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WHERE IN THE WORLD ARE WE?

Since the dawn of civilisation, people have needed to measure and map their domain. Examples abound 

throughout history. Ancient Egyptians mapped land holdings in the valley of the Nile. Christopher 

Columbus, Ferdinand Magellan and others recorded their journeys of exploration. Many nations have 

recorded topographic information for military purposes. 

Measuring and mapping continues today. The management of the world’s natural and economic resources 

has become increasingly dependent on the availability of accurate and consistent geographic information. 

The methods for storing this data have changed radically in recent years, with paper maps giving way to 

computer-based storage, and manual drafting to digital production techniques. However, the underlying 

principles for ensuring spatial compatibility and consistency among data remain the same.

The foundation of any geographically based dataset is a spatial reference system. It is the mechanism 

through which grids can be placed on maps and navigation reliably achieved. A spatial reference system 

allows us to unambiguously identify locations through a set of coordinates (usually latitude and longitude 

or Northing and Easting) and to reliably calculate distances and areas.

This booklet aims to give a brief introduction to the development of spatial reference systems. It is 

intended for casual users of maps and navigation devices who want to know more about the coordinates 

that they use. It addresses some of the technical issues surrounding spatial reference systems, presenting 

formulae when appropriate. It also discusses the benefits of a spatial reference system to the community 

in general.

Every attempt has been made to present the material in non-technical terms. However, some reference 

to the science and terminology of geodesy and geodetic datums has been both inevitable and necessary. 

Hopefully, the associated explanations are sufficiently clear to the reader.
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BACKGROUND

The need for a reference model
The shape of the Earth is very complex. Its surface includes plains, valleys, mountain ranges and deep 

oceans. In order to map its geography, we need a reference model that will allow such topographic 

irregularities to be recorded. The model needs to be simple so that it is easy to use. Also, the model needs 

to:

•  include a coordinate system that allows the positions of features to be uniquely identified, and

•  be readily associated with the physical world so that its use is intuitive.

A ‘flat Earth’ model
If the area being mapped is small (for example, 10 km square), a suitable reference model can be provided 

by a simple three-dimensional (3D) framework (see Diagram 1). The coordinate axes of the framework 

are arranged so that:

•  the horizontal axes (N and E) are aligned in the directions of North and East, and

•  the height axis (H) is perpendicular to the horizontal plane and is usually set coincident with sea level.

Diagram 1 – Local flat Earth 3D coordinate model

The positions of individual features on the Earth’s surface are projected vertically onto the horizontal 

plane, allowing their positions relative to each other to be determined mathematically. Furthermore, the 

height of each feature relative to sea level is given by the vertical distance above or below the horizontal 

plane. 

The orientation to North (the direction to the pole), together with the adoption of sea level as the reference 

for heights, provide the necessary association with the real world to make the reference system intuitively 

useable. 

height

origin East

feature projected to
horizontal plane

rectangular
coordinate grid at
sea level

North
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A model for the real (curved) Earth
Unfortunately, the simple ‘flat Earth’ model is unable to deal with the effects of the curvature of the Earth, 

which become significant when larger areas are to be measured or mapped.

There are two complicating factors:

•  the curvature of the Earth, and

•  the composition of the Earth’s interior. 

Curvature of the Earth
The curvature of the Earth forces the replacement of the ‘flat Earth’ model with a ‘curved Earth’ model. 

The selection of a curved reference surface is an important consideration as it needs to satisfy two criteria. 

Not only must it closely represent the shape of the Earth, but it must also be mathematically simple to use.

At first glance, the most appropriate figure would seem to be a sphere. It is geometrically very simple, but

Appearances can be deceptive! 

In fact, because the Earth’s equatorial diameter is significantly greater than the distance between the 

poles, a sphere is not the best choice for a reference surface.

An ellipsoid (also referred to as a spheroid) provides a better option. An ellipsoid is the figure 

generated by rotating an ellipse about its minor (shorter) axis (see Diagram 2). It has the advantages of 

accommodating the bulge at the Equator while remaining relatively simple mathematically. For these 

reasons, an ellipsoid is the figure usually chosen to represent the shape of the Earth.

If we ignore all land masses and imagine that the Earth is completely covered by water, then we would 

hope that the sea would form an absolutely smooth surface. An ellipsoid could be selected to match 

exactly the surface of the sea and become a perfect reference model.

Unfortunately there is a further complication! 

Diagram 2 – The ellipsoid

a

b

a

rotation axis

Equatorial plane

a = length of semi-major axis (lies in Equatorial plane)
b = length of semi-minor axis (coincides with rotation axis)
f = flattening a – b

a
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Composition of the Earth’s interior
The composition of the Earth is not uniform. It varies from place to place. There are variations in the 

density and distribution of the different rock types, and also irregularities caused by mountain ranges and 

ocean trenches. Together these lead to variations in the Earth’s gravity field. 

The surface that has a constant value of gravity is known as the geoid. You can’t see the geoid but it’s 

there. However, you can see the sea surface which coincides with the geoid to within one to two metres. 

The difference is caused by sea currents and variations in water temperature and density.

We saw earlier how, with the small-area ‘flat Earth’ model, the horizontal plane containing the N and 

E axes was able to be positioned so that it coincided with sea level. It is not possible to do this with a 

‘curved Earth’ model due to the irregularity of the geoid and constantly changing sea surface. While it 

is possible to mathematically define the surface of the geoid, the model is very complex and not suitable 

for recording the geographic position of features. This problem is overcome by defining an ellipsoid that 

provides a best fit to the geoid (see Diagram 3).  

Diagram 3 – Relationship between the ellipsoid and geoid

ellipsoid
(regular shape)

geoid height

ground surface

geoid
(irregular shape)
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Implications for users
What are the implications of the lack of coincidence between the ellipsoid and the geoid?  

