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at the mathematics 4 and 5 levels.
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CHAPTER 1

Introduction

Functional Analysis is a vast area within mathematics. Briefly phrased,
it concerns a number of features common to the many vector spaces met in
various branches of mathematics, not least in analysis. For this reason it is
perhaps appropriate that the title of the topic contains the word “analysis”.

Even though the theory is concerned with vector spaces, it is not at all
the same as linear algebra; it goes much beyond it. This has a very sim-
ple explanation, departing from the fact that mainly the infinite dimensional
vector spaces are in focus. So, if V denotes a vector space of infinite di-
mension, then one could try to carry over the succesful notion from linear
algebra of a basis to the infinite dimensional case. That is, we could look
for families (v j) j∈J in V such that an arbitrary vector v∈V would be a sum

v = ∑λ jv j, (1.0.1)

for some uniquely determined scalars λ j . However, although one may add
two or any finite number of vectors in V , we would need to make sense
of the above sum, where the number of summands would be infinite in
general. Consequently the discussion of existence and uniqueness of such
decompositions of v would have to wait until such sums have been defined.

More specifically, this indicates that we need to define convergence of
infinite series; and so it seems inevitable that we need to have a metric d on
V . (One can actually make do with a topology, but this is another story to
be taken up later.) But given a metric d , it is natural to let (1.0.1) mean that
v = lim j→∞(λ1v1 + · · ·+λ jv j) with respect to d .

Another lesson from linear algebra could be that we should study maps
T : V → V that are linear. However, if T is such a linear map, and if there
is a metric d on V so that series like (1.0.1) make sense, then T should also
be linear with respect to infinite sums, that is

T
(
∑λ jv j

)
= ∑λ jT v j. (1.0.2)

This is just in order that the properties of V and T play well together. But it
is a consequence, however, that (1.0.2) holds if T is merely assumed to be
a continuous, linear map T : V →V .

This indicates in a clear way that, for vector spaces V of infinite dimen-
sion, various objects that a priori only have an algebraic content (such as
bases or linear maps) are intimately connected with topological properties
(such as convergence or continuity). This link is far more important for the
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2 1. INTRODUCTION

infinite dimensional case than, say bases and matrices are — the study of
the mere connection constitutes the theory. 1

In addition to the remarks above, it has been known (at least) since the
milestone work of Stephan Banach [Ban32] that the continuous linear maps
V →F from a metric vector space V to its scalar field F (say R or C) furnish
a tremendous tool. Such maps are called functionals on V , and they are par-
ticularly useful in establishing the abovementioned link between algebraic
and topological properties. When infinite dimensional vector spaces and
their operators are studied from this angle, one speaks of functional analy-
sis — not to hint at what functionals are (there isn’t much to add), but rather
because one analyses by means of functionals.

1When applying functional analysis to problems in, say mathematical analysis, it is
often these ‘connections’ one needs. However, this is perhaps best illustrated with words
from Lars Hörmander’s lecture notes on the subject [Hör89]: “functional analysis alone
rarely solves an analytical problem; its role is to clarify what is essential in it”.



CHAPTER 2

Topological and metric spaces

As the most fundamental objects in functional analysis, the topological
and metric spaces are introduced in this chapter. However, emphasis will
almost immediately be on the metric spaces, so the topological ones are
mentioned for reference purposes.

2.1. Rudimentary Topology

A topological space T is a set T considered with some collection τ of
subsets of T , such that τ fulfils

T ∈ τ, /0 ∈ τ (2.1.1)
k⋂

j=1

S j ∈ τ for S1, . . . ,Sk ∈ τ (2.1.2)

⋃
i∈I

Si ∈ τ for Si ∈ τ for i ∈ I; (2.1.3)

hereby I is an arbitrary index set (possibly infinite). Such a family τ is
called a topology on T ; the topological space T is rather the pair (T,τ).
A trivial example is to take τ = P(T ), the set of all subsets of T , which
clearly satisfies the above requirements.

When τ is fixed, a subset S ⊂ T is called an open set of T if S ∈ τ ;
and it is said to be closed if the complement of S is open. The closure, or
closed hull, of S is the smallest closed subset containing S, written S. The
interior of S, denoted S◦ , is the largest open set O ⊂ S. A set U is called
a neighbourhood of a point x ∈ T if there is some open set O such that
x∈U ⊂O. On any subset A⊂ T there is an induced topology α = {A∩O |
O ∈ τ }.

In this setting, a subset K ⊂ T is compact, if every open covering of K
contains a finite subcovering; that is, whenever K ⊂

⋃
i∈I Oi where Oi ∈ τ

for every i∈ I , then there exist some i1 ,. . . , iN such that also K ⊂Oi1∪·· ·∪
OiN . In addition, T itself is a connected space, if it is not a disjoint union
of two non-trivial open sets, that is if T = O1 ∪O2 for some O1 , O2 ∈ τ

implies that either O1 = /0 or O2 = /0.
The space T is called a Hausdorff space, and τ a Hausdorff topology,

if to different points x and y in T there exists disjoint open sets Ox and Oy
such that x ∈Ox and y ∈Oy (then τ is also said to separate the points in T ).

Using open sets, continuity of a map can also be introduced:
3



4 2. TOPOLOGICAL AND METRIC SPACES

DEFINITION 2.1.1. For topological spaces (S,σ) and (T,τ), a map
f : S → T is said to be continuous if f−1(O) ∈ σ for every O ∈ τ .

Here f−1(O) denotes the preimage of O, ie f−1(O) = { p ∈ S | f (p) ∈
O}. When f is a bijection, so that the inverse map f−1 : T → S is defined,
then f is called a homeomorphism if both f and f−1 are continous with
respect to the topologies σ , τ .

REMARK 2.1.2. The notion of continuity depends heavily on the con-
sidered topologies. Indeed, if σ = P(S) then every map f : S → T is
clearly continuous; the same conclusion is valid if τ = { /0,T}.

2.2. Metric and topological concepts

Most topological spaces met in practice have more structure than just a
topology; indeed, it is usually possible to measure distances between points
by means of metrics:

A non-empty set M is called a metric space when it is endowed with a
map d : M×M → R fulfilling, for every x, y and z ∈M ,

(d1) d(x,y)≥ 0, and d(x,y) = 0 only for x = y, (2.2.1)

(d2) d(x,y) = d(y,x), (2.2.2)

(d3) d(x,z)≤ d(x,y)+d(y,z). (2.2.3)

Such a map d is said to be a metric on M; stricly speaking the metric space
is the pair (M,d). The inequality (d3) is called the triangle inequality.

The main case of interest is when the set is a vector space V on which
there is a norm ‖ · ‖ , so that d is the induced metric d(x,y) = ‖x− y‖ .
However, for clarity, this chapter will review some necessary prerequisites
from the theory of abstract metric spaces (but this will not in general be
studied per se).

In a metric space (M,d) the open ball centered at x ∈ M , with radius
r > 0 is the set

B(x,r) =
{

y ∈M
∣∣ d(x,y) < r

}
. (2.2.4)

A subset A⊂M is said to be open, if to every x∈ A there is some r > 0 such
that B(x,r)⊂ A (such x are called interior points of A). It straightforward to
check that every open ball is an open set and that, moreover, the collection
τ of open sets is a topology as defined in Section 2.1.

By referring to the general definitions in Section 2.1, notions such as
closed and compact sets in M now also have a meaning. Whether a subset
A⊂M is, say closed or not, this is a topological property of A in the sense
that it may be settled as soon as one knows the open sets, that is knows the
topology τ .

However, some properties are not topological, but rather metric in the
sense that they depend on which metric M is endowed with. For example,
A ⊂ M is called bounded if there is some open ball B(x,r) such that A ⊂
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B(x,r). But it is not difficult to see that

d′(x,y) =
d(x,y)

1+d(x,y)
(2.2.5)

in any case defines a metric on M and that the two metrics d and d′ give
rise to the same topology on M; but since d′(x,y) < 1 for all x, y it is clear
that every A ⊂ M is bounded in (M,d′). (In particular R is unbounded
with respect to d(x,y) = |x− y|, while bounded with respect to d′(x,y) =
|x−y|

1+|x−y| .)
Another example of a topological property is convergence of a sequence:

DEFINITION 2.2.1. A sequence (xn) in a metric space M is convergent
if there is some x ∈ M for which d(xn,x)→ 0 for n → ∞. In this case x is
called the limit point of (xn), and one writes xn → x or x = limn→∞ xn .

Since the requirement for convergence is whether, for every ε > 0, it
holds eventually that xn ∈ B(x,ε), convergence is a topological property.

Basic exercises show that the limit point of a sequence is unique (if
it exists), and that every convergent sequence is a so-called fundamental
sequence, or Cauchy sequence:

DEFINITION 2.2.2. In a metric space (M,d) a sequence is a Cauchy
sequence if to every ε > 0 there exists some N ∈ N such that d(xn,xm) < ε

for all n, m > N .
The space (M,d) itself is said to be complete if every Cauchy sequence

is convergent in M .

Completeness is another metric property. Eg R is incomplete if one
uses the metric d(x,y) = |arctanx− arctany|, which moreover gives the
usual topology on R.

For many reasons it is rather inconvenient that not all metric spaces are
complete. Although this cannot be changed, there is a remedy in the fact
that every metric space has a completion, as we shall see below.

In a metric space M , one subset A is said to be everywhere dense, or
just dense, in another subset B if to every point b ∈ B one can find points
of A arbitrarily close to b; that is if every ball B(b,δ ) has a non-empty
intersection with A. Rephrasing this one has

DEFINITION 2.2.3. For subsets A and B of M , one calls A dense in B
if B⊂ A.

As an example, Q and R\Q are dense in one another; notice that these
sets are disjoint and that the definition actually allows this.

By abuse of language, a sequence (xn) in M is called dense if its range
{xn | n ∈ N} is dense in M .

The notion of denseness is very important: for example it allows
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DEFINITION 2.2.4. A completion of a metric space (M,d) is a pair
(M′,T ) consisting of a complete metric space (M′,d′) and an isometry T
of M onto a dense subspace T (M) of M′ .

In view of the next theorem, one speaks about the completion of M .

THEOREM 2.2.5. To any metric space (M,d) there exists a completion,
and it is uniquely determined up to isometry.

PROOF. Let C be the vector space of continuous bounded maps M→R.
This is complete with the metric supM | f −g|.

To get a map M →C, one can set Fx(y) = d(x,y)− d(m,y) for a fixed
m∈M . Indeed, continuity on M of Fx follows from that of the metric, while
boundedness results from the triangle inequality,

|Fx(y)|= |d(x,y)−d(m,y)| ≤ d(x,m). (2.2.6)

Similarly any x, y, z ∈M gives

|Fx(y)−Fz(y)|= |d(x,y)−d(z,y)| ≤ d(x,z), (2.2.7)

so sup |Fx−Fz|= d(x,z); equality follows for y = z. Therefore Φ(x) = Fx is
isometric, and if M′ is defined to be the closure of {Fx | x ∈ M }, it is clear
that Φ(M) is dense in M′ , so that this is a completion. By composing with
Φ−1 , any completion is isometric to M′ . �

A metric space M is called separable if there is a dense sequence of
points xn ∈ M . This is a rather useful property enjoyed by most spaces
met in applications, hence the spaces will be assumed separable whenever
convenient in the following.

2.3. An example of density: uniform approximation by polynomials

If P denotes the set of polynomials on the real line, consider then the
question whether a given continuous function f : [a,b]→ C, on a compact
interval [a,b], can be uniformly approximated on [a,b] by polynomials; ie,
does there to every ε > 0 exist a p ∈P such that | f (x)− p(x)|< ε for all
x ∈ [a,b].

Using the sup-norm on C([a,b]), this classic question amounts to whether
P (or rather the restrictions to [a,b]) is dense in the Banach space C([a,b]).

THEOREM 2.3.1. The polynomials are dense in C([a,b]).

This is the Weierstrass approximation theorem.

PROOF. By means of an affine transformation, y = a+ x(b−a), it suf-
fices to treat the case [a,b] = [0,1]. So let f be given in C([0,1]), ε > 0.

Consider then the so-called Bernstein polynomials associated with f ,

pn(x) =
n

∑
k=0

(
n
k

)
f (k/n)xk(1− x)n−k. (2.3.1)
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Since 1 = (x+(1− x))n the binomial formula gives

f (x)− pn(x) =
n

∑
k=0

( f (x)− f (k/n))
(

n
k

)
xk(1− x)n−k. (2.3.2)

By uniform continuity there is some δ > 0 such that | f (x)− f (y)| < ε

whenever |x− y| < δ for 0 ≤ x,y ≤ 1. Taking out the terms of the above
sum for which k is such that |x− k

n |< δ ,

| f (x)− pn(x)| ≤ ε + ∑
|x− k

n |≥δ

| f (x)− f (k/n)|
(

n
k

)
xk(1− x)n−k. (2.3.3)

With M = sup | f |, insertion of 1≤ |x− k
n |

2

δ 2 in the sum yields

| f (x)− pn(x)| ≤ ε + 2M
n2δ 2

n

∑
k=0

|k− xn|2
(

n
k

)
xk(1− x)n−k. (2.3.4)

Because the variance of the binomial distribution is nx(1− x), this entails

sup | f − p| ≤ ε + 2M
4nδ 2 . (2.3.5)

So by taking n > M/(εδ 2), the conclusion ‖ f − pn‖ < 2ε follows. �





CHAPTER 3

Banach spaces

Recall that a family (v j) j∈J of vectors in a space V is said to be linearly
independent, if every finite subfamily (u j1, . . . ,u jn) has the familiar property
that the equation

0 = λ1u j1 + · · ·+λnu jn (3.0.6)
only has the trivial solution 0 = λ1 = · · ·= λn .

