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Sequential Computing

• Turing Machine

• model of 
choice for 
theory of 
computation

• provides a 
precise 
definition of a 
"mechanical 
procedure"

The Imitation Game
Turing Year 2012 

centenary of his birth 

http://en.wikipedia.org/wiki/Theory_of_computation


What about 
concurrency?



Concurrency is 
everywhere

• At a smaller scale, as processor feature 
sizes shrink, they become harder to cool, 
manufacturers have given up trying to make 
processors faster. Instead, they have focused 
on making processors more parallel.

Nearly every activity in our society 
works as a distributed system made 
up of human and sequential 
computer processes



Very different from 
sequential computing



This revolution requires a fundamental 
change in how programs are written. Need 

new principles, algorithms, and tools 
- The Art of Multiprocessor Programming 

Herlihy & Shavit book



Would not seem so 
according to traditional views

• single-tape ≃ multi-tape 
TM 

• interpreted as 
sequential computing 
and distributed 
computing differ in 
questions of efficiency, 
but not computability.

• The TM wikipedia page 
mentions limitations: 
unbounded 
computation (OS) and 
concurrent processes 
starting others



Why concurrency is 
different ?

Distributed systems are subject to 
failures and timing uncertainties, 
properties not captured by classical 
multi-tape models.



Processes have partial information 
about the system state

• Even if each process is more powerful than a 
Turing machine

• and abstracting away the communication 
network (processes can directly talk to each 
other)



Topology

Placing together all 
these views yields a 
simplicial complex 

“Frozen” representation all possible 
interleavings and failure scenarios into a single, 
static, simplicial complex 



Topology

views label vertices 
of a simplex 

Each simplex is 
an interleaving



Topological invariants

• ,

Preserved as computation unfolds

Come from the nature of the faults and 
asynchrony in the system 

They determine what can be computed, and 
the complexity of the solutions



Short History
 Discovered in PODC 1988 when only 1 process may crash 
(dimension=1) by Biran, Moran and Zaks, after consensus 
FLP impossibility of PODS 1983

Generalized in 1993: 
 Three STOC papers by Herlihy, Shavit, Borowski, Gafni, 

Saks, Zaharoughlu
  and dual approach by Eric Goubault in 1993!

Distributed Computing through Combinatorial 
Topology, Herlihy, Kozlov, Rajsbaum,      
Elsevier 2014



What would a theory of 
distributed computing be?



Distributed systems...

• Individual sequential processes

• Cooperate to solve some problem

• By message passing, shared memory, or any 
other mechanism



Many kinds

• Multicore, various shared-memory systems

• Internet

• Interplanetary internet

• Wireless and mobile

• cloud computing, etc.



... and topology

• ,

Combinatorial topology provides a common 
framework that unifies these models.

Many models, appear to have little in common 
besides the common concern with complexity, 
failures and timing. 



Theory of distributed 
computing research

• Models of distributed computing systems:
communication, timing, failures, which models are 
central?

• Distributed Problems:
one-shot task, long-lived tasks, verification, graph 
problems, anonymous,…

• Computability, complexity, decidability
• Topological invariants:

(a) how are related to failures, asynchrony, 
communication, and (b) techniques to prove them

• Simulations and reductions



A “universal” distributed 
computing model  
(a Turing Machine for DC)



Ingredients of  a model

• processes

• communication

• failures



Once we have a 
“universal” model, how 

to study it?



multi-read/multi-writer

single-reader/single-writer message passing

t failures stronger objects failure detectors



Iterated model 

multi-read/multi-writer

single-reader/single-writer message passing

t failures stronger objects failure detectors

generic 
techniques, 
simulations

and 
reductions



Iterated shared 
memory

( a Turing Machine for DC ? )



n Processes



asynchronous, wait-free



Unbounded 
sequence of
read/write 

shared arrays



• use each one 
once
• in order



write, then read
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Asynchrony- solo run
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every copy is 
new



•arrive in 
arbitrary order
•last one sees 
all



•arrive in 
arbitrary order
•last one sees 
all

2



•arrive in 
arbitrary order
•last one sees 
all

2
-,2,-



•arrive in 
arbitrary order
•last one sees 
all

2 -,2,33



•arrive in 
arbitrary order
•last one sees 
all

2
1,2,3

31



•arrive in 
arbitrary order
•last one sees 
all

2
1,2,3

31

returns 1,2,3



•remaining 2 go 
to next 
memory

2 31



•remaining 2 go 
to next 
memory

2 31

2

-,2,-



•3rd one 
returns -,2,3

2 31

2
-,2,3

3



•2nd one goes 
alone

2 31

2 3



•returns -,2,-

2 31

2 3

2

dd

-,2,-



so in this run, 
the views are

-,2,3

1,2,3

-,2,-



another run



•arrive in 
arbitrary order

2 31



• all see all

2
1,2,3

31



View graph



indistinguishability
• The most essential 

distributed computing 
issue is that a process 
has only a local 
perspective of the world

• Represent with a vertex 
labeled with id (green) 
and a local state this 
perspective

• E.g., its input is 0

• Process does not know 
if another process has 
input 0 or 1, a graph

0

0 1

??