The deflection of the vertical
First of all, there is the difference between the vertical or local gravity vector (the line perpendicular 

to the geoid/ sea level surface) and the ellipsoidal normal (the line perpendicular to the ellipsoid) (see 

Diagram 4).

The vertical is coincident with the direction of gravity at a point. It is the line along which an object falls 

when it is dropped. The vertical is very important to measurements taken by conventional surveying 

instruments (such as theodolites and levels). These instruments are set up so that their rotation axes are 

either coincident with, or perpendicular to, the vertical. Consequently, all angles are measured relative to 

the vertical.

The ellipsoidal normal, on the other hand, is the line along which a feature on the Earth’s surface is 

projected down to the centre of the ellipsoid. It is the line used in computations involving observations at 

the feature.

To summarise:

•  the vertical is the line associated with measurements, while 

•  the ellipsoidal normal is the line associated with computations. 

In our ‘flat Earth’ model, the two lines are considered coincident. In a ‘curved Earth’ model, they 

generally are not. Accordingly, to use an angle measurement in a computation process, the measurement 

should first be corrected for the ‘difference’ between the two lines. This difference is referred to as the 

deflection of the vertical (also referred to as deviation of the vertical). It is described by two small angles, 

the northerly and easterly components.  

Convergence of the ellipsoidal normals
In our ‘flat Earth’ model, the lines projecting surface features to the horizontal plane were parallel. In a 

‘curved Earth’ model, the ellipsoidal normals converge towards the centre of the ellipsoid (see Diagram 4).

Consequently, a distance measured on the surface of the Earth must be shortened, or in some cases 

lengthened, before it can be used in computations on the ellipsoid. The amount of the shortening 

will depend on the height of the measurement (above or below the ellipsoid). It is approximately one 

millimetre per kilometre for every 6.3 metres of height.

Diagram 4 – The vertical and the ellipsoidal normal

deflection of
the vertical

ellipsoid

vertical

geoid or sea level

ellipsoidal
normals

ellipsoidal normals
converge towards the
centre of the ellipsoid
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Height differences
Three reference surfaces are commonly used as a basis for height values. They are the sea level surface, 

the geoid, and the ellipsoid. In our ‘flat Earth’ model, the surfaces are considered coincident. This is rarely 

the case in a ‘curved Earth’ model.

In most parts of the world, distance above sea level has been the traditional mechanism for measuring 

height. This has been due to:

•  a preference for a physically identifiable surface as a reference, and

•  the importance of sea level to economic activity (for example drainage on flood plains).

The geoid is a surface defined across the entire globe by gravity. All points that lie above or below the 

geoid have gravity values that are lower or higher than the geoid respectively.  

Ellipsoidal heights (heights relative to the ellipsoid) are now becoming increasingly popular. Until 

recently they were more difficult to determine than sea level heights. However, the use of satellite-based 

positioning systems (eg GPS, GLONASS and Galileo) has reversed this situation because they give 

ellipsoidal heights as part of their positions.

The distance between the geoid and the ellipsoid is referred to as the geoid height (see Diagram 3). If a 

sea level height is known, it (or a height in terms of a vertical datum) can be converted to an ellipsoidal 

height, and vice versa. 

The computation of the geoid and geoid-derived heights often uses gravity observations. The process is 

mathematically complex and beyond the scope of this discussion. Luckily there are pre-computed geoids 

available for use when converting heights. These are discussed later.
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DATUMS AND PROJECTIONS

Geodesy
It is now time to define the term ‘geodesy’. Essentially geodesy is the branch of science concerned with 

the determination of the size and shape of the Earth. Its range of contributing activities is vast. They 

include the acquiring and processing of survey measurements on (and above) the curved surface of the 

Earth, establishing geodetic datums and projections, and analysing gravity measurements.

Geodetic datum
A geodetic datum is a curved reference surface used to express the positions of features consistently. We 

define a geodetic datum by specifying a reference ellipsoid, the position (latitude and longitude) of an 

initial station and an azimuth from that station. A geocentric datum is a special case where the centre of 

the ellipsoid is defined as the centre of mass of the Earth. It is the simplified mathematical representation 

of the size and shape of the Earth.

A geodetic datum is vital to all activities involving spatial data. The ellipsoid provides a mathematical 

surface for performing surveying and navigation computations over a wide area. It is also a reference 

surface on which to base mapping and geographic information systems (GIS).

The ellipsoid is positioned so that it is a best fit to the Earth’s geoid. An exact fit to the geoid is not 

possible due to undulations in the geoid caused by the variations in the Earth’s gravity. 

Mean sea level is widely used as the reference surface for the measurement of height. The contours on a 

map will usually show height above mean sea level. However, heights in terms of a geodetic datum will 

be in relation to the ellipsoid.

The current official geodetic datum in New Zealand is the New Zealand Geodetic Datum 2000 

(NZGD2000).

Types of geodetic datum
Geodetic datums are usually classified into two categories. These are known as local geodetic datums and 

geocentric datums.

A local geodetic datum best approximates the size and shape of a particular part of the Earth’s sea level 

surface. Invariably the centre of its ellipsoid will not coincide with the Earth’s centre of mass.

Until very recently, most countries’ survey information systems were expressed in terms of a local 

geodetic datum. 

New Zealand Geodetic Datum 1949 (NZGD49) is an example of a local datum. Its ellipsoid is a good 

approximation to the size and shape of sea level surface in the region of New Zealand, but a poor 

approximation in other parts of the world (see Diagram 5).  

0914_LINZ_GeodeticReport_v9.indd   8 10/29/07   11:08:30 AM



W
H

ERE IN
 TH

E W
O

RLD
 A

RE W
E?            A

 technical guide to datum
s and projections in N

ew
 Zealand

9

Diagram 5 – Local geodetic datum

A geocentric datum best approximates the size and shape of the Earth as a whole. The centre of its 

ellipsoid coincides with the Earth’s centre of mass (see Diagram 6).  Geocentric datums do not seek to be 

a good approximation to any single part of the Earth, but on average they are a good fit. 