The vector space V itself is said to have infinite dimension, if for ev-
ery n ∈ N there exists n linearly independent vectors in V . In this case
one writes dimV = ∞ (regardless of how ‘many’ linearly independent vec-
tors there are); the study of such ‘wild’ spaces is a key topic in functional
analysis.

As an example, dimC(R) = ∞, for the family of ‘tent functions’ is an
uncountable and linearly independent: the functions fk(x) that, with k ∈ R
as a parameter, grow linearly from 0 to 1 on [k− 1

3 ,k] and decrease linearly
to 0 on [k,k + 1

3 ], with the value 0 outside of [k− 1
3 ,k + 1

3 ], are linearly
independent because only λ1 = · · ·= λn = 0 have the property that

λ1 fk1(x)+ · · ·+λn fkn(x) = 0 for all x ∈ R. (3.0.7)

For k1 , . . . kn ∈ Z this is clear since fk1 , . . . , fkn have disjoint supports then.
Generally, when the km are real, the claim follows by considering suitable
values of x (supply the details!).

Notice that dimV = ∞ means precisely that the below set has no majo-
rants in R:

N =
{

n ∈ R
∣∣ V contains a linearly independent n-tupel.

}
. (3.0.8)

By definition V is finite-dimensional (or has finite dimension) if the
above set N is upwards bounded. In any case, the dimension of V is
defined as

dimV = supN . (3.0.9)
Recall from linear algebra that finite-dimensional spaces V and W over the
same field are isomorphic if and only if dimV = dimW . The proof of this
non-trivial result relies on suitable choises of bases.

The general concept of bases brings us back to the questions mentioned
in the introduction, so it is natural to let V be normed now.

DEFINITION 3.0.2. In a normed vector space V , a sequence (un), which
may be finite, is a basis if for every x ∈ V there is a unique sequence (λn)
of scalars in F such that x = ∑λnun .

9



10 3. BANACH SPACES

In the definition of a basis U , uniqueness of the expansions clearly im-
plies that U is a linearly independent family. So if dimV < ∞, every basis
is finite, and the expansions x = ∑λnun are consequently finite sums; hence
the notion of a basis is just the usual one for finite dimensional spaces. For
the infinite dimensional case the term Schauder basis is also used.

A subset W ⊂V is called total if span W = V . Clearly any basis U is a
total set.

A normed space V is said to be separable if there is a sequence (vn)
with dense range, ie V ⊂ {vn | n ∈ N}. It is straightforward to see that V is
separable, if V has a basis (use density of Q in R). For simplicity we shall
stick to separable spaces in the sequel (whenever convenient).

EXAMPLE 3.0.3. For every p in [1,∞[ the sequence space `p has the
canonical basis (en) with

en = (0, . . . ,0,1,0, . . .)︷ ︸︸ ︷
nth entry

. (3.0.10)

This is evident from the definition of basis. `∞ does not have a basis because
it is unseparable.

REMARK 3.0.4. It is not clear whether a total sequence U = (un) will
imply the existence of expansions as in the definition of a basis: given x∈V ,
there is some (sn) in spanU converging to x, hence x = ∑

∞
n=1 yn with yn =

sn−sn−1 (if s0 = 0); here yn ∈ spanU , so y j = α j,1u j,1+ · · ·+α j,n ju j,n j with
u j,m ∈U for every j ∈ N and m = 1, . . . ,n j . By renumeration one is lead
to consideration of the series ∑

∞
j=1 αnun , from which ∑yn is obtained by

introduction of parentheses; the convergence of ∑αnun is therefore unclear.
However, it would be nice if denseness (viz. V = span U ) would be the

natural replacement for the requirement, in the finite dimensional case, that
spanU = V .

REMARK 3.0.5 (Hamel basis). There is an alternative notion of a basis
of an arbitrary vector space V over F: a family (vi)i∈I is a Hamel basis if
every vector has a unique representation as a finite linear combination of the
vi , that is, if every v ∈V has a unique expansion

v = ∑
i∈I

λivi, with λi 6= 0 for only finitely many i. (3.0.11)

While (also) this coincides with the basis concept for finite-dimensional
spaces, it is in general rather difficult to show that a vector space has a
Hamel basis. In fact the difficulties lie at the heart of the foundations of
mathematics; phrased briefly, one has to use transfinite induction (eg Zorn’s
lemma) to prove the existence.

It is well known that the existence of a Hamel basis has startling conse-
quences. One such is when R is considered as a vector space over the field
of rational numbers, Q. Clearly v = 1 is then not a basis, for

√
2 = λv does

not hold for any λ ∈Q; but there exists a Hamel basis (vi)i∈I in R, whence
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(3.0.11) holds for every v ∈ R with rational scalars λi . By the uniqueness,
there are Q-linear maps pi : R→Q given by pi(v) = λi . In particular they
solve the functional equation

f (λx) = λ f (x) for all x ∈ R,λ ∈Q, (3.0.12)

and every pi is a discontinuous function R→R, since a continuous function
on R has an interval as its image.

Moreover, with a = f (1), clearly any solution fulfils f (λ ) = aλ for
λ ∈Q. Since R = Q, every continuous solution to the functional equation
is a scaling x 7→ ax; these are not just continuous but actually C∞ . So it is
rather striking how transfinite induction gives rise to an abundance of other
solutions, that are effectively outside of the class of continuous functions
C(R,R). However, it should be emphasised that no-one is able to write
down expressions for these more general solutions.

Notes. An exposition on Schauder bases may be found in [You01].
Schauder’s definition of a basis was made in 1927, and in 1932 Banach
raised the question whether every Banach space has a basis. This was, how-
ever, first settled in 1973 by Per Enflo, who gave an example of a separable
Banach space without any basis.





CHAPTER 4

Hilbert spaces

The familiar spaces Cn may be seen as subspaces of the infinite dimen-
sional space `2(N) of square-summable sequences (by letting the sequences
consist only of zeroes from index n + 1 onwards). The space `2(N) has
many geometric properties in common with Cn because it is equipped with
the inner product ∑xnȳn . It is therefore natural to study infinite dimen-
sional vector spaces with inner products; this is the theory of Hilbert spaces
which is developed in this chapter. However, a separable Hilbert space is
always isomorphic to `2 or Cn , as we shall see. In addition a firm basis
for manipulation of coordinates is given, including Bessel’s inequality and
Parseval’s identity. We shall also verify that all this applies to Fourier series
of functions in L2(−π,π).

4.1. Inner product spaces

Before Hilbert spaces can be defined, it is necessary to introduce the
concept of an inner product. This is a generalisation of the scalar product
from linear algebra.

DEFINITION 4.1.1. An inner product on a vector space V is a map ( · | ·)
from V ×V to C which for all x, y, z ∈V , all λ , µ ∈ F fulfills

(i) (λx+ µy |z) = λ (x |z)+ µ(y |z);
(ii) (x |y) = (y |x);

(iii) (x |x)≥ 0, with (x |x) = 0 if and only if x = 0.
The pair (V,( · | ·)) is called an inner product space.

Notice that (x |λy + µz) = λ (x |z)+ µ(x |y) is a consequence of the
first two conditions; hence an inner product is linear in the first variable, but
conjugate linear in the second.

For x = (x1, . . . ,xn) and y = (y1, . . . ,yn) in Fn there is of course the
familiar expression

(x |y) = x1y1 + · · ·+ xnyn. (4.1.1)
Unless otherwise is stated, this will always define the inner products on Rn

and Cn .

EXAMPLE 4.1.2. As a less elementary example, the space C0(Rn) is
endowed with the inner product

( f |g) =
∫

Rn
f (x)g(x)m(x)dx, (4.1.2)

13



14 4. HILBERT SPACES

when m is an arbitrary positive weight function.
A similar example would be L2(Rn), where

( f |g) =
∫

Rn
f (x)g(x)dx. (4.1.3)

This is meaningful because of Hölder’s inequality.

4.1.1. Identities and inequalities for inner products. A fundamental
fact about inner products is that they give rise to a norm on the vector space.
This is made precise in

DEFINITION 4.1.3. On a vector space V with inner product ( · | ·) the
induced norm on V is given as

‖x‖ =
√

(x |x). (4.1.4)

The definition is permissible, for the square root makes sense because
of condition (iii); so already (4.1.4) may be used as a short-hand. More-
over, the two first conditions for a norm are trivial to verify (do it!), but the
triangle inequality could deserve an explanation.

However, it turns out that there are three fundamental facts about inner
products which are based on the following obvious consequence of (i) and
(ii): for x, y ∈V and λ ∈ F,

0≤ (x−λy |x−λy)

= (x |x)−λ (y |x)−λ (x |y)+λλ (y |y).
(4.1.5)

Using (4.1.5), both the triangle inequality, the Cauchy–Schwarz inequality
and a vector version of how to “square the sum of two terms” now follow:

PROPOSITION 4.1.4. For a vector space V with inner product ( · | ·),
the following relations hold for arbitrary x, y ∈V :

(i) ‖x+ y‖ ≤ ‖x‖+‖y‖ (4.1.6)

(ii) |(x |y)| ≤ ‖x‖‖y‖ (4.1.7)

(iii) ‖x+ y‖2 = ‖x‖2 +‖y‖2 +2Re(x |y). (4.1.8)

PROOF. When y = 0 then (x |y) = (x |0y) = 0(x |y) = 0, so (ii) holds.
For y 6= 0 insertion of λ = (x |y)

(y |y) into (4.1.5) yields |(x |y)|2 ≤ (x |x)(y |y),
which gives (ii).

Taking instead λ = −1 yields (iii), since z + z̄ = 2Rez for all z ∈ C.
But Rez≤ |Rez| ≤ |z|, so in (iii) one has by (ii) that

2Re(x |y)≤ 2‖x‖‖y‖. (4.1.9)

Hence (iii) entails that ‖x+ y‖2 ≤ (‖x‖+‖y‖)2 , so (i) holds. �

In view of (i) in this proposition, Definition 4.1.3 has now been justified.
For simplicity, given an inner product space V , the symbols ( · | ·) and ‖ · ‖
will often be used, without further notification, to denote the inner product
and the induced norm on V , respectively.



4.1. INNER PRODUCT SPACES 15

Replacing y by −y in (4.1.8) above and adding the resulting formula to
(4.1.8),

‖x+ y‖2 +‖x− y‖2 = 2(‖x‖2 +‖y‖2). (4.1.10)
This is known as the parallellogram law.

Using the sesqui-linearity on the right hand sides, the following polari-
sation identities are easy to verify:

(x |y) = 1
4 ∑

k=0,...,3
ik ‖x+ ik y‖2 for F = C (4.1.11)

(x |y) = 1
4(‖x+ y‖2−‖x− y‖2) for F = R. (4.1.12)

Conversely, if a norm on a vector space V fulfils (4.1.10), one can show that
(x |y) defined by the expression on the right hand side above actually is an
inner product on V .

EXAMPLE 4.1.5. Using the above, it is now easy to show the classical
fact from geometry, that if T : Rn → Rn is an isometry, ie

‖T (x)−T (y)‖ = ‖x− y‖ for all x,y ∈ Rn, (4.1.13)

then T is affine; ie T (x) = Ax+b for some orthogonal matrix A, b ∈ Rn .
Indeed, T (0) = 0 can be assumed, for T (x)−T (0) is also an isometry.

Then T is norm preserving, ie ‖T (x)‖ = ‖x‖ for all x. In (4.1.8) one can
therefore replace x by T (x), and y by T (y), in the norms without changing
the values, hence

(T (x) |T (y)) = (x |y) for all x,y ∈ Rn. (4.1.14)

So for the natural basis (e1, . . . ,en) one has (T (e j) |T (ek)) = δ jk , whence
(T (e1), . . . ,T (en)) is another orthonormal basis. Writing T (x) = ∑λ jT (e j)
it follows by taking inner products with T (ek) that λk = (T (x) |T (ek)), so

T (x) = ∑
j=1,...,n

(T (x) |T (e j))T (e j) = ∑
j=1,...,n

(x |e j )T (e j). (4.1.15)

The last expression is linear in x, so that T (x) = Ox for an n×n-matrix O.
Here (4.1.14) gives OtO = I , hence Ot = O−1 as desired.

4.1.2. Continuity of inner products. Just as one can prove the basic
fact of normed spaces that the norm is always continuous, it holds for every
inner product that it is jointly continuous in both variables.

PROPOSITION 4.1.6. In an inner product space V it holds for any pair
of sequences converging with respect to the induced norm, say xn → x and
yn → y in V , that

(xn |yn )→ (x |y) for n→ ∞. (4.1.16)

PROOF. By the triangle and Cauchy–Schwarz inequalities,
|(xn |yn )− (x |y)|

≤ |(xn− x |yn− y)|+ |(x |yn− y)|+ |(xn− x |y)|
≤ ‖xn− x‖‖yn− y‖+‖x‖‖yn− y‖+‖xn− x‖‖y‖.

