-perfect discrete
Morse function. More generally, any torsion in homology is an
obstruction to existence of Z-perfect discrete Morse functions.

Complexes that are contractible but not collapsible do not admit
perfect discrete Morse functions with respect to any
coefficients, since:

a regular cell complex with a discrete Morse function with only
one critical cell is collapsible,

the collapsing strategy is given by the gradient paths.



An example of a Z2-perfect discrete Morse function on the
projective plane RP2 . . .

Some ovious nonexistence results:

No nonorientable manifold can admit a Z-perfect discrete
Morse function. More generally, any torsion in homology is an
obstruction to existence of Z-perfect discrete Morse functions.

Complexes that are contractible but not collapsible do not admit
perfect discrete Morse functions with respect to any
coefficients, since:

a regular cell complex with a discrete Morse function with only
one critical cell is collapsible,

the collapsing strategy is given by the gradient paths.



An example of a Z2-perfect discrete Morse function on the
projective plane RP2 . . .

Some ovious nonexistence results:

No nonorientable manifold can admit a Z-perfect discrete
Morse function. More generally, any torsion in homology is an
obstruction to existence of Z-perfect discrete Morse functions.

Complexes that are contractible but not collapsible do not admit
perfect discrete Morse functions with respect to any
coefficients, since:

a regular cell complex with a discrete Morse function with only
one critical cell is collapsible,

the collapsing strategy is given by the gradient paths.



An example of a Z2-perfect discrete Morse function on the
projective plane RP2 . . .

Some ovious nonexistence results:

No nonorientable manifold can admit a Z-perfect discrete
Morse function. More generally, any torsion in homology is an
obstruction to existence of Z-perfect discrete Morse functions.

Complexes that are contractible but not collapsible do not admit
perfect discrete Morse functions with respect to any
coefficients, since:

a regular cell complex with a discrete Morse function with only
one critical cell is collapsible,

the collapsing strategy is given by the gradient paths.



An example of a Z2-perfect discrete Morse function on the
projective plane RP2 . . .

Some ovious nonexistence results:

No nonorientable manifold can admit a Z-perfect discrete
Morse function. More generally, any torsion in homology is an
obstruction to existence of Z-perfect discrete Morse functions.

Complexes that are contractible but not collapsible do not admit
perfect discrete Morse functions with respect to any
coefficients, since:

a regular cell complex with a discrete Morse function with only
one critical cell is collapsible,

the collapsing strategy is given by the gradient paths.



Some (more or less) obvious existence results:

Every graph admits a perfect discrete Morse function.

Suppose M has dimension 2 and is a subcomplex of a two
dimensional manifold. Then there exists a Z2-perfect discrete
Morse function. It is obtained by a recursive process of
cancelling critical cells in lower stars of vertices.

Spheres are characterized by the existence of a perfect Morse
function:

Every complex with exactly two critical cells is a triangulated
sphere, and for every sphere there exists a triangulation which
admits a perfect discrete Morse function. (Froman, building on
deep results from smooth Morse theory by Milnor, Smale,
Sharko).

Every sphere of dimension d > 4 has a triangulation which
does not admit a discrete Morse function (Benedetti).
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It is known that finding optimal discrete Morse functions (not
necessarily perfect) is NP-complete (Joswig and Pfetsch,
Lewiner)

Several approaches exist:

Joswig-Pfetch (an algorithm for finding maximal acyclic
matchings on the Hasse diagram),

Engström (using a form of Fourier transforms),

Lewiner, Lopes and Tavares (finding maximal hyperforests of
hypergraphs, on big complexes of dimension 2 and 3)

Benedetti and Lutz (an efficient algorithm for generating a large
number of random discrete Morse functions, look for the
minimal Morse vector)

. . .
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Perfect discrete Morse functions on connected sums

This is joint work with Hanife Isal and Mehmetcik Pamuk from
METU, Turkey, and Jose Antonio Vilches and Rafael Ayala,
University of Sevilla

Let M = M1#M2 be the connected sum of two closed, oriented,
triangulated n manifolds with perfect discrete Morse functions
F1 and F2 on M1 and M2, respectively.

Theorem
There exists a polyhedral subdivision M̃ of M and a perfect
discrete Morse function F on M that agrees, up to a constant
on each summand with F1 and F2, except in a neighbourhood
of the two removed cells.
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The proof is constructive:

Form the connected sum by removing an n-cell with the critical
vertex in its bounday on the upper summand, and the unique
top-dimensional critical cell on the lower summand.

Attach a tube connecting the two boundaries.

Extend the discrete vector field so that all arows point down
from the upper boundary and the vector field coincides with the
original one on the lower boundary.
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The opposite direction, n = 2

Theorem
Let M = M1#M2 be the connected sum of two closed, oriented
surfaces of genus g1 and g2 respectively and F be a perfect
discrete Morse function on M. We can find a separating circle
S1 on M such that the cells on S1 are paired with either cells on
S1 or cells in M −M2.

Outline of proof:

Collapse along gradient paths starting in the boundary of the
critical 2-cell and ending in the g1 critical 1-cells that belong to
the upper summand.

The separating circle S1 is obtained after removing a
neighborhood of these critical 1-cells.

If two paths from the critical 2-cell to critical 1-cells meet in a
vertex or are separated only by an edge or 1-path, subdivisions
are necessary.
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Theorem
If there are no arrows on the vertices and edges of the
separating circle S1 pointing upwards into M −M1, perfect
discrete Morse functions F1 and F2 exist on M1 and M2 which
coincide on each summands with F , except on the two added
discs.

Idea of proof: in this configuration of arrows on the separating
circle S1

there exist triangulations of the discs glued to S1 to obtain M1
and M2

and extensions of the discrete vector field to these two discs
such that there is only one critical vertex on the top summand
and only one critical 2-cell on the bottom summand,

they are relatively easy to construct.
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Opposite direction, n > 2

Theorem (Ayala, Fernández-Ternero, Vilches)
Let M be a closed orientable 3-manifold and let coefficients be
either in Z or in a field. Then M admits a perfect discrete Morse
function if and only if there exists a spine K of M, which admits
a perfect discrete Morse function.

The spine of a connected closed orientable n-manifold is an
n − 1-dimensional complex onto which the manifold collapses
after removing an n-cell.

The proof is based on the fact that a connected sum has a
spine K = K1 ∨ K2, where K1 and K2 are the spines of the two
components.

The proof works for arbitrary n.

Open question: if the collapses come from a discrete Morse
function, will the resulting spine be a wedge?
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