Global Navigation Satellite Systems (GNSS), such as the Global Positioning System (GPS) operated 

by the United States Department of Defense, use geocentric datums to express their positions because 

of their global extent. The Russian GLONASS satellite navigation system also uses a geocentric datum. 

However, it is a different datum to that used by GPS.

The World Geodetic System 1984 (WGS84) and New Zealand Geodetic Datum 2000 (NZGD2000) are 

examples of geocentric datums.

sea level

fits this part of
the Earth well

centre of
ellipsoid

rotation axis

ellipsoid

Equator

fits this part of
the Earth poorly

centre of
mass of Earth

°

Diagram 6 – Geocentric geodetic datum

ellipsoid is a best
fit to the Earth as

a whole
rotation axis

ellipsoid

Equator

sea level

centre of mass
coincides with

centre of ellipsoid

°
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Identifying position on a geodetic datum 
Geodetic datum coordinates can be expressed in two forms: geographic and Cartesian.

The geographic coordinate system describes positions on the Earth’s surface in terms of latitude, 

longitude and ellipsoidal height (see Diagrams 7, 8 and 9).

A set of geographical system coordinates is a mix of angular (latitude and longitude) and linear (height) 

values. The units of the angular components can be degrees, minutes and seconds, or degrees and 

decimals of degrees. 

Diagram 7 – Geodetic latitude

Diagram 8 – Geodetic longitude

Diagram 9 – Ellipsoidal height

P
parallel of

latitude

ellipsoidal
normal

latitude

Equatorial
plane

The latitude of point P is
the angle between the

Equatorial plane and the
ellipsoidal normal.

P
Greenwich
Meridian

longitude

Equatorial
plane

The longitude of point P is
the angle between the

Greenwich Meridian and
the meridian of longitude

containing P.

meridian of
longitude

ellipsoidal
normal

P

P1

P2

height

Equatorial
plane

Points P, P1 and P2 all lie
on the ellipsoidal normal.
Distance P to P1 is the
height of P above the
ellipsoid.
Distance P1 to P2 is the
radius of curvature in the
prime vertical.

ellipsoidal
normal

radius of
curvature in

the prime
vertical
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Cartesian coordinates are used to describe positions on the Earth’s surface in terms of a three axis X, Y, Z 

system (see Diagram 10) where:

•  the positive X axis lies in the Equatorial plane and passes through 0° longitude

•  the positive Y axis lies in the Equatorial plane and passes through 90° East longitude

•  the positive Z axis is parallel to the Earth’s rotation axis and passes through 90° North latitude.

Unlike the geographic system, all components in a set of Cartesian coordinates have the same linear units. 

This makes Cartesian coordinates easier to manipulate mathematically than geographicals. However, they 

are less intuitive for the user.

Diagram 11 illustrates the geodetic and Cartesian coordinates for a position P on the surface of the Earth.

Diagram 10 – Cartesian coordinate system

Diagram 11 – Geographic and Cartesian coordinates

a

b

a

X axis = 0° longitude

a = length of semi-major axis
b = length of semi-minor axis

Y axis = 90° East longitude

Z axis – coincides with rotation axis

P

Z

X
Y

Equatorial
plane

meridian of
longitude

height
above
ellipsoid

Point P has geodetic
coordinates (latitude,
longitude, height) and
Cartesian coordinates
(X, Y, Z).

X axis = 0°longitude

Y axis

Z axis

parallel of
latitude
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Converting coordinates: geographic to/from Cartesian
Geographic (latitude, longitude, ellipsoidal height) coordinates can be converted to Cartesian X, Y, Z 

values on the same geodetic datum using the formulae in Inserts 1 and 2.

INSERT 1 
Conversion – Geographic to Cartesian
The formulae for converting latitude, longitude and ellipsoidal height to X, Y, Z are:

where

and

X, Y, Z  are the Cartesian coordinates of the point

φ, l, h  are the latitude, longitude and ellipsoidal height of the point

a   is the length of the semi-major axis of the reference ellipsoid

e2   is the squared eccentricity of the reference ellipsoid 

f   is the ellipsoid flattening, and

v   is the radius of ellipsoid in the prime vertical.
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INSERT 2 
Conversion – Cartesian to Geographic
The formulae for converting X, Y, Z to latitude, longitude and ellipsoidal height are:

where

X, Y, Z  are the Cartesian coordinates of the point

φ, l, h  are the latitude, longitude and ellipsoidal height of the point

a   is the length of the semi-major axis of the reference ellipsoid

e2   is the squared eccentricity of the reference ellipsoid, and

f   is ellipsoid flattening.

A multitude of datums
Ideally, we would have just one geodetic datum so that there is one unambiguous way to assign ellipsoidal 

coordinates to points. But as we are able to measure positions more accurately, and as continents move, a 

number of different datums have been developed and continue to be developed.

In practice it is frequently necessary to deal with two or more datums for technical or political reasons 

(for example, a local datum for existing mapping and a newer geocentric datum for satellite navigation). 

It is important to understand that the coordinate values for a point are dependent on the datum being used. 

The latitude, longitude and height of a point defined on Datum 1 will almost certainly be different to its 

latitude, longitude and height defined on Datum 2. The differences may be a consequence of:

•  the ellipsoids being different shapes

•  the centres of the ellipsoids being displaced, possibly by hundreds of metres, or

• the Cartesian coordinate axes of the two datums not being parallel or being subject to a scale 

difference. 
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Datums may also be classified as:

•  Static   

The datum is defined by the coordinates of key stations which are held fixed. New Zealand Geodetic 

Datum 1949 was a static datum. 

•  Semi-dynamic 

The datum is defined by its relationship to a dynamic global reference frame at a specified time 

(reference epoch). The datum definition is fixed at this time and does not include time dependencies. 