(4.1.17)
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Here all terms on the right hand side goes to 0, so (4.1.16) follows. �

It is straightforward to see that the proposition is equivalent to the fact
that the inner product is a continuous map

( · | ·) :
V
×
V
−→ C. (4.1.18)

It is clear that the Cauchy–Schwarz inequality is crucial for the above re-
sult. In addition it will be seen in Proposition 4.3.1 below that also the
parallellogram law has rather striking consequences.

4.1.3. Orthogonality. In an inner product space V , the vectors x and
y are called orthogonal if (x |y) = 0; this is symbolically written x⊥ y.

From (4.1.8) one can now read off Pythagoras’ theorem (and a general-
isation to the infinite dimensional case) :

PROPOSITION 4.1.7. If x ⊥ y for two vectors x, y in an inner product
space V , then ‖x+ y‖2 = ‖x‖2 +‖y‖2 .

For subsets M and N of an inner product space V , one says that M , N
are orthogonal, written M ⊥ N if (x |y) = 0 for every x ∈ M , y ∈ N . In
addition the orthogonal complement of such M is defined as

M⊥ = {y ∈V | ∀x ∈M : (x |y) = 0}. (4.1.19)

This is clearly a closed subspace of V . Another property is that M⊥ = M⊥ .
As a main example, note that

V⊥ = {0}. (4.1.20)

Indeed, 0 ∈ V⊥ , and if z ∈ V⊥ then (z |z) = 0, whence z = 0. This fact is
used repeatedly (as a theme in proofs) in the following.

Finally, a family (u j) j∈J in an inner product space V is called an or-
thogonal family provided

(u j |uk ) = 0 for j 6= k and u j 6= 0 for every j ∈ J . (4.1.21)

The same terminology applies to a sequence, for this is the case with J = N.

4.2. Hilbert spaces and orthonormal bases

To get a useful generalisation of the Euclidean spaces Rn , that are com-
plete with respect to the metric induced by the inner product, Hilbert spaces
are defined as follows:

DEFINITION 4.2.1. A vector space H with inner product is called a
Hilbert space if it complete with respect to the induced norm.

In particular all Hilbert spaces are Banach spaces. As an example one
has H = `2 endowed with the inner product

((xn) |(yn)) =
∞

∑
n=1

xnyn for (xn),(yn) ∈ `2. (4.2.1)
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Notice that the series converges because |xnyn| ≤ 1
2(|xn|2 + |yn|2). The com-

pleteness may be verified directly (try it!). More generally, L2(A,A,µ) is a
Hilbert space for an arbitrary measure space (A,A,µ) (so `2 is also covered
by considering the counting measure on N).

In the rest of this chapter focus will be on Hilbert spaces, for the com-
pletion of an inner product space may be shown to have the structure of
a Hilbert space, because the inner product extends to the completion in a
unique way. It will also often be assumed that the Hilbert spaces are sepa-
rable. This is done for convenience, but the unseparable case is only rarely
met in applications.

DEFINITION 4.2.2. An orthonormal basis of a Hilbert space is a ba-
sis (e j) j∈J which is also an orthonormal set, that is, which also satisfies
(e j |ek ) = δ jk for all j, k ∈ J .

For a subset (e j) j∈J to be an orthonormal basis it suffices, however,
that it is orthonormal and total. Indeed, in expansions like x = ∑

∞
n=1 λnen it

suffices to sum over N (even if J is uncountable, cf Definition 3.0.2), so the
uniqueness is a consequence of (4.2.4):

PROPOSITION 4.2.3. Let (en) be an orthonormal sequence in a Hilbert
space H, and let (λn) be a sequence in F. Then

∞

∑
n=1

λnen converges in H ⇐⇒
∞

∑
n=1

|λn|2 < ∞. (4.2.2)

In the affirmative case, with x := ∑λnen ,

‖x‖ = (
∞

∑
n=1

|λn|2)1/2 (4.2.3)

λn = (x |en ) for every n ∈ N. (4.2.4)

PROOF. Setting sn = ∑
n
j=1 λ je j , Pythagoras’ theorem implies

‖sn+p− sn‖2 =
n+p

∑
j=n+1

‖λ je j‖2 =
n+p

∑
j=n+1

|λ j|2. (4.2.5)

Therefore (sn) is fundamental precisely when ∑ |λn|2 is a convergent series.
And in this case, continuity of the norm and the inner product yields

‖x‖ = lim
n→∞

‖sn‖ = lim
n→∞

(
n

∑
j=1
|λ j|2)1/2 = (

∞

∑
n=1

|λn|2)1/2 (4.2.6)

(x |en ) = lim
k→∞

(
k

∑
j=1

λ je j |en ) = λn. (4.2.7)

�

Frequently, the proposition is also useful for cases with only finitely
many scalars λn; the trick is then to add infinitely many zeroes to obtain a
sequence (λn). This observation is convenient for the proof of
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PROPOSITION 4.2.4 (Bessel’s inequality). Let (en) be an orthonormal
sequence in a Hilbert space H. For all x ∈ H and n ∈ N,

‖x−
n

∑
j=1

(x |e j )e j‖2 = ‖x‖2−
n

∑
j=1
|(x |e j )|2 (4.2.8)

∞

∑
j=1
|(x |e j )|2 ≤ ‖x‖2, (4.2.9)

and the series ∑
∞
j=1(x |e j )e j converges in H.

PROOF. Using (4.1.8), the first claim is a direct consequence of (4.2.3),
for if xn = ∑

n
j=1(x |e j )e j ,

‖x− xn‖2 = ‖x‖2 +‖xn‖2−2Re(x |xn ) = ‖x‖2−
n

∑
j=1
|(x |e j )|2. (4.2.10)

Since the left hand side is non-negative, ∑
n
j=1 |(x |e j )|2 ≤ ‖x‖2 for each n,

whence (4.2.9). The convergence of the series is then a consequence of
Proposition 4.2.3. �

Whether equality holds in Bessel’s inequality (4.2.9) for all vectors x
in H or not, this depends on whether the given orthonormal sequence (en)
contains enough vectors to be a basis or not; cf (iii) in

THEOREM 4.2.5. For an orthonormal sequence (en) in a Hilbert space
H the following properties are equivalent:

(i) (en) is an orthonormal basis for H.

(ii) (x |y) =
∞

∑
n=1

(x |en )(en |y) for all x, y in H.

(iii) ‖x‖2 =
∞

∑
n=1

|(x |en )|2 for all x in H.

(iv) If x in H is such that (x |en ) = 0 for all n ∈ N, then x = 0.

In the affirmative case x = ∑
∞
n=1(x |en )en holds for every x ∈ H.

PROOF. Notice that when (en) is an orthonormal basis, then the last
statement is true because the basis property shows that x = ∑λnen holds;
then λn = (x |en ) by Proposition 4.2.3.

Now (i) implies (ii) by the continuity of ( · |y). Moreover, (iii) is a spe-
cial case of (ii), and (iv) is immediate from (iii), since ‖x‖= 0 only holds for
x = 0. Given that (iv) holds, one can for any x consider y = ∑

∞
n=1(x |en )en ,

which converges by Proposition 4.2.3 and Bessel’s inequality. But then
(x− y |en ) = 0 is seen for every n ∈ N by substitution of y; hence x = y.
Therefore (en) is total, so (i) holds. �

The identity in (iii) is known as Parseval’s equation (especially in con-
nection with Fourier series). Notice that in the affirmative case, (ii) ex-
presses that the inner product (x |y) may be computed from the coordinates
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of x, y, for since y = ∑ynen with yn = (y |en ) and similarly for x, the iden-
tity in (ii) amounts to

(x |y) =
∞

∑
n=1

xnȳn. (4.2.11)

It is not a coincidence that the right hand side equals the inner product in `2

of the coordinate sequences (xn), (yn) — these are clearly in `2 because of
(iii). Indeed, this fact leads to the proof of the next result.

To formulate it, an operator U : H1 → H2 , where H1 , H2 are Hilbert
spaces, will be called unitary when U is a linear bijection fulfilling

(Ux |Uy) = (x |y) for all x, y ∈ H1. (4.2.12)

THEOREM 4.2.6. Let H be a separable Hilbert space. Then there exists
a unitary operator from H onto `2(J) for some J ⊂ N.

Observe that `2(J) is either `2 or Cn; the latter possibility occurs if J is
finite, for by a renumbering J = {1, . . . ,n} may be assumed.

PROOF. Let (vn) be dense in H ; then V := span(vn) is dense in H . By
extracting a subsequence, one proves the existence of a family (v j) j∈J with
J equal to N, or to {1, . . . ,k} for some k ∈ N, such that V = span(v j) j∈J
and v j /∈ span(v1, . . . ,v j−1) for every j ∈ J . Using Gram–Schmidt orthonor-
malisation, there is a (possibly finite) sequence (e j) with V = span(e j) j∈J ;
this is a basis for H because V is dense.

The operator U : H → `2(J) given by Ux = ((x |e j )) j∈J is linear and
injective (for J = N this is because of (iii) in Theorem 4.2.5). It is also
surjective because any (α j) ∈ `2(J) gives rise to the vector x = ∑J α je j in
H , for which Ux = (α j) clearly holds. Finally

(x |y) = ∑
J

(x |e j )(e j |y) = (Ux |Uy) (4.2.13)

follows for all x, y ∈ H from (ii), or from a direct calculation when J is
finite. �

Note that (iii) expresses that ‖Ux‖ = ‖x‖ holds for the map U in the
above proof, ie that U is norm-preserving, so U is clearly a homeomor-
phism. As (4.2.13) shows, it also preserves inner products, so one cannot
distinguish the Hilbert spaces H and `2(J) from one another (two vectors
are orthogonal in H if and only if their images are so in `2(J) and so on).

Generalising from this example, it is seen that the unitary operators con-
stitute the natural class of isomorphisms on the set of Hilbert spaces; two
Hilbert spaces H1 , H2 are also called unitarily equivalent if there is an iso-
morphism (ie a unitary operator) from H1 onto H2 .

COROLLARY 4.2.7. Two separable Hilbert spaces H1 and H2 over F
are unitarily equivalent if and only if they both have orthonormal bases in-
dexed by N (or by {1, . . . ,n} for some n∈N). In particular all orthonormal
bases of a separable Hilbert space have the same index set.
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As another corollary of Theorem 4.2.6 (or of its proof, alternatively),
notice that every separable Hilbert space actually has an orthonormal basis.

4.3. Minimisation of distances

It is a crucial geometric property of a Hilbert space H that for any sub-
space U of finite dimension and any x ∈ H there exists a uniquely deter-
mined point u0 ∈U with the least possible distance to x. Ie this u0 fulfils

‖x−u0‖ = inf{‖x−u‖ | u ∈U }. (4.3.1)

Since the infimum exists and is ≥ 0, the crux is that it actually is attained
at a certain point u0 (hence is a minimum).

To see that u0 exists, it suffices to take an orthonormal basis for U , say
(e1, . . . ,en) and verify that for arbitrary λ1, . . . ,λn in F,

‖x−
n

∑
j=1

(x |e j )e j‖ ≤ ‖x−
n

∑
j=1

λ je j‖. (4.3.2)

Indeed, one can then let u0 = ∑
n
j=1(x |e j )e j , for this belongs to U and

clearly minimises the distance to x. It is straightforward to prove (4.3.2) in
the same manner as in the proof of (4.2.8) above.

However, since a finite dimensional subspace always is closed (cf the
below Lemma 6.2.1) and moreover convex, the above result also follows
from the next result. Recall that C ⊂ H is convex if θx +(1−θ)y ∈C for
every θ ∈ [0,1] and all x, y ∈C.

PROPOSITION 4.3.1. Let C be a closed, convex subset of a Hilbert space
H. For each x ∈H there exists a uniquely determined point y ∈C such that

‖x− y‖ ≤ ‖x− v‖ for all v ∈C. (4.3.3)

PROOF. Let (yn) be chosen in C so that ‖x− yn‖ → δ where δ =
inf{‖x− v‖ | v ∈C}. Applying the parallelogram law and the convexity,

‖yn− ym‖2 = 2‖yn− x‖2 +2‖x− ym‖2−‖yn− x− (x− ym)‖2

= 2‖yn− x‖2 +2‖x− ym‖2−4‖1
2(yn + ym)− x)‖2

≤ 2‖yn− x‖2 +2‖x− ym‖2−4δ
2.

(4.3.4)

Since the last expression can be made arbitrarily small, (yn) is a Cauchy
sequence, hence converges to a limit point y. Since C is closed y ∈C, and
by the continuity of the norm ‖x− y‖ = δ .

If also δ = ‖x− z‖ for some z ∈ C, one can substitute yn and ym by
y and z, respectively, in the above inequality and derive that ‖y− z‖2 ≤
2δ 2 +2δ 2−4δ 2 = 0. Whence z = y. �

By the proposition, there is a map PC : H → H given by PCx = y, in the
notation of (4.3.3). Clearly (PC)2 = PC , so PC is called the projection onto
C.
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Notice that when U is a subspace of dimension n ∈ N, say with or-
thonormal basis (e1, . . . ,en), then (4.3.2) ff. shows that

PU x =
n

∑
j=1

(x |e j )e j for x ∈ H . (4.3.5)

Hence PU is linear and bounded. Since x−PU x is orthogonal to every e j
and therefore to any vector in U , the operator PU is called the orthogonal
projection on U .

