Author: J.O. Hooghoudt ; email:janotto@math.aau.dk ; date $=07 / 11 / 13$
Solution to exercize Kreyszig 10.2.11
a) We verify that $f=\arctan (y / x)$ is indeed a potential function by:

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=\frac{1}{1+(y / x)^{2}} \frac{-y}{x^{2}}=\frac{-y}{x^{2}+y^{2}}=F_{1} \\
& \frac{\partial f}{\partial y}=\frac{1}{1+(y / x)^{2}} \frac{1}{x}=\frac{x}{x^{2}+y^{2}}=F_{2}
\end{aligned}
$$

b)We notice, however, that this potential has some discontinuities as:
(i) approaching the y-axis $(x \rightarrow 0)$ from the 1st and 2 nd quadrant gives, respectively:

$$
\begin{aligned}
& \lim _{x \downarrow 0} f=\frac{\pi}{2}: x>0 \wedge y>0 \\
& \lim _{x \uparrow 0} f=-\frac{\pi}{2}: x<0 \wedge y>0
\end{aligned}
$$

We could fix this discontinuity by adding π to f in the 2nd quadrant.
(ii) approaching the y-axis from the 3 rd and 4th quadrant gives, respectively:

$$
\begin{aligned}
& \lim _{x \downarrow 0} f=-\frac{\pi}{2}: x>0 \wedge y<0 \\
& \lim _{x \uparrow 0} f=\frac{\pi}{2}: x<0 \wedge y<0
\end{aligned}
$$

We could fix this discontinuity by adding the constant $-\pi$ to f in the 4th quadrant.

So, then:

$$
f= \begin{cases}\arctan (y / x) & : x>0 \\ \arctan (y / x)+\pi & : x<0: y>0 \\ \arctan (y / x)-\pi & : x<0: y<0\end{cases}
$$

And we are left with a discontinuity (a jump of 2π) on the negative x-axis (going from the 4 th to 3 rd quadrant). Please note however, that the discontinuity arising in this case at the negative x-axis is here by construction! By adding a proper constant to f in certain domains, we can construct to have the discontinuity on an abitrary half-line starting from the origin. Think about it!
This 2π jump somewhere in the domain (on a half-line starting from the origin) is exactly why the integration over a full circle as in example 4 in section 10.2 gives 2π as an answer.
Further, it implies that examples of domains were we have path independence are e.g.:
i) individual quadrants
ii) the domain consisting of 2 adjacent quadrants.