Modelling of uniform time dependencies, such as the effect of crustal deformation due to plate 

tectonics, may be applied during calculations to remove their effect. Coordinates at the reference 

epoch may change due to the acceptance of new survey data, earthquakes or localised mark 

movement. New Zealand Geodetic Datum 2000 is a semi-dynamic datum.

•  Dynamic   

The datum is defined continuously by its relationship to a dynamic global reference system such as the 

International Terrestrial Reference System (ITRS).

It is vital for users to be aware of the datum(s) they are using. Directly combining coordinates from 

two different datums will produce wrong numbers and can result in catastrophic outcomes.

Transforming between datums
Coordinates can be converted from one datum to another if the relationship between the two is known. 

The relationship is described by two components:

•  a set of formulae that describe the mathematics of the transformation process, and

•  a set of parameters, referred to as transformation parameters, that are used in the formulae.

It is common for more than one transformation to be defined to convert between datums. Typically there 

will be simple low accuracy transformations, and more complex transformations to higher accuracy. 

The transformation parameters are derived by analysing survey control stations with coordinates on both 

datums. The minimum number of stations required for this process depends on the transformation method 

being proposed. There is no maximum limit, and in general as many stations as possible are used.

The accuracy of a transformation can be assessed by comparing transformed coordinates at points that 

have coordinates defined in both datums.  

Consider the typical situation where we have:

•  Coordinate Set 1 which has been computed from Network 1 on Datum 1, and

•  Coordinate Set 2 which has been computed from Network 2 on Datum 2.

Generally, if the coordinates from Set 1 are converted to Datum 2, they will not exactly match the 

coordinates of Set 2. This is because the coordinate sets are derived from different measurement sets or 

network geometries. (For example, Network 1 may have been measured by triangulation and Network 2 

by GPS.) One network will appear distorted in relation to the other.

The differences between the transformed Datum 1 coordinates and the network Datum 2 coordinates are 

known as residuals. Their magnitude provides an indication of the quality of the network held in the two 

datums, as well as an indication of the accuracy of the transformation between those datums. 

Transformation parameters are commonly generated by government mapping organisations and are freely 

available to users.
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Common transformation models

3-parameter transformation
If the X, Y, Z coordinate axes of two datums are assumed to be parallel and identically scaled, a 

3-parameter transformation can be derived to represent their relationship (see Diagram 12 and Insert 3). 

Diagram 12 – 3-parameter transformation

INSERT 3 
3-parameter transformation formulae
Use the following formulae to convert Cartesian coordinates from Datum 1 to Datum 2 values with 

a 3-parameter transformation:

X2 = X1 + TX

Y2 = Y1 + TY

Z2 = Z1 + TZ

where

X1 , Y1 , Z1     are the Cartesian coordinates of Datum 1

X2 , Y2 , Z2 are the Cartesian coordinates of Datum 2, and

TX , TY , TZ is the difference between the centres of the two ellipsoids in the  

 sense of Datum 1 to Datum 2.

X1

X2

Y2

Y1

Z 1

Z 2

∆X

∆Z

∆Y

Datum 1

Datum 2
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7-parameter transformation
If the coordinate axes are not parallel and identically scaled, a 7-parameter transformation can be derived 

(see Diagram 13 and Insert 4).

Diagram 13 – 7-parameter transformation

INSERT 4 
7-parameter transformation formulae
Use the following formulae to convert Cartesian coordinates from Datum 1 to Datum 2 values with 

a 7-parameter transformation:

where

X1 , Y1 , Z1     are the Cartesian coordinates of Datum 1

X2 , Y2 , Z2 are the Cartesian coordinates of Datum 2

TX , TY , TZ is the difference between the centres of the two ellipsoids

RX , RY , RZ are the rotations around the three coordinate axes, and

∆s is the scale difference between the coordinate systems.

Rotations are positive anticlockwise about the axes of Datum 2 coordinate system when viewing the 

origin from the positive axes.

X1

X2

Y2

Y1

Z 1

Z 2

∆X

∆Z

∆Y

Z 3

Y3

X3

Rx

RY

RZ

Datum 1

Datum 2
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Map projections 
Another type of coordinate system is provided by map projections. A map projection enables the curved 

surface of the ellipsoid to be represented on a flat sheet of paper (in other words, a map). Projections are 

used to define local coordinate systems in cases where calculations of distance, direction, and area are 

less complex than the equivalent computations on the ellipsoid.

Many projections can be defined in terms of a particular geodetic datum, but each projection is linked to 

one geodetic datum. 

The projection process results in the map’s spatial representation being distorted. Imagine stretching and 

tearing a basketball to make its curved surface lie flat on the ground. The magnitude of the distortion can 

be calculated, allowing corrections to be made when necessary. 

Every map projection uses a rectangular grid coordinate system (similar to our ‘flat Earth’ grid). Map 

projection coordinates are described in terms of Northing and Easting, being distances to the North and 

East of an origin. They are usually expressed in units of metres.

There are many types of map projections, each one representing a different way of distorting the surface 

of the ellipsoid into a plane. One of the most commonly used is the Transverse Mercator Projection. 

The Universal Transverse Mercator (UTM) is a global implementation of the Transverse Mercator 

Projection. It divides the Earth into 60 zones, each bounded by meridians of longitude and extending 

from 84° N to 80° S (see Insert 5). Picture an orange containing 60 segments. Each segment would be 

equivalent to a UTM zone. 

The meridian at the zone’s centre is referred to as the Central Meridian. Each UTM zone has a width of 

six degrees of longitude, which avoids distortions that occur if the width becomes too large. 

The formulae for converting geographic latitude and longitude to grid Easting and Northing differ for 

each type of projection and are too complex to be quoted in this document. However, they can be found in 

reference books on map projections, and are built into most mapping software.  

INSERT 5 
Universal Transverse Mercator (UTM)
The point of intersection between the Equator and the Central Meridian is assigned the following 

values, ensuring that all coordinates within the zone are greater than zero:

East                 500,000.000 metres

North                         0.000 metres (Northern Hemisphere) 

 or 10,000,000.000 metres (Southern Hemisphere)

Under the UTM system, each East and North coordinate pair exists in each of the sixty zones. 