4.4. The Projection Theorem and self-duality

It was seen above that orthogonality was involved in the process of find-
ing the minimal distance from a point to a subspace. There are also other
geometric properties of Hilbert spaces that are linked to orthogonality, and
a few of these are presented here.

4.4.1. On orthogonal projection. For orthogonal subspaces M and N ,
ie M ⊥ N , the orthogonal sum is

M⊕N = {x+ y | x ∈M, y ∈ N }. (4.4.1)

Hence any vector z ∈M⊕N has a decomposition z = x+y with x ∈M and
y ∈ N . The orthogonality shows that this decompostion is unique (since
M ⊥ N =⇒ M∩N = {0}).

When both M and N are closed in H , then M⊕N is a closed subspace
too, for if zn ∈ M⊕N converges in H , Pythagoras’ theorem applied to the
decompositions zn = xn + yn gives Cauchy sequences (xn), (yn) in M and
N , and the sum of these converges to an element of M⊕N (since M , N are
closed) as well as to limzn .

Recall that for a closed subspace M of H , the orthogonal complement
is denoted M⊥; alternatively H	M may be used to make it clear that the
orthogonal complement is calculated with respect to H . When H = M⊕N
both M and N are called direct summands of H , but for a given M there is,
by the orthogonality, only one possible choice of N : this is a consequence
of the next result known as the Projection Theorem, which states that as the
direct summand N one can take N = H	M .

As a transparent example, take the familiar orthogonal sum Rn = Rk⊕
Rn−k , with Rk ' {(x1, . . . ,xn)∈Rn | xm = 0 for m > k }, for 0≤ k≤ n, and
a similar identification for Rn−k . The Projection Theorem is a non-trivial
generalisation to Hilbert spaces:

THEOREM 4.4.1. Let H be a Hilbert space and M ⊂ H a closed sub-
space, then H = M⊕M⊥ .

PROOF. Given z ∈ H there is by Proposition 4.3.1 an x ∈ M such that
‖z− x‖ ≤ ‖z− v‖ for all v ∈ M; letting y = z− x it remains to be verified
that y ∈M⊥ . But, for λ ∈ F and v ∈M with ‖v‖ = 1,

‖y‖2 ≤ ‖z− (x+λv)‖2 = ‖y‖2 + |λ |2−2Reλ (y |v), (4.4.2)
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so λ = (y |v) entails |λ |2 ≤ 0; whence (y |v) = 0 for any v ∈M . �

Thus every x ∈ H is decomposed as x = y+ z with y ∈ M and z ∈ M⊥ .
By the uniqueness, there is therefore an operator P : x 7→ y, which is called
the orthogonal projection of x on M .

If M has finite dimension, P equals the previously introduced orthog-
onal projection on M; cf the minimisation in the proof of Theorem 4.4.1.
A characterisation of the operators in B(H) that are ortogonal projections
follows in Proposition 6.1.1 below.

4.4.2. On the self-duality. In a Hilbert space H it is immediate that ev-
ery vector y ∈ H gives rise to the linear functional x 7→ (x |y); by Cauchy–
Schwarz’ inequality this is bounded,

|(x |y)| ≤ ‖x‖‖y‖. (4.4.3)

It is a very important fact that all elements in H∗ arise in this way; cf the next
theorem, known as Frechet–Riesz’ theorem (or the Riesz Representation
Theorem).

THEOREM 4.4.2. For each ϕ ∈H∗ there exists a vector z∈H such that
ϕ(x) = (x |z) for all x ∈ H.

PROOF. With N = Z(ϕ), which is a closed subspace by the continuity
of ϕ , the Projection Theorem gives H = N⊕N⊥ . Clearly ϕ ≡ 0 if and only
if N = H , in which case z = 0 will do. For ϕ 6= 0 there is some y∈N⊥ with
‖y‖ = 1, and then v = ϕ(x)y−ϕ(y)x belongs to N , regardless of x ∈H . So
it suffices to let z = ϕ(y)y, for

0 = (v |y) = ϕ(x)(y |y)−ϕ(y)(x |y) = ϕ(x)− (x |z). (4.4.4)

For the uniqueness, assume ϕ = ( · |z) = ( · |w); then (x |z−w) = 0 for all
x, yielding z−w ∈ H⊥ and z = w. �

Notice that eg (`p)∗ 6= `p for p ∈ [1,∞[ with p 6= 2: the sequence with
xn = n−1/r is only in `q for q > r so that there are strict inclusions

`p ( `q for 1≤ p < q≤ ∞. (4.4.5)

Hence Banach spaces do not identify with their duals in general.
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Examples of Hilbert spaces. Fourier series.

For an open set Ω ⊂ Rn there is the standard Hilbert space L2(Ω) with
inner product ( f |g) =

∫
Ω

f (x)g(x)dx. However, certain subsets of L2(Ω)
are Hilbert spaces in their own right.

EXAMPLE 5.0.3 (Sobolev spaces). Let the subset H1(Ω) ⊂ L2(Ω) be
defined by the requirement that to each f ∈ H1(Ω) there exist other func-
tions f ′1 ,. . . , f ′n in L2(Ω) such that for every ϕ ∈C∞

0 (Ω) it holds that∫
Ω

f (x)(− ∂

∂x j
ϕ(x))dx =

∫
Ω

f ′j(x)ϕ(x)dx for j = 1, . . . ,n. (5.0.6)

Notice that for f in C1
0(Ω) one can take f ′j = ∂ f

∂x j
; hence C1

0(Ω)⊂ H1(Ω).

For f ∈ H1(Ω) the functions f ′j are called the (generalised) derivatives
of f of the first order, and these are written in operator notation as

∂ j f = ∂x j f = ∂ f
∂x j

= f ′j, for j = 1, . . . ,n. (5.0.7)

Here it was used that the derivatives f ′j are determined by f : if f̃1 ,. . . , f̃n is
another set of functions in L2(Ω) fulfilling (5.0.6), then f ′1− f̃1 ∈C∞

0 (Ω)⊥ =
L2(Ω)⊥ = (0); similarly f ′j = f̃ j for all j. As a consequence these partial
differential operators give well defined maps

∂ j : H1(Ω)→ L2(Ω) for j = 1, . . . ,n. (5.0.8)

(In C1(Ω)∩H1(Ω) these maps are given by limits of difference quotients.
In general the f ′j equal the so-called distribution derivatives ∂ j f of f .)

A topology on H1(Ω) may be obtained eg as a metric subspace of
L2(Ω). But to have some control over f ′1 ,. . . , f ′n , it is stronger to note that,
by the uniqueness and linearity of the generalised derivatives, there is a well
defined inner product on H1(Ω) given by

( f |g)H1 = ( f |g)L2 +( f ′1 |g′1 )L2 + · · ·+( f ′n |g′n )L2; (5.0.9)

the norm induced is clearly given by

‖ f‖H1 =
(∫

Ω

(| f (x)|2 +
n

∑
j=1
|∂ j f (x)|2)dx

)1/2
. (5.0.10)

Actually H1(Ω) is a Hilbert space, because it is complete with respect
to this norm (verify this!). Notice that the injection H1(Ω) ↪→ L2(Ω) is

23
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continuous, because for every f ∈ H1(Ω) one has ‖ f‖L2 ≤ ‖ f‖H1 . More-
over, the expression for ‖·‖H1 implies directly that the differential operators
∂1, . . . ,∂n in (5.0.8) above all are continuous maps H1 → L2 .

H1(Ω) is called the Sobolev space of order 1 over Ω; this Hilbert space
plays a very significant role in the theory of partial differential equations. It
is also convenient to introduce the subspace H1

0 (Ω) by taking the closure of
C∞

0 (Ω) in H1(Ω), ie

H1
0 (Ω) =

{
f ∈ H1(Ω)

∣∣ ∃ϕk ∈C∞
0 (Ω) : lim

k→∞
‖ f −ϕk‖H1 = 0

}
. (5.0.11)

Clearly H1
0 (Ω) is Hilbert space with the induced inner product from H1(Ω).

EXAMPLE 5.0.4. The Sobolev spaces have generalisations to Hilbert
spaces Hm(Ω) incorporating higher order derivatives up to some order m ∈
N. For this it is useful to adopt the multiindex notation, say for f ∈C∞(Ω):

For α = (α1, . . . ,αn)∈Nn
0 , which is said to have length |α|= α1 + · · ·+

αn , one writes

∂
α f = ∂ |α| f

∂
α1
x1 ...∂ αn

xn
. (5.0.12)

Then the subspace Hm(Ω) ⊂ L2(Ω) is defined as the set of f to which
there for every |α| ≤ m exists some fα ∈ L2(Ω) fulfilling the condition
( f |∂ αϕ )L2 = (−1)|α|( fα |ϕ ) for all ϕ ∈C∞

0 (Ω).
Since the fα are uniquely determined, there are maps ∂ α f := fα defined

for f ∈ Hm(Ω). This gives rise to an inner product on Hm(Ω), namely

( f |g)Hm = ∑
|α|≤m

∫
Ω

∂
α f (x)∂ αg(x)dx. (5.0.13)

The induced norm has the expression

‖ f‖Hm =
(

∑
|α|≤m

‖∂
α f‖2

L2

)1/2
. (5.0.14)

With this Hm(Ω) is a Hilbert space. The subspace Hm
0 (Ω) is defined as

the closure of C∞
0 (Ω), that clearly is a Hilbert space. By inspection of the

norms, there are bounded, hence continuous maps

∂
α : Hm(Ω)→ Hm−|α|(Ω), for |α| ≤ m. (5.0.15)

5.1. Examples of orthonormal bases.

Some of the elementary functions provide basic examples of orthonor-
mal bases. Eg one has

PROPOSITION 5.1.1. The Hilbert space L2(0,π) has an orthonormal
basis (en)n∈N0 consisting of

e0 ≡ 1√
π
, en =

√
2
π

cos(nt), for n ∈ N. (5.1.1)
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Indeed, orthonormality is easy to derive from the periodicity and Euler’s
identities (do it!). It remains to show that (en)n∈N0 is total in L2(0,π), and
for this it suffices by density to approximate an arbitrary f ∈C([0,π]). But
to g(t) = f (arccos t) and ε > 0, Weierstrass’ approximation theorem (2.3.1)
furnishes a polynomial p = ∑

N
j=0 a jt j such that |g− p|< επ−1/2 on [−1,1];

thence

| f (t)−
N

∑
j=0

a j(cos t) j|< επ
−1/2, for t ∈ [0,π]. (5.1.2)

Here Euler’s identities yield that (cos t) j = ∑
j
k=− j bkeikt for scalars satisfy-

ing bk = b−k , whence (cos t) j is in E j = span(e0, . . . ,e j). Then p◦cos is in
EN , and ‖ f − p◦ cos‖ < ε in L2(0,π) as desired.

Similarly the sine function gives rise to an orthonormal basis.

PROPOSITION 5.1.2. The Hilbert space L2(0,π) has an orthonormal

basis (en)n∈N given by en(x) =
√

2
π

sin(nx) for n ∈ N.

The orthonormality is verified as for the cosines; but that the sequence
is total follows at once from the totality of the cosines: if f ⊥ span(en), then
( f |en ) =

∫
π

0 f (x)sin(nx)dx = 0 for all n; this yields

( f sin | cos(n·)) =
∫

π

0
f (x)sin(x)cos(nx)dx

= ( f | 1
2 sin((n+1)·))− ( f | 1

2 sin((n−1)·)) = 0
(5.1.3)

Since {0} = span(cos(n·))⊥ , this gives f sin = 0, hence f = 0 a.e. There-
fore (en) is total.

5.2. On Fourier series

It is known from elementary calculus that eg f (x) = cos2(x)sin(3x) may
be resolved into a sum of oscillations with frequencies 1

2π
, 3

2π
and 5

2π
, sim-

ply by use of Euler’s identities:

f (x) = cos2(x)sin(3x) = 1
4 sin(5x)+ 1

2 sin(3x)+ 1
4 sinx. (5.2.1)

This way, a harmonic or Fourier analysis of f is obtained.

The classical claim of J. Fourier (made around 1820?!) is that any func-
tion f on the interval [−π,π] may expressed as an infinite series of har-
monic functions, namely

f (x) = A0
2 +

∞

∑
n=1

(An cos(nx)+Bn sin(nx)) (5.2.2)
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with the coefficients

An = 1
π

∫
π

−π

f (y)cos(ny)dy for n = 0,1,2, . . . (5.2.3)

Bn = 1
π

∫
π

−π

f (y)sin(ny)dy for n = 1,2, . . . . (5.2.4)

Later as the notion of functions was crystallised, it became increasingly
important to clarify Fourier’s claim.

It is quite remarkable that his assertion is true for functions as general
as those in the class L2(−π,π) (and similarly in dimensions n > 1).

5.2.1. The one-dimensional case. The results on orthonormal bases of
sines and cosines on [0,π] lead to the following main result. It is formu-
lated for the Hilbert space L2(−π,π; 1

2π
m1), where the one-dimensional

Lebesgue measure m1 is normalised for convenience. Hence ( f |g) =
1

2π

∫
π

−π
f (x)g(x)dx is the inner product of f , g.

