Author: J.O. Hooghoudt ; email:janotto@math.aau.dk ; date=2/10/13
Solution to exercize Kreyszig 6.3.23
NB:I will not show the derivation how to find the coefficients involved in the partial fraction decompositions, for a clear example of this method see the solution of exercize 6.7.19.

$$
\begin{aligned}
y^{\prime \prime}+a y^{\prime}+b y & =r(t) \quad ; \quad y(0)=0 ; y^{\prime}(0)=-1 \\
a & =1 ; b=-2 \\
r(t) & =(3 \sin (t)-\cos (t))[1-u(t-2 \pi)]+(3 \sin (2 t)-\cos (2 t) u(t-2 \pi) \\
& =(3 \sin (t)-\cos (t))+(\cos (t)-3 \sin (t)+3 \sin (2 t)-\cos (2 t) u(t-2 \pi)
\end{aligned}
$$

By table:

$$
\begin{aligned}
R(s) & =\frac{3}{s^{2}+1}-\frac{s}{s^{2}+1}+\left[\frac{s}{s^{2}+1}-\frac{3}{s^{2}+1}+3 \frac{2}{s^{2}+4}-\frac{s}{s^{2}+4}\right] e^{-2 \pi s} \\
& =\frac{3-s}{s^{2}+1}+\left[\frac{s-3}{s^{2}+1}+\frac{6-s}{s^{2}+4}\right] e^{-2 \pi s}
\end{aligned}
$$

General form of the solution is:

$$
\left(s^{2}+a s+b\right) Y(s)=(s+a) y(0)+y^{\prime}(0)+R(s)
$$

So in this case:

$$
\begin{aligned}
\left(s^{2}+s+-2\right) Y(s) & =-1+R(s) \\
(s+2)(s-1) Y(s) & =-1+\left(1-e^{-2 \pi s}\right) \frac{3-s}{s^{2}+1}+\frac{6-s}{s^{2}+4} e^{-2 \pi s} \\
& =I+I I+I I I
\end{aligned}
$$

Solve term for term, to keep things clear:
Term I:

$$
\begin{aligned}
(s+2)(s-1) Y(s) & =-1 \\
Y(s) & =\frac{-1}{(s+2)(s-1)} \\
Y(s) & =A /(s+2)+B /(s-1) \quad \text { By solving the PFD: } A=1 / 3 ; B=-1 / 3 \\
Y(s) & =(1 / 3) /(s+2)-(1 / 3) /(s-1) \text { By solving the PFD: } A=1 / 3 ; B=-1 / 3
\end{aligned}
$$

By aid of the table

$$
y_{I}(t)=(1 / 3) e^{-2 t}-(1 / 3) e^{t}
$$

Term II:

$$
\begin{aligned}
(s+2)(s-1) Y(s) & =\frac{3-s}{s^{2}+1}\left(1-e^{-2 \pi s}\right) \\
Y(s) & =\frac{3-s}{\left(s^{2}+1\right)(s+2)(s-1)}\left(1-e^{-2 \pi s}\right) \\
Y(s) & =\frac{A s+B}{s^{2}+1}+\frac{C}{s+2}+\frac{D}{s-1}\left(1-e^{-2 \pi s}\right)
\end{aligned}
$$

By solving for the coefficients:
$A=0 ; B=-1 ; C=-1 / 3 ; D=1 / 3$

$$
Y(s)=\frac{-1}{s^{2}+1}+\frac{-1 / 3}{s+2}+\frac{1 / 3}{s-1}\left(1-e^{-2 \pi s}\right)
$$

By aid of table and 2nd shifting theorem (page 219)

$$
\left.y_{I I}(t)=-\sin (t)-(1 / 3) e^{-2 t}+(1 / 3) e^{t}-\left(-\sin (t-2 \pi)-(1 / 3) e^{-2(t-2 \pi}+(1 / 3) e^{t-2 \pi}\right) u(t-2 \pi)\right)
$$

Term III:

$$
\begin{aligned}
(s+2)(s-1) Y(s) & =\frac{6-s}{s^{2}+4} e^{-2 \pi s} \\
Y(s) & =\frac{6-s}{\left(s^{2}+4\right)(s+2)(s-1)} e^{-2 \pi s} \\
v Y(s) & =\frac{A s+B}{s^{2}+4} \frac{C}{s+2} \frac{D}{s-1} e^{-2 \pi s}
\end{aligned}
$$

By solving for the coefficients:
$A=0 ; B=-1 ; C=-1 / 3 ; D=1 / 3$

$$
Y(s)=\frac{-1}{s^{2}+4} \frac{-1 / 3}{s+2} \frac{1 / 3}{s-1} e^{-2 \pi s}
$$

By aid of table and 2nd shifting theorem (page 219)

$$
y_{I I I}(t)=\left[-(1 / 2) \sin 2(t-2 \pi)-(1 / 3) e^{-2(t-2 \pi)}+(1 / 3) e^{(t-2 \pi)}\right] u(t-2 \pi)
$$

Summing the 3 terms gives

$$
\begin{aligned}
y(t) & =y_{I}(t)+y_{I I}(t)+y_{I I I}(t) \\
& =-\sin (t)+\sin (t-2 \pi) u(t-2 \pi))-(1 / 2) \sin 2(t-2 \pi) u(t-2 \pi)
\end{aligned}
$$

Which can be written as

$$
y(t)= \begin{cases}-\sin (t) & ; 0<t<2 \pi \\ (-1 / 2) \sin (2 t) & ; t>2 \pi\end{cases}
$$