Consequently, the zone number must be quoted with the East and North values. The zone number is 

effectively a third coordinate.

New Zealand lies in UTM Zones 58, 59 and 60.
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THE GEODETIC SYSTEM IN NEW ZEALAND

Geodetic networks
The National Geodetic System in New Zealand is defined in section 4 of the Cadastral Survey Act 

2002 as “a system that enables positions on the surface of the Earth to be determined by reference to a 

mathematical model that describes the size and shape of the Earth”.  

The Cadastral Survey Act 2002 also defines the National Survey Control System as “a system used to 

determine the position of points, features and boundaries in cadastral surveys, other surveys, and land 

information systems”.  

The National Geodetic System consists of reference marks in the ground and a set of mathematical 

parameters and equations that allow the coordinates of these marks and other points to be determined. It 

provides the spatial referencing framework for the cadastral survey system and datum monitoring. It also 

enables the compatible positioning of spatial information such as topographic mapping and other land 

information.  

In New Zealand, the positions of the reference marks are recorded in terms of the official geodetic 

datum (NZGD2000), which in turn is linked to a global reference system compatible with international 

positioning systems.

Traditionally, geodetic surveying involved taking surveying measurements such as angles, distances, 

height differences and astronomical observations, and then processing them to produce coordinates. More 

recently and for the development of NZGD2000, measurement systems based on artificial Earth satellites, 

termed Global Navigation Satellite Systems (GNSS) have become available. A number of systems 

operate, including GPS, GLONASS and Galileo.  

The geodetic reference marks, often referred to as trig stations, normally consist of brass plaques or 

stainless steel pins set in concrete. They have been traditionally located on hill tops, and have frequently 

been marked by some form of survey beacon. The beacons both help to locate the stations and protect 

them from possible destruction. They also provide a landmark for distant users. 

These marks are classified into six geodetic orders, from Zero Order (most accurate) to the Fifth Order 

(least accurate), based on the accuracy of the mark’s coordinate.

The fundamental geodetic reference network of continuous GNSS tracking stations provides a connection 

from the official geodetic datum(s) to the applicable global reference frame(s) and monitors large-scale 

differential Earth movements around New Zealand at the regional tectonic plate scale. This is called 

the PositioNZ network (see Diagram 14) and enables users to position points to an accuracy of a few 

centimetres relative to the official datum. This network is made up of Zero Order marks.
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Diagram 14 – PositioNZ GNSS Network in New Zealand
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INSERT 6 
New Zealand Geodetic Datum 1949
The origin station for the New Zealand Geodetic Datum 1949 is the assumed position of Papatahi, 

in the Rimutaka Range near Wellington. This position is based on latitude determinations at 60 

stations, azimuth determinations at 22 stations, and the longitude of the Dominion Observatory 

at Kelburn, Wellington, as determined in the Second International Longitude Operation 1933. 

Papatahi’s coordinate values are:

Geodetic latitude                  41° 19’ 08.9” South

Geodetic longitude             175° 02’ 51.0” East

Azimuth to Kapiti No 2       347° 55’ 02.5”

Reference ellipsoid   International (Hayford) Spheroid

Semi-major axis (a)            6 378 388.000 metres

Flattening (f) 1/297

The New Zealand Geodetic Datum 1949 (NZGD49)
The New Zealand Geodetic Datum 1949 (NZGD49) (see Insert 6) is a horizontal datum only, and does 

not define heights. It is a static datum because the coordinates of the trig stations defining the datum (First 

Order stations) have been held fixed since they were defined in 1949. It uses the International (Hayford) 

Spheroid, which was recommended to New Zealand by the International Association of Geodesy (IAG) 

for national datums. At that time, prior to satellite measurements, it was considered to be the best estimate 

of the shape of the Earth. 
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New Zealand Geodetic Datum 2000 (NZGD2000)
In 1998, New Zealand adopted a new geocentric datum, New Zealand Geodetic Datum (NZGD2000), 

as its national datum (see Insert 7). This is a semi-dynamic datum with coordinates aligned to the 

International Terrestrial Reference Frame 1996 (ITRF96) at a reference epoch of 1 January 2000. It uses 

the Geodetic Reference System 1980 (GRS80) reference ellipsoid.

Positions in terms of NZGD2000 have latitude, longitude and ellipsoidal height elements. The adoption of 

NZGD2000 (ie the replacement of NZGD49) has allowed closer integration with international coordinate 

frameworks and navigation systems. In particular, NZGD2000 coincides almost exactly with WGS84, 

which is the datum supporting the Global Positioning System. This enables GPS-derived coordinates to 

be used directly with NZGD2000 in most circumstances.

INSERT 7 
New Zealand Geodetic Datum 2000
Eleven global reference stations were held fixed when computing the coordinates for NZGD2000.  

The NZGD2000 implementation parameters are:

Reference ellipsoid Geodetic Reference System 1980 (GRS80) 

Semi-major axis (a)            6 378 137.000 metres

Flattening (f)                        1/298.257222101

International Terrestrial  

Reference System (ITRS)   ITRF96

Reference epoch   1 January 2000 (2000.0)

Deformation model The NZGD2000 Deformation Model (described below)  

 to compute NZGD2000 coordinates

The NZGD2000 Deformation Model (Beavan and Haines, 2001) is used to account for broad-scale 

deformation across New Zealand, primarily due to the effects of plate tectonics. The current Deformation 

Model used in the definition of NZGD2000 assumes a constant velocity through time (see Diagram 15). It 

enables coordinates and observation to be transformed between the reference date of the datum (2000.0) 

and the observation date.
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Diagram 15 – New Zealand Deformation Model

An Important Warning!
There are major differences between the NZGD49 and NZGD2000 coordinate systems. 

Remember!