THEOREM 5.2.1. The functions en(x) = einx , with n ∈ Z, constitute an
orthonormal basis for L2(−π,π; 1

2π
m1), and for every f in this space,

f =
∞

∑
n=−∞

cnen (5.2.5)

with coefficients cn = ( f |en ) = 1
2π

∫
π

−π
f (y)ei−ny dy for n ∈ Z.

PROOF. It is straightforward to see that the sequence is orthonormal,
for by the periodicity of ei(k−n)x/(k−n) for k 6= n,

(ek |en ) = 1
2π

∫
π

−π

ei(k−n)y dy = δkn. (5.2.6)

It therefore suffices to see that {en | n ∈ Z} is a total subset, which follows
if every f in L2(−π,π) satisfies

f = lim
n→∞

n

∑
k=−n

( f |ek )ek. (5.2.7)

(This is the meaning of (5.2.5).)
First the case of an even f is considered, ie f (x) = f (−x). For such f

it holds that Bn = 0 for every n ∈ N, for the substitution y =−x leads to∫ 0

−π

f (y)sin(ny)dy =−
∫

π

0
f (x)sin(nx)dx. (5.2.8)

Classically f is therefore assigned the Fourier series

f (x) = A0
2 +

∞

∑
n=1

An cos(nx). (5.2.9)

However, for x ∈ [0,π] this holds as an identity in L2(0,π; 2
π

m1). Indeed,
in view of Proposition 5.1.1 the functions g0(x) = 1√

2
and gn(x) = cos(nx)
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with n ∈ N for an orthonormal basis, so since f is even,

f (x) =
∞

∑
n=0

( f |gn )gn(x)

= 1
π

∫
π

−π

f (y)dy
1
2

+
∞

∑
n=1

( 1
π

∫
π

−π

f (y)cos(ny)dy
)
· cos(nx)

= A0
2 +

∞

∑
n=1

An cos(nx).

(5.2.10)

Actually (5.2.9) even holds in L2(−π,π; 1
2π

m1), for if sn denotes the nth

partial sum on the right hand side of (5.2.9),

‖ f − sn‖2
L2(−π,π) ≤ ‖ f − sn‖2

L2(0,π) ↘ 0. (5.2.11)

(For the inequality one may use that | f − sn|2 has the same integral on
[−π,0] and [0,π], since f and the cosines are even.)

Using a completely analogous argument, and that L2(0,π; 2
π

m1) has an-
other orthonormal basis given by (sin(n·))n∈N , cf Proposition 5.1.2, it is
seen that for odd functions, ie f (x) =− f (−x), all the An vanish and

f =
∞

∑
n=0

Bn sin(n·) in L2(−π,π; 1
2π

m1). (5.2.12)

Now any function f may be written f = f1 + f2 where f1(x) := ( f (x) +
f (−x))/2 is even and f2(x) := ( f (x)− f (−x))/2 is odd, and the above
analyses apply to these terms. Chosing new scalars

Cn = 1
2(An− iBn) for n ∈ N0,

C−n = 1
2(An + iBn) for n ∈ N,

(5.2.13)

Euler’s formula leads to
f = f1 + f2

= A0
2 +

∞

∑
n=1

(An cos(n·)+Bn sin(n·))

= A0
2 +

∞

∑
n=1

(Cnein·+C−ne− in·) = lim
n→∞

n

∑
k=−n

Ckeik·.

(5.2.14)

Since insertion of (5.2.3) and (5.2.4) into (5.2.13) shows that Cn = cn for
every n ∈ Z, (5.2.14) proves (5.2.7), hence the theorem. �

Observe that the classical Parseval’s equation for Fourier series now is
a gratis consequence of Theorem 4.2.5:

1
2π

∫
π

−π

| f (x)|2 dx =
∞

∑
n=−∞

|cn( f )|2. (5.2.15)

Here cn( f ) = ( f |en ), but the main change is that as the index set for the
basis vectors, Z must now be used instead of N. (Here cn( f ) := ( f |en ).)
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In addition, Proposition 4.2.3 shows that the sequence (cn( f )) is in
`2(Z) for every f ∈ L2(−π,π), and that conversely any (αn) in `2(Z)
equals the Fourier coefficients of some function g ∈ L2(−π,π); indeed,
g = ∑αnen by Proposition 4.2.3. (Actually this is just an example of the
unitary equivalence mentioned in Theorem 4.2.6!)

5.2.2. Fourier series in higher dimensions. Using the above results
it is now possible to deduce the corresponding facts in n dimensions. So
consider the cube Q =]−π,π]n and the corresponding Hilbert space L2(Q)
(the Lebegue measure mn is now tacitly normalised by (2π)−n).

It is easy to see that there is an orthonormal sequence of functions

ek(x) = eik·x = ei(k1x1+···+knxn) (5.2.16)

with x = (x1, . . . ,xn)∈Q and a ‘multi-integer’ k = (k1, . . . ,kn)∈Zn . In fact
for k, m ∈ Zn ,

(ek |em ) = 1
(2π)n

n

∏
j=1

∫
π

−π

ei(k j−m j)x j dx j = δk1m1 . . .δknmn = δkm. (5.2.17)

This system is moreover an orthonormal basis. Indeed, assume that f ∈
L2(Q) is orthogonal to ek for every k ∈ Zn . Since L2(Q) ⊂ L1(Q), the
below auxiliary function is well defined (a.e.) by Fubini’s theorem,

g(xn) =
∫
]−π,π]n−1

f (x1,...,xn−1,xn)
exp(i(k1x1+···+kn−1xn−1))(2π)n d(x1, . . . ,xn−1). (5.2.18)

Moreover, it is in L2(−π,π) because Hölder’s inequality gives that

|g(xn)| ≤ (
∫
| f (x1, . . . ,xn−1,xn)|2 d(x1, . . . ,xn−1))1/2, (5.2.19)

where the right hand side is quadratic integrable. However, by the identity
above, (g |eikn· ) = ( f |ek ) = 0. Then the results for dimension 1 give that
g ≡ 0. Hence f (·,xn) is orthogonal to all the exponentials in n−1 dimen-
sions. Repeating this argument, it is seen that for fixed x2 ,. . . ,xn ∈ ]−π,π],
the function f (·,x2, . . . ,xn) is 0 in L2(−π,π); by Fubini ‖ f‖ = 0 in L2(Q),
whence f = 0.

Thereby the following generalisation of Theorem 5.2.1 is an immediate
consequence of the general Hilbert space theory:

THEOREM 5.2.2. The functions ek(x) = eik·x , with k ∈Zn , constitute an
orthonormal basis for L2(Q), where Q =]−π,π]n , and for every f in this
space,

f = ∑
k∈Zn

ckek (5.2.20)

with coefficients ck = ( f |ek ) = (2π)−n ∫
Q f (y)e− ik·y dy for k ∈ Z. The se-

quence (ck) is in `2(Zn), and Parseval’s identity holds.
Conversely, to any (ck) ∈ `2(Zn) there exists a unique function f in

L2(Q) having (ck) as its Fourier coefficients.
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The convergence in (5.2.20) means that for any ε > 0 there exists a finite
set K ⊂ Zn such that

‖ f − ∑
k∈K

ckek‖L2(Q) < ε. (5.2.21)

EXAMPLE 5.2.3. For the subspace H1(Q) of L2(Q), introduced in Ex-
ample 5.0.3 at least if we now take Q =]− π,π[n , it is natural to ask for
characterisations in terms of Fourier series.

However, this is easier to carry out for the subspace

H1(T) = { f ∈ H1(Q) | ∀ j = 1, . . . ,n :

x j = 0 =⇒ f (x+πe j) = f (x−πe j)}. (5.2.22)

The reason is that any such f may be extended to a 2π -periodic function in
all variables without loosing the H1-property (whereas such extensions of
functions in H1(Q) would have jump discontinuities at the boundary of Q).
Observe, however, that there is an important technical remnant, namely to
account for the fact that the elements of H1(T) are so regular that the values
at x±πe j may be calculated in an unambiguous way.

We shall abstain from that here, and just mention the resulting charac-
terisation instead. Indeed, defining h1(Zn) ⊂ `2(Zn) to be the subspace of
sequences (ck) fulfilling

( ∑
k∈Zn

(1+ k2
1 + · · ·+ k2

n)|ck|2)1/2 < ∞, (5.2.23)

then u ∈H1(T) holds precisely when its Fourier coefficients (ck) belong to
h1(Zn). And ‖u‖H1 equals the left hand side of the above inequality. Proof
of this is given later.

On these grounds, Hilbert space theory is customarily deemed the natu-
ral framework for Fourier series.





CHAPTER 6

Operators on Hilbert spaces

6.1. The adjoint operator

As an application of the notion of adjoint operators, one can give the
following characterisation of orthogonal projections.

PROPOSITION 6.1.1. Let P∈B(H). Then P is an orthogonal projection
onto a closed subspace M of H if and only if P∗ = P2 = P, that is if P is a
self-adjoint idempotent.

In the affirmative case M = P(H) = Z(I−P) = {x ∈ H | Px = x}, so
H = P(H)⊕Z(P).

PROOF. That the orthogonal projection P onto a closed subspace M of
H is a bounded, self-adjoint and idempotent operator is easy to see from the
definition of P.

Conversely, if P = P∗ = P2 holds for some P ∈ B(H), then the identity
I = P+(I−P) shows that

∀x ∈ H : x ∈ P(H)+(I−P)(H). (6.1.1)

Now it is straightforward to verify that also I−P is a self-adjoint idempo-
tent. Using this, both subspaces P(H), (I−P)(H) are seen to be closed: if
xn → x in H for a sequence (xn) in eg P(H), then xn = Pxn →Px, so x = Px.
They are ortogonal since P∗(I−P) = P−P2 ≡ 0, so H = P(H)⊕(I−P)(H)
in view of (6.1.1). Since P = P2 , it also follows from (6.1.1) that P is the
orthogonal projection onto P(H). The remaining facts are uncomplicated
to verify. �

The folowing formula is sometimes useful.

LEMMA 6.1.2. If T ∈ B(H) is self-adjoint, ie T ∗ = T , then

‖T‖ = sup
{
|(T x |x)|

∣∣ x ∈ H, ‖x‖ = 1
}
. (6.1.2)

PROOF. If MT denotes the supremum in (6.1.2), it follows from Cauchy-
Schwarz’ inequality that MT ≤ ‖T‖ .

Whenever T x 6= 0 it is clear that ‖y‖ = ‖x‖ by setting y = s−1T x for
s = ‖T x‖/‖x‖ . Then a polarisation and the Parallelogram Law give that

4‖T x‖2 = 2(T x |T x)+2(T T x |x) = 2s((T x |y)+(Ty |x))
= s((T (x+ y) |x+ y)− (T (x− y) |x− y))

≤ sMT (‖x+ y‖2 +‖x− y‖2)

= 2sMT (‖x‖2 +‖y‖2) = 4sMT‖x‖2.

(6.1.3)

31
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Therefore ‖T x‖ ≤MT‖x‖ for all x, so ‖T‖ ≤MT . �

6.2. Compact operators

6.2.1. Preliminaries. The next result is often important; it states that
for subspaces X of finite dimension one need only consider the coordinates
with respect to a fixed basis of X (as we would like to), even when it comes
to topological questions.

LEMMA 6.2.1. Let X be a finite-dimensional subspace of a normed vec-
tor space V over F, say with dimX = n ∈ N. Then every linear bijection
Φ : Fn → X is a homeomorphism, and X is closed in V .

PROOF. Any Φ of the mentioned type has the form (α1, . . . ,αn) 7→
α1x1 + · · ·+ αnxn for some basis (x1, . . . ,xn). However, using continuity
of the vector operations, induction after n gives that Φ is continuous.

Φ−1 is continuous if and only if Φ(O) is open in X for every open set
O ⊂ Fn . By the linearity it suffices to see that Φ(B) is a neighbourhood of
0, when B is the open unit ball of Fn . But S := {α | α2

1 + · · ·+α2
n = 1} is

compact, and so is Φ(S) by the continuity of Φ. Combining this with the
Hausdorff property of X gives a ball C centered at 0 such that C∩Φ(S) = /0.
Now C ⊂ Φ(B) follows, for if C 3 c = Φ(α) with |α| ≥ 1, the continuous
map t 7→ ‖tα‖ attains the value 1 for some t0 ∈ ]0,1], so the convexity of C
entails t0c ∈C∩Φ(S) = /0.

Using that V is Hausdorff, a sequence in X cannot converge to a point in
V \X , for its image under Φ−1 converges in Fn . Consequently X = X . �

Notice that for X = V = Fn the lemma gives that all the norms ‖x‖p =
(∑n

j=1 |x j|p)1/p with 1≤ p < ∞ and the sup-norm ‖x‖∞ give the same topol-
ogy (which can also be seen directly), and that moreover the same is true
for any norm on Fn .

The result of the lemma holds in a much wider context too, for it suf-
fices to presuppose only that V is a Hausdorff topological vector space.
(The proof only needs to have the ball C replaced by another type of neigh-
bourhood of 0 in which tC ⊂C for scalars with |t| ≤ 1.)