Indistinguishability 
graph for 2 
processes



• focus on 2 
processes

• there may be 
more that 
arrive after

2



 sees only itself

2
-,2,-



• green sees both

• but  ...

2 -,2,33
-,2,-



2 -,2,33
-,2,-

-,2,3

??

• green sees both

• but, doesn't 
know if seen by 
the other



see 
each other

see 
each other

one round graph for 2 
processes

solo
solo



iterated runs

round 2: 

round 1:

for each run in round 1 there are the same 3 runs in the next round



iterated runs

solo sees 
both

solo in both rounds

round 2:



iterated runs

solo sees 
both

round 2:
sees both,

then solo in 2nd



iterated runs

round 1:

round 2:

see each other in 1st 
round

see each other in both 



More rounds

round 1:

round 2:

round 3:

Topological invariant: protocol graph after k rounds

-longer
-but always connected



Wait-free theorem for 
2 processes

For any protocol in the iterated model, 
its graph after k rounds is

-longer
-but always connected



Iterated approach: theorem 
holds in other models

• Via known, generic simulation
• Instead of ad hoc proofs (some known) for each 
case

easy iterated proof : 
local, iterate

any number of 
processes

any number of 
processes, any 

number of failures

message passing

non-iterated model



implications in terms of

- solvability
- complexity
- computability



Distributed problems 
binary consensus

0 0

1 1

0 0

1 1

start with same input
decide same output

Input Graph Output Graph

different inputs, 
agree on any

Input/output
relation



Binary consensus is not solvable 
due to connectivity

0 0

1 1

0 0

1 1

Input Graph Output Graph

Input/output
relation

Each edge is an initial 
configuration of the protocolsubdivided after 1 roundno solution in 1 round decide

decide

no solution in k rounds



corollaries: 
consensus impossible in the 

iterated model



consensus impossibility 
holds in other models

• Via known, generic simulation
• Instead of ad hoc proofs for each case

2 process binary 
iterated

any number of 
processes

any number of 
processes, any 

number of failures

message passing

non-iterated model



Decidability
• Given a task for 2 processes, is it solvable in the iterated 

model?

• Yes, there is an algorithm to decide: a graph connectivity 
problem

• Then extend result to other models , via generic 
simulations, instead of ad hoc proofs



Beyond 2 processes

from 1-dimensional graphs to n-dimensional complexes



2-dim simplex 
• three local states in 

some execution

• 2-dimensional simplex

• e.g. inputs 0,1,2

0

1 2



3-dim simplex
• 4 local states in some 

execution

• 3-dim simplex

• e.g. inputs 0,1,2,3

0

1 2

3



complexes

Collection of 
simplexes closed 

under 
containment



consensus task  
3 processes

Input Complex

0

0

0
1

1

0

0 0

1

1 1

Output Complex



Iterated model

One initial state



Iterated model

after 1 round all see each other



Iterated model

after 1 round 2 don’t know if
other saw them



Iterated model

after 1 round 1 doesn't  know if
2 other saw it



Wait-free theorem for 
n processes

For any protocol in the iterated model, 
its complex after k rounds is

- a chromatic subdivision of the input 
complex



General wait-free iterated 
solvability theorem

A task is solvable if and only if the input complex 
can be chromatically subdivided and mapped 
into the output complex continuously respecting 
colors and the task specification



Decidability
• Given a task for 3 processes, is it solvable in the iterated 

model?

• No! there are tasks that are solvable if and only if a loop 
is contractible in a 2-dimensional complex

• Then extend result to other models, via generic 
simulations, instead of ad hoc proofs



Extension to other models

• Via known, generic simulation
• Instead of ad hoc proofs for each case

3 process 2-agreem 
iterated

any number of 
processes

any number of 
processes, 2 or  
more failures

message passing

non-iterated model



Conclusions

• In distributed computing there are too 
many different issues of interest, no single 
model can capture them all



Synchronous protocol 
complex evolution

Connected but
not 1-connected

Disconnected 



Conclusions

• But the iterated model (with extensions 
not discussed here) captures essential 
distributed computing aspects

• and topology is the essential feature for 
computability and complexity results



END