•  New Zealand Geodetic Datum 1949 coordinates use a local datum, while the New Zealand Geodetic 

Datum 2000 coordinates use a geocentric datum

•  the two datums use different-shaped ellipsoids, and

•  the centres of the two ellipsoids are offset one from another.

As a result, the NZGD49 and NZGD2000 coordinates for the same point differ by approximately 200 

metres (approximately 10 metres in the East and 190 metres in the North).

The adoption of a new datum changes everything. 

Converting coordinates between NZGD49 and NZGD2000
For low (± 15 metre) accuracy requirements the procedure for transforming coordinates from NZGD49 

to NZGD2000 is:

1.  If necessary, transform projection coordinates (Northing and Easting) on NZGD49 to geographic 

(latitude and longitude) coordinates on NZGD49 using the appropriate map projection formulae.

2. Transform the geographic coordinates on NZGD49 to geographic values on NZGD2000 using the 

corrections given in Insert 8.

3.  If necessary, convert the geodetic coordinates on NZGD2000 to projection coordinates on NZGD2000 

using the appropriate map projection formulae.

0914_LINZ_GeodeticReport_v9.indd   22 10/29/07   11:08:36 AM



W
H

ERE IN
 TH

E W
O

RLD
 A

RE W
E?            A

 technical guide to datum
s and projections in N

ew
 Zealand

23

INSERT 8 
Transformation from NZGD49 to NZGD2000
To compute a low accuracy transformation, apply the nationwide mid-point value of the range of 

differences in latitude and longitude between NZGD49 and NZGD2000.  

Adjust the NZGD49 latitude by 6.1 seconds Northwards and the longitude by 0.5 seconds 

Eastwards.

• Apply these adjustments in the opposite sense when transforming from NZGD2000 to NZGD49.

• This transformation will be accurate to within ± 15 metres.

For medium (± 4 - 5 metre) accuracy requirements two options are available to relate the NZGD49 

coordinate set to the NZGD2000 datum (and vice versa). 

The procedure for transforming coordinates from NZGD49 to NZGD2000 is:

1.  If necessary, transform projection coordinates (Northing and Easting) on NZGD49 to geographic 

(latitude and longitude) coordinates on NZGD49 using the appropriate map projection formulae.

2. Convert the geographic coordinates on NZGD49 to X, Y, Z Cartesian values on NZGD49 using the 

formulae in Insert 1.

3. Transform the NZGD49 X, Y, Z Cartesian values to NZGD2000 X, Y, Z Cartesian values, using the 

parameters in either Insert 9 or 10.

4.  Convert the X, Y, Z Cartesian values on NZGD2000 to geographic coordinates on NZGD2000 using 

the formulae in Insert 2.

5.  If necessary, convert the geodetic coordinates on NZGD2000 to projection coordinates on NZGD2000 

using the appropriate map projection formulae.

INSERT 9 
Transformation from NZGD49 to NZGD2000 3-parameter transformation
The three parameters for transforming NZGD49 coordinates to NZGD2000 are:

TX  +54.4 metres

TY   -20.1 metres

TZ   +183.1 metres

• The parameters given here are contained in the Land Information New Zealand Standard 25000 

NZGD2000.  

• Due to distortions in the NZGD49 the transformation will be accurate to within ± 5 metres. 

• To transform from NZGD2000 to NZGD49, reverse the signs on all parameters.
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INSERT 10 
Transformation from NZGD49 to NZGD2000 7-parameter transformation
The seven parameters for transforming NZGD49 coordinates to NZGD2000 are:

TX  +59.47 metres

TY   -5.04 metres

TZ   +187.44 metres

RX   -0.470 seconds

RY   +0.100 seconds

RZ   -1.024 seconds

∆s   -4.5993 parts per million

•  The parameters given here are contained in the Land Information New Zealand Standard 25000 

NZGD2000.  

•  Due to distortions in the NZGD49, the transformation will be accurate to within ± 4 metres.  

•  To transform from NZGD2000 to NZGD49, reverse the signs on all parameters.

•  The rotations must be converted to radians prior to inclusion in the formula.

For high (0.1 meter or better) accuracy requirements, a transformation file of coordinate shifts has 

been produced. This is available in the Geodetic Information section on the Land Information New 

Zealand website, www.linz.govt.nz. The transformation file allows the conversion of coordinates from 

NZGD49 to NZGD2000.  

Use this procedure to convert coordinates from NZGD2000 to NZGD49:

1.  Use the NZGD2000 coordinates in the grid to determine the NZGD49 to NZGD2000 correction.

2.  Reverse this correction and apply to the NZGD2000 coordinates to determine initial estimates of 

NZGD49 coordinates.

3.  Use the estimated NZGD49 coordinates to determine a more accurate NZGD49 to NZGD2000 

correction.

4.  Reverse this correction and apply to the NZGD2000 coordinates to determine the final NZGD49 

coordinates.
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Vertical datum
Although modern geodetic datums include ellipsoidal heights to define positions, these heights are often 

unsuitable for many applications. This is because ellipsoidal heights relate to the ellipsoid and not the 

geoid and so, for example, they can not indicate the direction of water flow or even the level of the sea.

Vertical datums have been created historically by observing the level of the sea at a tide gauge, relating 

this to a mark on the ground (datum origin) and then transferring this height (by precise levelling) to 

distant locations. Heights established with this method are often referred to as orthometric heights. 

Because we don’t have gravity observations at all bench marks in New Zealand, we use a gravity model 

to approximate the gravity field. This is called the normal-orthometric height system.

A geoid model can be used to convert heights between the more easily observed ellipsoidal heights and 

the more useful normal-orthometric heights. The relationship between the different heights is shown in 

Diagram 16.