The rank of a linear map T : V →W is defined as rankT = dimT (V ).
In analogy with Lemma 6.2.1, one could wonder whether operators of finite
rank are necessarily bounded. But this is not the case, for counterexamples
exist already when rankT = 1 as seen in the specific construction given
below (this also elucidates why a basis U is required to fulfil V = span U
rather than V = spanU ):

Let (en) denote the canonical orthonormal basis in `2(N); then `2 \
span(en) 6= /0 because it contains eg (n−1)n∈N , and by Zorn’s lemma there
exists a maximal linearly independent set of the form

{
en
∣∣ n ∈ N

}
∪
{

vi
∣∣

i ∈ I
}

; this is a Hamel basis of `2 , cf Remark 3.0.5, so that every v ∈ `2
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may be written
v = ∑

n∈N
λnen +∑

i∈I
µivi. (6.2.1)

Defining ϕ : `2 → C by letting ϕv = ∑ µi , it is clear that ϕ is a linear func-
tional which is nonzero on every vi . Moreover, Z(ϕ)⊃ span(en), and since
the latter set is dense, ϕ is discontinuous on `2 .

6.2.2. Compact operators. A linear operator is bounded if and only if
it maps the unit ball to a bounded set or (the reader should verify that it is
equivalent) if and only if T maps every bounded set to a bounded set. To get
a subclass of operators with stronger properties one could therefore require
that every bounded set should be sent into a compact set:

DEFINITION 6.2.2. Let T : V →W be a linear operator between normed
spaces V and W . Then T is said to be compact if every bounded set A⊂V
has an image with compact closure (ie if T (A) is compact in W ).

Notice that T is bounded and hence continuous, if it is compact. (It is a
rather stronger fact that a compact operator, after restriction to say a ball of
its domain, is continuous not only with respect to the induced norm topol-
ogy,(as just observed), but also with respect to the so-called weak topology.
Perhaps for these reasons, compact operators are synonymously called com-
pletely continuous.)

As an example, the identity I is not a compact operator in any infinite di-
mensional Hilbert space H , for an orthonormal sequence is never a Cauchy
sequence, hence cannot have convergent subsequences. But the inclusion
operator C1([0,1]) ↪→C([0,1]) is compact (although this requires too many
efforts to be shown here). Similarly, H1(Ω) ⊂ L2(Ω) is a compact em-
bedding when Ω ⊂ Rn is bounded; cf Example 5.0.3–5.2.3 and the proof
further below.

A simpler example concerns the operators T : V →W of finite rank.

LEMMA 6.2.3. Let T ∈ B(V,W ) be an operator of finite rank between
normed spaces V , W . Then T is compact.

PROOF. There is a linear homeomorphism Φ : T (V ) → Fn for some
n ∈N, and T (V ) is closed in W . Given a bounded set A⊂V it follows that
T (A) ⊂ T (V ); hence Φ(T (A)) is well defined, it is bounded since T (A) is
bounded, and closed in Fn , ie compact. Since Φ−1 is continuous this yields
the compactness of T (A), and eventually also of T . �

More generally, there is a convenient way to write down numerous op-
erators, in fact, one for each sequence (λn). Indeed, let (en) be an orthonor-
mal basis for a Hilbert space H , and consider for each sequence (λn) in F
the operator T in H given by the expression

T x =
∞

∑
n=1

λn(x |en )en, (6.2.2)
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and by its ‘maximal’ domain

D(T ) =
{

x ∈ H
∣∣ ∞

∑
n=1

λn(x |en )en converges in H
}
. (6.2.3)

Notice by insertion of x = en that every λn is an eigenvalue of the defined
T . Moreover, simple properties such as boundedness and compactness are
also easy to verify:

THEOREM 6.2.4. Under the above hypotheses, the operator T given by
the formulae (6.2.2)–(6.2.3) is densely defined and linear, and it holds that

T ∈ B(H) ⇐⇒ (λn) ∈ `∞ (6.2.4)

T is compact ⇐⇒ λn → 0. (6.2.5)

In the affirmative case, ‖T‖B(H) = ‖(λn)‖`∞ .

PROOF. To see that D(T ) is dense, notice that T clearly is defined on
any finite linear combination of the en , hence on the dense set span(en);
linearity follows from the calculus of limits.

If |λn| ≤C for every n, then (λn(x |en )) is in `2 for all x∈H , so D(T ) =
H by Proposition 4.2.3; and T is bounded with ‖T‖ ≤ sup |λn| because

‖T x‖ ≤ (
∞

∑
n=1

|C(x |en )|2)1/2 ≤C‖x‖. (6.2.6)

Conversely, if T ∈ B(H), insertion of x = en shows that |λn| ≤ ‖T‖ .
Given that λn → 0, there is a sequence of compact operators (they have

finite rank)
Tkx = ∑

n≤k
λn(x |en )en. (6.2.7)

T is compact because Tk → T in B(H),

‖(T −Tk)‖2 = sup
‖x‖≤1

∑
n>k

|λn|2|(x |en )|2 ≤ sup
n>k

|λn|2 ↘ 0. (6.2.8)

If λn 6→ 0 there exist an ε > 0 and n1 < n2 < .. . such that |λnk |> ε for all
k. Since (enk) is orthonormal,

‖Ten j −Tenk‖
2 = ‖λn jen j −λnkenk‖

2 = |λn j |
2 + |λnk |

2 ≥ 2ε
2, (6.2.9)

so (Tenk) is not a Cauchy sequence. Therefore T ’s image of the unit ball in
H does not have compact closure, and T is thus not compact. �

Notice that T given by (6.2.2) is diagonalised in the sense that the co-
efficient in front of en only contains (x |en ), the nth coordinate of x with
respect to to basis (ek).

It will be seen later in the so-called Spectral Theorem, that every self-
adjoint, compact operator actually has the particularly nice form in (6.2.2).

As direct application of Theorem 6.2.4, this chapter is concluded with a
useful construction of a compact operator.
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EXAMPLE 6.2.5. Consider the Hilbert space `2(N) and the subspace

h1(N) = {(xk) ∈ `2(N) |∑(1+ k2)|xk|2 < ∞} (6.2.10)

(met in connection with Fourier series in Example 5.2.3). It is straightfor-
ward to see that h1 is a Hilbert space with respect to the norm

‖(xk)‖h1 = (∑(1+ k2)|xk|2)1/2. (6.2.11)

Clearly the injection h1 ↪→ `2 is continuous, for ‖(xk)‖`2 ≤ ‖(xk)‖h1 ;
but the identity I : h1 → `2 is actually even compact, and for this reason h1

is said to be compactly embedded into `2 .
The compactness follows from Theorem 6.2.4; indeed K given by

K(xk) = ((1+ k2)−1/2xk), (6.2.12)

is compact in `2 because (1+k2)−1/2 → 0 for k→∞; and K is an isometry
onto h1 , so K−1 : h1 → `2 is bounded. So, to any bounded sequence vn of
vectors in h1 , there is B > 0 for which

‖K−1vn‖`2 ≤ B for every n, (6.2.13)

and because vn = KK−1vn , where K is compact, there exists a subsequence
(vnp) converging in `2 . It follows that I is compact.





CHAPTER 7

Basic Spectral Theory

The idea behind spectral theory is that by representing the elements of
B(H) by a suitable subset of C, called the spectrum, one can get a useful
overview of the complicated behaviour such operators may have. This is in
analogy with the spectral lines used to describe the wawelengths entering
various (whitish) light rays.

However, in Linear Algebra an n×n-matrix is usually seen as an oper-
ator Cn →Cn and its spectrum consists of its complex eigenvalues (in order
that characteristic roots in C \R do not require special treatment). Hence
the above-mentioned idea is only really fruitful if spectra of complex num-
bers are allowed; and since only normal matrices are unitarily equivalent to
diagonal matrices, strong results can only be expected for certain subclasses
of B(H). Indeed, this leads one to the Spectral Theorem for self-adjoint,
compact operators in Theorem 7.2.3 below.

At no extra cost, the general definitions and basic results, even for un-
bounded operators, will be given first.

7.1. On spectra and resolvents

Let in the following H be a complex Hilbert space and T be a linear
operator in H , that is D(T ) ⊂ H . Recall that Z(T ) denotes the null-space
of T whilst R(T ) stands for its range.

It is a central notion to study the following operator Rλ (T ), which is
parametrised by certain λ ∈ C:

Rλ (T ) = (T −λ I)−1. (7.1.1)

More precisely, this is defined whenever it makes sense, so λ should be
such that T −λ I is injective and then D(Rλ (T )) = R(T −λ I).

Since T need not be everywhere defined, it might be worthwhile to write
out (7.1.1) in all details: the requirement is that

Rλ (T )(T x−λx) = x for every x ∈ D(T ) (7.1.2)

(T −λ I)Rλ (T )y = y for every y ∈ R(T −λ I). (7.1.3)

The operator Rλ (T ) is called the resolvent of T , because it (re)solves the
problem of finding, for given data y ∈ H , those x ∈ H for which

T x−λx = y. (7.1.4)
37
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Indeed, provided that λ is such that T − λ I is injective, any solution to
this equation is unique, and it exists if and only if y ∈ D(Rλ (T )); in the
affirmative case it is given by x = Rλ (T )y; cf (7.1.3).

For simplicity Rλ := Rλ (T ) when T is fixed. It is clear from the above
that Rλ exists if and only if λ is not an eigenvalue of T . However, in order
to have a name for those λ for which Rλ has nice properties, it is customary
to introduce two sets:

DEFINITION 7.1.1. 1◦ . A complex number λ belongs to the resolvent
set of T , denoted by ρ(T ), if Rλ exists, is densely defined and bounded (on
its domain R(T −λ I)).

2◦ . The spectrum of T is the complement of ρ(T ), ie σ(T ) := C\ρ(T ).

EXAMPLE 7.1.2. Even a simple case may be instructive: consider the
injection of a subspace IV : V ↪→ H , where V is dense in H (an often met
situation). Then it is clear that λ = 1 is an eigenvalue of IV because IV −
λ I ⊂ 0. In sharp contrast to this, any λ 6= 1 is in the resolvent set, Rλ (IV )
being multiplication by (1− λ )−1 on the dense set V (clearly Rλ is then
restriction to V of an element in B(H)).

For clarity it should be emphasised that Rλ for each λ ∈ ρ(T ) neces-
sarily has an extension by continuity to an operator in B(H). But when T
is closed, then Rλ itself is in B(H):

LEMMA 7.1.3. Let T be a closed linear operator in H and let λ ∈ ρ(T ).
Then Rλ is everywhere defined, ie D(Rλ ) = H.

PROOF. By the definition of resolvent set, it suffices to show that D(Rλ )
is closed. Let yn := (T −λ I)xn → y. Since xn = Rλ yn , it is straightforward
to see that (xn) is a Cauchy sequence. Hence xn → x for some x ∈H . Since
T −λ I is closed, the Closed Graph Theorem gives that x ∈D(T −λ I) with
(T −λ I)x = y. It follows that D(Rλ ) is closed. �

Some authors specify ρ(T ) by the requirement that Rλ (T ) should be-
long to B(H); since most operators in the applications are closed (if not
bounded), this usually gives the same subset of C by the above lemma.
However, the present definition is slightly more general and flexible.

In view of Definition 7.1.1 there are three different reasons why a given
number λ could belong to σ(T ).

• Either T −λ I is not injective.
• Or T − λ I is injective but far from surjective, in the sense that

D(Rλ ) 6= H .
• Or, finally, T −λ I is injective and Rλ is densely defined, but Rλ

is unbounded.
In the third case the criterion for boundedness of Rλ is whether there exists
some constant cλ > 0 such that

‖(T −λ I)x‖ ≥ cλ‖x‖ for all x ∈ D(T ). (7.1.5)
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Corresponding to these three possibilities, one says that λ is an eigen-
value of T (or belongs to σp(T ), the so-called point spectrum of T ), or
that λ is in the residual spectrum of T (written σres(T )), respectively in the
continuous spectrum of T (σcont(T )).

This gives a disjoint decomposition of σ(T ) as

σ(T ) = σp(T )∪σres(T )∪σcont(T ). (7.1.6)

One should observe that Rλ (T ) is defined on the set C\σp(T ), so that
it also makes sense as an operator in H for λ in σres(T )∪σcont(T ). The
resolvent set ρ(T ) is the smaller set where Rλ is densely defined and (7.1.5)
holds.

To demystify the notion of spectrum, it is shown now that one can read
off immediately what σ(T ) is when T is diagonalisable:

PROPOSITION 7.1.4. Let T be an operator in a Hilbert space H, with
orthonormal basis (en)n∈N , defined from a (not necessarily bounded) se-
quence (λn) in F as in Theorem 6.2.4; that is

T x =
∞

∑
n=1

λn(x |en )en. (7.1.7)

Then Λ = {λn | n ∈ N} equals the point spectrum of T , ie σp(T ) = Λ; the
residual spectrum is empty; and σcont(T ) = Λ̄\Λ. Consequently σ(T ) = Λ̄.

PROOF. Clearly Λ⊂ σp(T ), so let λ ∈ C\Λ. For every x ∈ D(T )

T x−λx =
∞

∑
n=1

(λn−λ )(x |en )en. (7.1.8)

So if T x−λx = 0, then (λ −λn)(x |en ) = 0 for every n, and this entails
x⊥ span(en), hence x = 0; so λ is not an eigenvalue, ie σp(T ) = Λ. Using
this for T ∗ , it follows that λ̄ /∈ σp(T ∗), ie Z(T ∗− λ̄ I) = (0), and for this
reason H = R(T −λ I). This means that σres(T ) = /0.

