Author: J.O. Hooghoudt ; email:janotto@math.aau.dk ; date=30/09/13

Solutions to exercize Kreyszig 6.2.11

$$
\begin{aligned}
y^{\prime \prime}+a y^{\prime}+b y & =r(t) \quad ; \quad y(0)=1 ; y^{\prime}(0)=31^{1} / 2 \\
a & =3 ; b=9 / 4 \\
r(t) & =9 t^{3}+64 \rightarrow \text { by table } \rightarrow R(s)=54 / s^{4}+{ }^{64} / s
\end{aligned}
$$

General form of the solution is:

$$
\left(s^{2}+a s+b\right) Y(s)=(s+a) y(0)+y^{\prime}(0)+R(s)
$$

So in this case:

$$
\begin{aligned}
\left(s^{2}+3 s+9 / 4\right) Y(s) & =(s+3) 1+31^{1} / 2+R(s) \\
(s+3 / 2)^{2} Y(s) & =(s+3 / 2)+\frac{33 s^{4}+64 s^{3}+54}{s^{4}} \\
Y(s) & =\frac{1}{(s+3 / 2)}+\frac{33 s^{4}+64 s^{3}+54}{\left(s+{ }^{3} / 2\right)^{2} s^{4}}
\end{aligned}
$$

By partial fraction decomposition and solving, this becomes (see *):

$$
\begin{aligned}
Y(s) & =\frac{1}{(s+3 / 2)}+\frac{A}{s^{4}}+\frac{B}{s^{3}}+\frac{C}{s^{2}}+\frac{D}{s}+\frac{E}{(s+3 / 2)^{2}}+\frac{F}{(s+3 / 2)} \\
\text { with } A & =24 ; B=-32 ; C=32 ; D=0 ; E=1 ; F=0
\end{aligned}
$$

So:

$$
Y(s)=\frac{1}{(s+3 / 2)}+\frac{24}{s^{4}}+\frac{-32}{s^{3}}+\frac{32}{s^{2}}+\frac{1}{(s+3 / 2)^{2}}
$$

By the table and the first shifting theorem it follows that:

$$
y(t)=e^{-3 / 2 t}+4 t^{3}-16 t^{2}+32 t+t e^{-3 / 2 t}
$$

*Partial fraction decomposition by:

$$
\begin{array}{r}
\frac{A}{s^{4}}+\frac{B}{s^{3}}+\frac{C}{s^{2}}+\frac{D}{s}+\frac{E}{(s+3 / 2)^{2}}+\frac{F}{(s+3 / 2)}=\frac{33 s^{4}+64 s^{3}+54}{(s+3 / 2)^{2} s^{4}} \\
A\left(s^{2}+3 s+9 / 4\right)+B\left(s^{3}+3 s^{2}+9 / 4 s\right)+C\left(s^{4}+3 s^{3}+9 / 4 s^{2}\right)+ \\
+D\left(s^{5}+3 s^{4}+9 / 4 s^{3}\right)+E\left(s^{4}\right)+F\left(s^{5}+9 / 4 s^{4}\right)=33 s^{4}+64 s^{3}+54
\end{array}
$$

Ordering terms by power of s:

$$
\begin{array}{ll}
s^{0}: 9 / 4=54 \Rightarrow & A=24 \\
s^{1}: 3 A+9 / 4 B=0 \Rightarrow & B=-32 \\
s^{2}: A+3 B+9 / 4 C=0 \Rightarrow & C=32 \\
s^{3}: B+3 C+9 / 4 D=64 \Rightarrow & D=0 \\
s^{4}: C+3 D+E+{ }^{3} / 2 F=33 \Rightarrow & E=1 \\
s^{5}: D+F=0 \Rightarrow & F=0 \rightarrow\left(\text { put in } s^{4} \text { equation }\right)
\end{array}
$$