Diagram 16 – The geoid, ellipsoid and terrain

In New Zealand, the normal-orthometric height system is generally used and the heights are related to 

one of 13 different vertical datums (Diagram 17). These datums give heights in relation to sea level at 

the datum origin. A complicating factor is that because the sea level is not constant around New Zealand, 

the different vertical datums are vertically offset from each other. Land Information New Zealand has 

calculated a geoid for New Zealand (NZ Geoid 2005, see Diagram 18) that can be used to transform 

ellipsoidal heights to sea level (orthometric) heights. The method for transforming heights between height 

systems is shown in Insert 11.

terrain

h

N

H

geoid

ellipsoid
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Diagram 17  
– New Zealand 
primary vertical datum

Diagram 18  
– New Zealand 
Geoid 2005  
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INSERT 11 
Ellipsoidal to normal-orthometric height conversion
Use the following formula to convert between ellipsoidal and normal-orthometric heights: 

H = h + N + o 

where: 

H is the normal-orthometric height in a vertical datum

h is the NZGD2000 ellipsoidal height

N is the NZ Geoid 2005 value (based on the position of the point) interpolated from the  

 Land Information New Zealand (LINZ) website, and

o is the offset between different vertical datums (refer to the LINZ website).

Transformations undertaken using this formula may be accurate to within 0.1 metres due to errors in 

both the geoid model and the datum offset.

Projections
The main projection systems used in New Zealand are:

• the Meridional Circuits (see Insert 12), a set of 28 local Transverse Mercator projections used in 

cadastral surveying to simplify calculations, and

• the New Zealand Transverse Mercator 2000 Projection (see Insert 13), which is used for the current 

1:50,000 topographic map series (NZTopo50).  

The previous map series (Topomap 260) used a different and unique type of projection called New 

Zealand Map Grid (NZMG) (see Insert 14). More details on the New Zealand map projections are 

available in the Geodetic Information section on the LINZ website, www.linz.govt.nz.
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INSERT 12 
New Zealand Meridional Circuits 2000
Twenty-eight new meridional circuits in terms of NZGD2000 were introduced in 1999 to replace the 

existing 28 circuits which were in terms of NZGD49. The parameters for the new circuits are:  

Datum NZGD2000 

Projection Transverse Mercator 

The coordinates of the origin of each circuit are: 800,000 metres North 

 400,000 metres East 

This means that all eastings are always less than all northings to avoid confusion. 

circuit name origin latitude origin longitude     Central Meridian  

   scale factor

Mount Eden 2000 36° 52’ 47” S 174° 45’ 51” E 0.9999

Bay of Plenty 2000 37° 45’ 40” S 176° 27’ 58” E 1.0

Poverty Bay 2000 38° 37’ 28” S 177° 53’ 08” E 1.0

Hawke’s Bay 2000 39° 39’ 03” S 176° 40’ 25” E 1.0

Taranaki 2000 39° 08’ 08” S 174° 13’ 40” E 1.0

Tuhirangi 2000 39° 30’ 44” S 175° 38’ 24” E 1.0

Wanganui 2000 40° 14’ 31” S 175° 29’ 17” E 1.0

Wairarapa 2000 40° 55’ 31” S 175° 38’ 50” E 1.0

Wellington 2000 41° 18’ 04” S 174° 46’ 35” E 1.0

Collingwood 2000 40° 42’ 53” S 172° 40’ 19” E 1.0

Nelson 2000 41° 16’ 28” S 173° 17’ 57” E 1.0

Karamea 2000 41° 17’ 23” S 172° 06’ 32” E 1.0

Buller 2000 41° 48’ 38” S 171° 34’ 52” E 1.0

Grey 2000 42° 20’ 01” S 171° 32’ 59” E 1.0

Amuri 2000 42° 41’ 20” S 173° 00’ 36” E 1.0

Marlborough 2000 41° 32’ 40” S 173° 48’ 07” E 1.0

Hokitika 2000 42° 53’ 10” S 170° 58’ 47” E 1.0

Okarito 2000 43° 06’ 36” S 170° 15’ 39” E 1.0

Jacksons Bay 2000 43° 58’ 40” S 168° 36’ 22” E 1.0

Mount Pleasant 2000 43° 35’ 26” S 172° 43’ 37” E 1.0

Gawler 2000 43° 44’ 55” S 171° 21’ 38” E 1.0

Timaru 2000 44° 24’ 07” S 171° 03’ 26” E 1.0

Lindis Peak 2000 44° 44’ 06” S 169° 28’ 03” E 1.0

Mount Nicholas 2000 45° 07’ 58” S 168° 23’ 55” E 1.0

Mount York 2000 45° 33’ 49” S 167° 44’ 19” E 1.0

Observation Point 2000 45° 48’ 58” S 170° 37’ 42” E 1.0

North Taieri 2000 45° 51’ 41” S 170° 16’ 57” E 0.99996

Bluff 2000 46° 36’ 00” S 168° 20’ 34” E 1.0
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INSERT 13 
New Zealand Transverse Mercator 2000 (NZTM2000)
New Zealand Transverse Mercator 2000 (NZTM2000) replaced NZMG in 2000 as the projection for 

topographic and related maps on scales of 1:500 000 or greater:

Datum NZGD2000

The true origin is:

Latitude              0° 00’ 00”  South

Longitude    173° 00’ 00”  East

The coordinates of this point are: 10,000,000  metres North 

   1,600,000  metres East 

Central Meridian scale factor: 0.9996

This means that all eastings are always less than all northings to avoid confusion. They are also 

sufficiently different from NZMG coordinates to avoid confusion.

INSERT 14 
New Zealand Map Grid (NZMG)
In 1973, a conformal mapping projection with minimum scale error, New Zealand Map Grid 

(NZMG), was adopted for plotting topographic and related maps on scales of 1:500 000 or greater. 

The range of scale enlargement is from +0.023% to -0.022%, considerably less than any other 

projection previously used for the whole of New Zealand. NZMG is used as the projection in the 

Topomap 260 series of topographic maps:

Datum NZGD49

The true origin is: 

Latitude               41° 00’ 00” South

Longitude    173° 00’ 00” East

The coordinates of this point are: 2,510,000 metres East 

 6,023,150 metres North

This results in all eastings always being less than 5,000,000 metres, and all northings greater than 

5,000,000 metres, to avoid confusion between eastings and northings.