Let cµ = inf{|µ−λ | | λ ∈ Λ} for µ ∈ C. Notice that cµ > 0 is equiv-
alent to µ /∈ Λ̄. For all x ∈ D(T ) it is seen from (7.1.8) that

‖T x−µx‖ = (∑ |λn−µ|2|(x |en )|2)1/2 ≥ cµ‖x‖. (7.1.9)

So if µ ∈ Λ̄\Λ it follows that µ belongs to neither σp(T ) nor σres(T ) but,
in view of (7.1.5), and since cµ > 0, that µ ∈ σcont(T ). Conversely, if µ is
an element of the continuous spectrum, then by (7.1.5) it holds that cµ = 0,
so µ ∈ Λ̄; and µ /∈ Λ since it is not an eigenvalue. �

It is a fascinating programme of spectral theory to prove that the spec-
trum of an operator “behaves the like the operator does”. To explain this,
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consider the following types of operators in B(H):

T self-adjoint, T ∗ = T (7.1.10)

U unitary, U∗U = UU∗ = I (7.1.11)

P projection, P2 = P (7.1.12)

T positive, (T x |x)≥ 0 for every x ∈ H. (7.1.13)

The idea is to make replacements T  λ and T ∗ λ̄ , whereby λ ∈ σ(T )
can be arbitrary. For the four cases above this would give

λ̄ = λ , ie σ(T )⊂ R (7.1.14)

λ̄λ = 1, ie σ(U)⊂ {z ∈ C | |z|= 1} (7.1.15)

λ
2−λ = 0, ie σ(P)⊂ {0,1} (7.1.16)

λ ≥ 0, ie σ(T )⊂ [0,∞[ . (7.1.17)

These inferences are actually true, but in this chapter only the first case will
be treated, for simplicity’s sake.

REMARK 7.1.5. The four types above are all normal operators; an oper-
ator N ∈ B(H) is normal if it commutes with its adjoint, ie if N∗N = NN∗ .
At first sight, it is surprising that the above replacements for a normal oper-
ator gives the tautology λ̄λ = λλ̄ . But for one thing, if N is normal so is
N +zI for all z ∈C so that normal operators can have spectra “everywhere”
in C. Secondly, this is actually an indication that the class of normal op-
erators is a natural one to develop a spectral theory for. But for simplicity
focus will be restrained to the much smaller class of self-adjoint compact
operators here.

7.1.1. The self-adjoint case. For an operator T in a Hilbert space H
to be self-adjoint it is necessary that the adjoint should be defined, whence
that D(T ) should be dense in H . In this section, this denseness will be
understood whenever T is assumed to be self-adjoint.

For spectra one has the elementary observation that any eigenvalue of
a self-adjoint operator T is real, ie σp(T ) ⊂ R. Indeed, if T x = λx for a
non-trivial x, say with ‖x‖ = 1,

λ̄ = (x |λx) = (x |T ∗x) = (T x |x) = λ . (7.1.18)

Using this, one can show in a similar way that the eigenspaces of T are
orthogonal; ie Z(T −λ I)⊥ Z(T −µI) for λ 6= µ .

Furthermore, for T = T ∗ it holds that λ is an eigenvalue if and only if
λ̄ is, so for all λ ∈ C,

R(T −λ I)⊥ = Z(T − λ̄ I) = Z(T −λ I). (7.1.19)

One can now conclude the rather stronger and fundamental facts in
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PROPOSITION 7.1.6. For a densely defined operator T in H

T = T ∗ =⇒

{
σres(T ) = /0,

σ(T )⊂ R.
(7.1.20)

PROOF. For λ /∈σp(T ) it follows from (7.1.19) that R(T−λ I) is dense,
whence σres(T ) = /0. Since T = T ∗ the number (T x |x) is always real, so
(4.1.8) gives for real β

‖T x− iβx‖2 = ‖T x‖2 +‖βx‖2 +2Reiβ (T x |x)≥ |β |2‖x‖2. (7.1.21)

This formula also applies to T −αI for α ∈ R, since this is self-adjoint;
therefore T − (α + iβ )I with α ∈ R, β 6= 0 is injective and has dense
range (since σres(T ) = /0 has just been proved) and bounded inverse. Hence
ρ(T )⊃ (C\R). �

Another nice fact about self-adjoint operators is that the spectrum is
characterised by the existence of approximate eigenvectors: if λ ∈ C is
such that there exists a sequence (xn) in H with ‖xn‖ = 1 for every n and
such that ‖T xn−λxn‖ → 0, one calls the xn approximate eigenvectors cor-
responding to λ .

The number λ need not be an eigenvalue, but one has

PROPOSITION 7.1.7. Let T be a self-adjoint operator in a Hilbert space
H. Then λ ∈ σ(T ) if and only if there is a sequence (xn) of approximate
eigenvectors corresponding to λ .

PROOF. If such a sequence exists, (7.1.2) implies that Rλ is unbounded,
so λ ∈ σ(T ). Conversely, given that λ is in the point spectrum of T , the
claim is trivial for the sequence may be taken constantly equal to a nor-
malised eigenvector. Or, if λ ∈ σcont(T ), it follows from (7.1.5) that

0 = inf
{
‖T x−λx‖

∣∣ x ∈ H, ‖x‖ = 1
}

; (7.1.22)

hence there exists a sequence as desired. �

7.1.2. Examples. First a perspective is put on linear algebra from the
present point of view. Secondly it will be seen that eg differential operators
can have spectra that are much larger sets than the spectra met in linear
algebra; indeed even σ(T ) = C is possible. Lastly, also bounded operators
may have uncountable spectra.

EXAMPLE 7.1.8. Any linear map T : Cn → Cn may be represented by
a matrix, say with respect to the natural basis in Cn; the eigenvalues of T
is precisely the characteristic roots of the matrix. Repeating eigenvalues
according to the multiplicities, σp(T ) = {λ1, . . . ,λn }. When λ is not an
eigenvalue, T −λ I is injective and hence a surjection; moreover, Rλ (T ) is
in B(Cn), so λ is in the resolvent set then. Altogether T has pure point
spectrum and σ(T ) = {λ1, . . . ,λn } whilst ρ(T ) = C\{λ1, . . . ,λn }.



42 7. BASIC SPECTRAL THEORY

EXAMPLE 7.1.9. Consider ∂ = d
dt with domain C1([0,1]) as an opera-

tor in H = L2(]0,1[). Clearly (∂ −λ I)eλ t = 0 for every λ ∈ C; therefore
σp(∂ ) = C so that ∂ has pure point spectrum. The resolvent set is empty,
ρ(∂ ) = /0, for the spectrum of ∂ fills the entire complex plane.

EXAMPLE 7.1.10 (The one-sided shift operator). In B(`2(N)) there is
an operator T given by

T (x1,x2,x3, . . .) = (x2,x3, . . .). (7.1.23)

For every λ ∈C and x = (xn)∈ `2 , the equation (T −λ I)x = 0 is equivalent
to the system where x j+1 = λx j for every j ∈N. If only those x with x1 = 1
are considered, then this is equivalent to

x j+1 = λ
j for every j ∈ N; (7.1.24)

the sequence defined by this is in `2 if and only if ∑
∞
j=1 |λ j−1|2 < ∞, which

is the case precisely when |λ |< 1. It follows from this analysis that λ is an
eigenvalue of T if and only if |λ |< 1; hence σp(T ) is the open unit disk in
C.

Because ‖T x‖ = ‖x‖ holds if x1 = 0, it follows that ‖T‖ = 1. As a
consequence of results proved below, σ(T ) is a closed set contained in
{z ∈ C | |z| ≤ 1}. It was found above that σ(T ) is dense in this, so σ(T )
equals the closed unit disk.

7.1.3. Spectral theory for B(H). For an operator T ∈ B(H), where H
is a Hilbert space, there are a few facts on spectra and resolvent sets that
may be established without any further assumptions. Such results are very
convenient eg for the determination of specific spectra, as seen in Exam-
ple 7.1.10 above.

Notice that since any T ∈ B(H) is closed, Rλ (T ) ∈ B(H) for every
λ ∈ ρ(T ) because of Lemma 7.1.3.

PROPOSITION 7.1.11. Let H be a Hilbert space and T ∈ B(H). Then
the resolvent set of T is an open subset of C and the map ρ(T ) → B(H)
given by λ 7→ Rλ (T ) is continuous in the norm topology of B(H).

PROOF. If ρ(T ) = /0, it is open; so let µ ∈ ρ(T ). Then Rµ ∈ B(H) and
(T −µI)Rµx = x for every x ∈ H . Therefore every λ ∈ C gives

T −λ I = T −µI− (λ −µ)I = (T −µI)(I− (λ −µ)Rµ). (7.1.25)

Here the right hand side has an inverse in B(H) if both factors have that; by
the Neumann series this is the case if

‖(λ −u)Rµ‖ < 1. (7.1.26)

This holds for all λ such that |λ−µ|< ‖Rµ‖−1 , ie in a ball around µ . Thus
ρ(T ) is shown to consist of interior points only.
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When |λ − µ| < ‖Rµ‖ , one can invert both sides of the identity above
and subtract Rµ ; in this way,

‖Rλ −Rµ‖ = ‖
∞

∑
k=1

(λ −µ)kRk
µ‖ ≤

|λ −µ|‖Rµ‖
1−|λ −µ|‖Rµ‖

. (7.1.27)

This implies that ‖Rλ −Rµ‖ → 0 for λ → µ , so Rλ depends continuously
on λ as claimed. �

One can also prove that λ 7→ Rλ is holomorphic (in a specific sense),
but details are omitted here.

It is easy to imagine that boundedness of an operator T on H should
have consequences for the spectrum of T ; eg it would be natural to expect
that σ(T ) must be bounded for bounded T . But more than that holds:

PROPOSITION 7.1.12. Let T ∈ B(H) for some Hilbert space H. Then
σ(T ) is a compact set in C and it is contained in the closed ball of radius
‖T‖ and centre 0.

PROOF. In view of Proposition 7.1.11, compactness of σ(T ) follows if
it can be shown to be bounded. So it suffices to show that every λ with
|λ | > ‖T‖ is in ρ(T ). But for such λ the operator T −λ I = −λ (I− 1

λ
T )

has a bounded inverse, since 1
λ

T has norm less than 1. �

The ball referred to in this result is often called the norm ball of T .
There is another natural ball in C to consider for T ∈ B(H), namely the
smallest ball centred at 0, which contains σ(T ). To make this precise we
need

DEFINITION 7.1.13. For an operator T in a Hilbert space H , the spec-
tral radius of T is the number

r(T ) = sup{|λ | | λ ∈ σ(T )}. (7.1.28)

For T ∈B(H) it is seen from Proposition 7.1.12 that r(T )≤‖T‖ . More-
over, the supremum is attained because σ(T ) is compact, so B(0,r(T )) ⊃
σ(T ); no smaller ball has this property, whence B(0,r(T )) is the smallest
ball containing the spectrum of T , as desired.

REMARK 7.1.14. For normal T , that is T ∗T = T T ∗ , it is a cornerstone
of the theory that the two numbers are equal:

T is normal =⇒ r(T ) = ‖T‖. (7.1.29)

This result has many applications, eg in the spectral theorem of normal
operators (and also in applied mathematics).

It would however lead too far to prove this here. But for self-adjoint
compact operators, it will be proved as a substitute in the next section that
either ±‖T‖ is an eigenvalue (implying the above formula for such opera-
tors). Using this it is possible to give a relatively elementary proof of the
spectral theorem for such operators anyway.
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7.2. Spectra of compact operators

The main goal of this section is to prove the Spectral Theorem of com-
pact, self-adjoint operators on Hilbert spaces.

It will be clear further below that compact self-adjoint operators have
spectra consisting mainly of eigenvalues. Therefore it is natural to observe
already now that these (except possibly for 0) always have finite multiplic-
ity.

PROPOSITION 7.2.1. Let T be a compact operator on a Hilbert space
H. For every eigenvalue λ 6= 0 the corresponding eigenspace

Hλ =
{

x ∈ H
∣∣ T x = λx

}
(7.2.1)

has finite dimension, ie dimHλ < ∞.

PROOF. Assuming that Hλ has a sequence of linearly independent vec-
tors, there is even an orthonormal sequence (xn) in Hλ . By Pythagoras,
‖xn+k− xn‖ =

√
2, and since T |Hλ

just multiplies by λ 6= 0, the sequence
(T xn) has no fundamental subsequences. Therefore T is not compact. �

The next result is essential for the proof of the Spectral Theorem. It
holds quite generally, cf Remark 7.1.14, but in the context of compact op-
erators there is a rather elementary proof.

PROPOSITION 7.2.2. When T is a compact, self-adjoint operator on a
Hilbert space, then the spectral radius formula is valid, that is

r(T ) = ‖T‖, (7.2.2)

for either λ = ‖T‖ or λ =−‖T‖ is an eigenvalue of T . Moreover,

‖T‖ = sup
{
|(T x |x)|

∣∣ x ∈ H, ‖x‖ = 1
}

(7.2.3)

and the supremum is attained for an eigenvector in (at least) one of the
spaces H±‖T‖ .

