Generalized similarity measures for text data.
Hubert Wagner (IST Austria)
Joint work with Herbert Edelsbrunner

GETCO 2015, Aalborg
April 9, 2015
Plan

- Shape of data.
- Text as a point-cloud.
- Log-transform and similarity measure.
- Bregman divergence and topology.
Shape of data.
Main tools.

Rips and Čech simplicial complexes:
 ▶ Capture the shape of the union of balls.
 ▶ Combinatorial representation.

Persistence captures geometric-topological information of the data:
 ▶ Key property: stability!
Interpretation of filtration values.

For a simplex $S = v_0, \ldots, v_k$, $f(S) = t$ means that at filtration threshold t, objects v_0, \ldots, v_k are considered close.
Text as a point-cloud.
Basic concepts

Corpus:
- (Large) collection of text documents.

Term-vector:
- Weighted vector of key-words or terms.
- Summarizes the topic of a single document.
- Higher weight means higher importance.
Concept: Vector Space Model

- Vector Space Model maps a corpus K to \mathbb{R}^d.
- Each distinct term in K becomes a direction, so d can be high (10s thousands).
- Each document is represented by its term-vector.
Concept: Similarity measures

- *Cosine similarity* compares two documents.
- Distance (dissimilarity) $d(a, b) := 1 - sim(a, b)$.
- This d is not a metric.
Geometry-topological tools.
Interpreting Rips

A simplex is added immediately after its boundary:

- $d(a, b)$ – the dissimilarity.
- For triangle $d(a, b, c) = \max(d(a, b), d(a, c), d(b, c))$.
- Is this the filtering function we want?
Generalized similarity

Goal:
- Extend similarity from pairs to larger subsets of documents.
- Its persistence should be stable.
- As a bonus, the resulting complex will be smaller.
Simple example.

For simplicity, let us work with binary term-vectors (or sets of terms).

- \(\text{sim}_J(X_1, \ldots, X_d) = \frac{\text{card} \cap_i X_i}{\text{card} \cup_i X_i} \).
- Generalizes the Jaccard index.

\[
\begin{array}{ccc}
\text{cat} & \text{dog} & \text{donkey} \\
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1 \\
\end{array}
\]
New direction.

Flawed generalized cosine measure:

$$R_{\text{cos}}(p^0, p^1, \ldots, p^k) = \sum_{j=1}^{n} \prod_{i=0}^{k} p^i_j.$$ (1)

Another option: the length of the geometric mean:

$$R_{\text{gm}}(p^0, p^1, \ldots, p^k) = \left(\sum_{j=1}^{n} \left(\prod_{i=0}^{k} p^i_j \right)^{\frac{2}{k+1}} \right)^{\frac{1}{2}}.$$ (2)
Log-transform

We study the N-dimensional log-transform and related distances.
Log-transform
Log-transform in 3D
Log-distance
Log-distance: formula

Let $x, y \in \mathbb{R}^{n-1}$, $s = (x, F_1(x))$ and $t = (y, F_1(y))$. Then the log-distance from x to y is

$$D(x, y) = \sum_{j=1}^{n} (t_j - s_j)e^{2t_j}.$$
Log-distance: conjugate
Log-distance: conjugate in 3D
Log Ball
\(\text{Cech}_r(X) = \{ \xi \subseteq X \mid \bigcap_{x \in \xi} B_r(x) \neq \emptyset \}. \) (3)
Generalized measure.

For each simplex $\xi \in \Delta(X)$, there is a smallest radius for which ξ belongs to the Čech complex:

$$r_C(\xi) = \min \{ r \mid \xi \in \text{Čech}_r(X) \}. \quad (4)$$

We call $r_C : \Delta(X) \to \mathbb{R}$ the Čech radius function of X.

In the original coordinate space, we get the desired similarity measure:

$$R_C(\xi) = e^{-r_C(\xi)/\sqrt{n}} \quad (5)$$
Bregman divergences
Bregman divergences

Bregman distance from x to y:

$$D_F(x, y) = F(x) - [F(y) + \langle \nabla F(y), x - y \rangle]; \quad (6)$$
Bregman divergences

\(F \) can be \textit{any} strictly convex function!

- It covers the Sq. Eucl. distance, squared Mahalanobis distance, Kullback-Leibler divergence, Itakura-Saito distance.
- Extensive use in machine learning.
- Links to statistics via \textit{regular} exponential family (of distributions).
Further connections

- Bregman-based Voronoi [Nielsen at el].
- Information Geometry.
- Collapsibility Cech \rightarrow Delunay [Bauer, Edelsbrunner].
- Persistence stability for geometric complexes [Chazal, de Silva, Oudot]
Summary

- New, *stable* and relevant distance (dissimilarity measure) for texts.
- It serves as an interpretation of text data.
- Link between TDA and Bregman divergences.
Thank you!

Research partially supported by the TOPOSYS project