For further information on NZMG see Reilly, W. I., (1973):  A conformal mapping projection with 

minimum scale error.  Survey Review, Vol 22,  No 168.
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THE VALUE OF A GEODETIC REFERENCE SYSTEM

(This chapter draws heavily on “The Use and Value of a Geodetic Reference System”, published by Earl 

F. Epstein and Thomas D. Duchesneau at the University of Maine in 1984.)

A geodetic network, and its associated spatial reference system, is a fundamental component of a 

nation’s infrastructure. Rather than being an end in itself, it derives its value from being an input to other 

production processes. 

The utility of the network is determined by identifying the products that are dependent upon the network’s 

unique properties. The unique property of the geodetic network is its ability to integrate multiple 

geographically dependent data sources into a single geographic reference frame. 

The concept of a land information system (LIS) is illustrated in Diagram 19. Typically, the system will 

be multi-layered, each layer comprising data relating to a particular theme. For example, one layer 

may represent the roads in an area. A second layer may illustrate the distribution of a particular plant or 

animal. Further layers may contain the noise contours surrounding an aircraft flight path, or the location 

of electricity transmission lines.

Diagram 19 – Layers in a land information system 

Modern land information systems are computer based. The data for these layers may be stored on a single 

computer or on the computers of the custodial authorities and accessed by networking or other means.

To function effectively, the LIS must possess one essential attribute. It must be able to geographically 

relate and inter-relate the data in its layers. For example, consider a LIS layer that represents the 

distribution of native vegetation in a region. The usefulness of the layer will be governed by how 

accurately it represents the position and size of one pocket of vegetation relative to other such pockets. 

A spatial referencing system that permits the definition of position and extent in terms of coordinates is 

more useful in this situation.

However, the adoption of such a system becomes even more important when the data in two or more 

layers are combined. To inter-relate the data from different themes you need to use a common coordinate 

system for both. For example, you might want to inter-relate your native vegetation data with data that 

native
vegetation

deer

roads
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describes the distribution of deer in the same region. If the positions of the deer concentrations and 

vegetation pockets were represented in different and independent coordinate systems, the inter-relation 

process would be very difficult. However, using the same geographic referencing system for both data 

sets means the required spatial relationships could be determined very quickly and efficiently.

Therefore, the spatial framework in an LIS acts as a medium through which data sets can be inter-related 

geographically. The geodetic network provides survey marks whose positions are accurately determined 

in terms of a single national coordinate system. If the positions of the items in each layer of the LIS are 

described with this system (either through direct measurement to the survey marks, or from the grid on a 

map), the data sets can be integrated efficiently.

Often, the secondary and tertiary users of information create the demand for universal compatibility of 

geographically related data. The authorities that generate data sets for a specific purpose (primary users) 

tend to have little interest in the needs of those who might want to inter-relate the data sets later. For 

example, organisations compiling data on soils and geology (for agriculture and mining) may not consider 

the needs of hydrologists who are interested in correlating that data with water run-off. The hydrologist, 

as a secondary or tertiary user of the data, clearly needs a way to make the data sets compatible.

In the absence of a common spatial framework, how else could a user inter-relate data sets? There 

are alternatives. For example, you could measure how the elements of each data set relate to easily 

identifiable physical features. This allows you to inter-relate through these common features. However, 

to use this process you would also need to take measurements between the physical features themselves. 

This is so that you can establish their relative positions in a local coordinate system. Doing this 

immediately raises questions regarding efficiency.

Because users or organisations would have to duplicate measurement processes to inter-relate data sets, 

the community incurs a clear economic cost as a result. Therefore, it follows that a common spatial 

framework benefits the community economically by avoiding the costs of duplication. 

This is the crux of the argument on the value of a common spatial framework and geodetic network. If a 

common geographical referencing system were not available, we would need other ways to inter-relate 

data sets. A permanently monumented geodetic network effectively means that the bulk of the required 

measurements only ever have to be done once. Connecting the individual data sets to local control 

stations allows the positions of the data items to be expressed in a common coordinate system, avoiding 

the waste that results from separately inter-relating each pair of data sets. Clearly, the avoided costs would 

be considerable, effectively representing the costs of re-measuring the network several times over without 

gaining the benefit of universal consistency.

An investigation into the value of a geodetic network was undertaken in the United States of America 

(Epstein, E.F. and Duchesneau, T.D, “The Use and Value of a Geodetic Reference System”, University 

of Maine at Orono, April 1984). The investigation aimed to quantify the avoided costs resulting from 

network availability through an analysis of case studies. The case studies included projects involving:

• land use and development plans

• watershed and related water studies, and

• construction of capital works, in particular highway construction.

Each of the cases was characterised by a frequent need for accurate and compatible data.

The study concluded that the ratio of benefits to costs flowing from the network lay in the range 1.7 to 

4.5. Furthermore, the study authors considered these figures as conservative due to the non-availability of 

certain data relevant to the study.
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A FINAL WORD

The common spatial framework provided by a geodetic datum and network is a major resource for the 

New Zealand community. The network provides the physical infrastructure through which New Zealand’s 

geographical referencing system is established and maintained. This in turn allows the positions of all 

Earth-related information to be expressed in a common coordinate system, giving us large efficiencies 

when integrating dissimilar or spatially separated data.

The need to know location and position is so pervasive throughout the activities of New Zealand society, 

that it is almost impossible to fully appreciate the extent to which the geographic referencing system is 

used. Indeed the demand for universal compatibility among data sets by those who are not part of the 

survey industry is extensive and appears to be growing. An increasing number of projects will owe both 

their economic and technical viability to the spatial infrastructure defined by New Zealand’s geodetic 

network.
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