PROOF. The expression for ‖T‖ was shown in Lemma 6.1.2, and it
suffices to show that the supremum is attained in the claimed way, for then
σ(T ) contains one of ±‖T‖ , so that ‖T‖ ≤ r(T ).

Take first a normalised sequence (xn) such that |(T xn |xn )| → ‖T‖ .
Then (T xn |xn ) has an accumulation point in {−‖T‖,‖T‖ }. Denoting any
of these by λ and extracting a subsequence (yn) for which (Tyn |yn )→ λ ,
it is seen that

‖Tyn−λyn‖2 = ‖Tyn‖2 + |λ |2−2Reλ (Tyn |yn )

≤ 2λ
2−2λ (Tyn |yn )↘ 0. (7.2.4)

Therefore (yn) is a sequence of approximate eigenvectors corresponding to
λ , whence λ ∈ σ(T ).

It follows that λ is an eigenvalue; for T = 0 this is trivial, so assume that
λ > 0. Because T is compact, it may be assumed that (yn) is such that (Tyn)
converges. However, lim(Tyn − λyn) = 0 so also (yn) converges, say to
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some z∈H . By continuity ‖z‖= 1 and T z = λ z, so λ is an eigenvalue; and
(T z |z) = λ so that the supremum is a maximum in the claimed way. �

THEOREM 7.2.3 (Spectral Theorem for Compact Self-adjoint Opera-
tors). Let H be a separable Hilbert space and T ∈ B(H) a compact, self-
adjoint operator. Then H has an orthonormal basis (e j) j∈J , with index set
J ⊂ N, of eigenvectors for T with corresponding eigenvalues λ j ∈ R.This
means that

∀x ∈ H : x = ∑
j
(x |e j )e j ∧ T x = ∑

j
λ j(x |e j )e j. (7.2.5)

In the affirmative case either dimH < ∞, or it holds that λ j → 0 and
σ(T ) = {0}∪{λ j | j ∈ N}.

For H of finite dimension, the statement is clearly that any T = T ∗ has

a diagonal matrix

(
λ1 0

. . .
0 λn

)
with respect to a certain basis.

When H is infinite dimensional, T can either have finite rank or the non-
zero λ j form a sequence which may be numbered such that |λ2| ≥ |λ2| ≥
· · · ≥ |λ j| ≥ · · ·> 0. (This will be done in the below proof.) However, with
such a convention (7.2.5) would not hold as it stands, but it would suffice
to add a vector x0 ∈ Z(T ) to the expansion of x, for in the sum yielding T x
only λ j 6= 0 enter then.

PROOF. 1◦ . The last claim is a consequence of Proposition 7.1.4.
2◦ . Notice that if Q ⊂ H is a closed, T -invariant subspace, then T |Q is

both self-adjoint and compact in B(Q). Indeed, (T x |y) = (x |Ty) holds in
particular for x, y ∈ Q, and if B ⊂ Q is a bounded set then T (B) ⊂ Q∩K
for some compact set K ⊂ H ; and Q∩K is compact since Q is closed.

3◦ . Consider the case in which, for some n ∈ N, there are eigen-
values |λ1| ≥ · · · ≥ |λn| with orthonormalised eigenvectors e1 ,. . . ,en to-
gether with closed, T -invariant subspaces Q1 ⊃ ·· · ⊃ Qn fulfilling Qk =
span(e1, . . . ,ek)⊥; and moreover, for k = 1,. . . ,n,

|λk|= max
{
|(T x |x)|

∣∣ x ∈ Qk−1, ‖x‖ = 1
}
. (7.2.6)

Observe that with Q0 = H this actually holds for n = 1, since firstly Propo-
sition 7.2.2 shows that (λ1,e1) exists and fulfils (7.2.6), secondly Q1 =
{e1 }⊥ is T -invariant because (T q |e1 ) = λ1(q |e1 ) = 0 does so for q∈Q1 .

Now Qn = {0} would imply H = span(e1, . . . ,en), and then (7.2.5)
would be evident. And if Qn 6= {0}, Proposition 7.2.2 applies to T |Qn in
view of 2◦ , and this gives a pair (λn+1,en+1) in R×Qn fulfilling (7.2.6)
for k = n + 1 and Ten+1 = λn+1en+1 , ‖en+1‖ = 1. Then the subspace
Qn+1 = span(e1, . . . ,en+1)⊥ is closed and T -invariant, and (7.2.6) implies
that |λn+1| ≤ |λn| while (e1, . . . ,en+1) is orthonormal (since en+1 ∈ Qn).

4◦ . For dimH = ∞ one may by 3◦ define λn , en inductively so that
(|λn|) is a decreasing, non-negative hence convergent sequence. But λn =
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‖Ten‖ → 0, because T is compact. σ(T ) is closed so it contains the limit
0.

5◦ . The main case is when |λn| > 0 for all n ∈ N. Then H = M⊕M⊥

for M = span{en | n ∈ N}. Here M⊥ = Z(T ), for since M⊥ ⊂ ∩nQn it
holds for any y ∈M⊥ that

∀n ∈ N : ‖Ty‖ ≤ ‖T‖B(Qn)‖y‖ ≤ |λn+1|‖y‖ ↘ 0, (7.2.7)

so T |M⊥ = 0; conversely any z ∈ Z(T ) equals m+m⊥ for m ∈M and m⊥ ∈
M⊥⊂ Z(T ), and here m = 0 because m = ∑αnen yields 0 = T z = ∑λnαnen
so that λnαn = 0 for all n.

Since M⊥ is separable (it is closed), it has a countable orthonormal basis
{ f1, f2, . . .}. The orthonormal set {e1, f1,e2, f2, . . .} is a basis for H , for if
x = m+ z with m ∈M and z ∈ Z(T ), then m = ∑αnen and z = ∑βn fn; then
the triangle inequality gives

x = lim
n→∞

n

∑
j=1

(α je j +β j f j). (7.2.8)

(It is understood that the terms β j f j only occur for j ≤ dimM⊥ .) Corre-
sponding to this basis there are the eigenvalues {λ1,0,λ2,0, . . .}. Renu-
merating both this and the basis for H one obtains (λn)n∈N and (en)n∈N .
The first part of (7.2.5) has just been proved above, but for x ∈ H ,

T (
∞

∑
j=1

(x |e j )e j) = lim
n→∞

n

∑
j=1

λ j(x |e j )e j =
∞

∑
j=1

λ j(x |e j )e j, (7.2.9)

so also the second part of (7.2.5) holds.
6◦ Finally, T has finite rank if and only if there is some N such that

λn = 0 for n > N . One may then proceed as in 5◦ with the modification that
M should equal span{e1, . . . ,eN }; details are left for the reader. �

It is clear now that (if the case dimH < ∞ is excluded) a self-adjoint,
compact operator T on H always has 0 as a very special point of it spec-
trum: indeed, the eigenvalues λ 6= 0 are isolated and have finite-dimensional
eigenspaces Hλ , by Proposition 7.2.1 — but 0 may have infinite multiplicity
if dimZ(T ) = ∞ (eg if rankT is finite), and in any case it is an accumula-
tion point since λn → 0 (even if T has finite rank). Therefore the point 0
has a character rather different from the rest of σ(T ) (in fact it belongs to
σess(T ), the so-called essential spectrum of T ).

In view of this the Spectral Theorem conveys two messages, one about
the structure of σ(T ) and the second being that such T may be diago-
nalised; cf (7.2.5).

The Spectral Theorem has various generalisations, eg a version for nor-
mal operators T ∈ B(H), but in such cases σ(T ) is usually uncountable, so
that the sum in (7.2.5) needs to be replaced by certain integrals. The reader
may consult the literature for this.
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REMARK 7.2.4. Notice a difference to [Ped00]: his statement implies
that self-adjoint finite rank operators are compact only if dimH < ∞, for
otherwise they would have a whole sequence of non-zero eigenvalues, hence
have (en) in R(T ) in contradiction with the finite rank.

EXAMPLE 7.2.5. As an application of the Spectral theorem, one can for
a compact, self-adjoint operator T ∈ B(H) discuss the solvability of

(T −λ I)x = y (7.2.10)

for given data y ∈ H . The interesting case is dimH = ∞, and additionally
λ 6= 0 is assumed (for even if T−1 exists it is unbounded).

In the notation of Theorem 7.2.3, (7.2.10) is equivalent to
∞

∑
n=1

(λn−λ )(x |en )en =
∞

∑
n=1

(y |en )en, (7.2.11)

hence to
∀n ∈ N : (λn−λ )(x |en ) = (y |en ). (7.2.12)

Since ( 1
λn−λ

) is a bounded sequence for λ /∈ σ(T ) and ((y |en ))∈ `2 , equa-
tion (7.2.10) is therefore uniquely solved by

x = ∑
λn 6=λ

(y |en )
λn−λ

en. (7.2.13)

This reflects the solution formula x = Rλ (T )y, valid for λ ∈ ρ(T ).
For λ ∈ σ(T ) \ {0} it is necessary for solvability of (7.2.10) that y ∈

R(T −λ I), ie y ∈ Z(T − λ I)⊥; with Z(T − λ I) = span(ei1, . . . ,eiN ) this
means

(y |ei j ) = 0 for j = 1, . . . ,N. (7.2.14)

This condition is also sufficient, for the right hand side of (7.2.11) is then
a sum over n /∈ { i1, . . . , iN }, ie over λn 6= λ , so that (7.2.13) also defines a
solution of (7.2.10) in this case (seen by simple insertion). This reflects the
invertibility of T −λ I on Z(T −λ I)⊥ .

The result in (7.2.13) is remarkable because it is a solution formula for
the “infinitely many equations with infinitely many unknowns” in (7.2.10).
(Notice that the discussion does not carry over to λ = 0, because the se-
quence ( 1

λn−λ
) is unbounded then.)

The reader may have noticed that the question of the closedness of
R(T −λ I) not only appeared implicitly above, but also disappeared again.
This indicates that the next statement should be true.

LEMMA 7.2.6. Let T = T ∗ be a compact operator on a Hilbert space
H and let λ 6= 0 be an eigenvalue. Then R(T −λ I) is closed in H.

PROOF. cλ := min{|µ − λ | | µ ∈ σ(T ) \ {λ}} > 0 since λ is not an
accumulation point of σ(T ). For a Cauchy sequence (yk) in R(T −λ I), let
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(xk) be defined by means of (7.2.13). Then

‖xk− xm‖2 ≤ c−2
λ

∞

∑
n=1

|(yk− ym |en )|2 = c−2
λ
‖yk− ym‖2, (7.2.15)

so that xk converges to some x in H and yn → (T −λ I)x. �

Using this lemma (and [Ped00, Prop. 5.2]) one can now most easily
derive a famous result.

EXAMPLE 7.2.7 (Fredholm’s Alternative). Let T be a self-adjoint, com-
pact operator on a separable Hilbert space H . For given data y ∈ H and
λ 6= 0, uniqueness of the solutions to

(T −λ I)x = y (7.2.16)

implies the existence of a solution x ∈ H . (This is the case if λ ∈ ρ(T ).)
Alternatively there are non-trivial solutions to the homogeneous equa-

tion (T −λ I)z = 0, and then there exist solutions x ∈ H of (7.2.16) if and
only if y⊥ Z(T −λ I). In the affirmative case the complete solution equals
x0 + Z(T −λ I) for some particular solution x0 of (7.2.16). (This holds for
λ ∈ σ(T ).)

Nowadays this conclusion is rather straightforward, but it was estab-
lished by Fredholm for integral operators around 1900, decades before the
notion of operators (not to mention their spectral theory) was coined in the
present concise form.

7.3. Functional Calculus of compact operators

Using the Spectral Theorem, it is now easy to give a precise meaning to
functions f (T ) of certain operators.

In order to do so, let B(σ(T )) denote the sup-normed space of bounded
functions σ(T )→ C.

THEOREM 7.3.1. Let T be a self-adjoint, compact operator on a sep-
arable Hilbert space H with an orthonormal basis (en) of H consisting of
eigenvectors of T , corresponding to eigenvalues λn in σ(T ).

Then any f ∈ B(σ(T )) gives rise to an operator f (T ) in B(H) defined
by

f (T )x = ∑
n

f (λn)(x |en )en. (7.3.1)

The map f 7→ f (T ) has the properties

‖ f (T )‖B(H) = ‖ f‖B(σ(T )) (7.3.2)

f (T )∗ = f̄ (T ) (7.3.3)

(λ f + µg)(T ) = λ f (T )+ µg(T ) (7.3.4)

f ·g(T ) = f (T )g(T ) (7.3.5)

for arbitrary f , g ∈ B(σ(T )) and λ , µ ∈ F.
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For infinite dimensional H and f ∈ B(σ(T )),

f (T ) is compact ⇐⇒ lim
t→0

f (t) = 0 ∧ [ f (0) = 0 if 0 ∈ σp(T )]. (7.3.6)

Since B(σ(T )) is a Banach algebra with involution (complex conju-
gation, f 7→ f̄ ), the content is that the map f 7→ f (T ) is an isometric ∗-
isomorphism of B(σ(T )) on a subalgebra of B(H).

PROOF. That f (T ) is well defined by (7.3.1) was seen earlier in Theo-
rem 6.2.4; the criterion for compactness is that f (λn)→ 0, and if 0 /∈ σp(T )
this amounts to limt→0 f (t) = 0, whereas when 0 is an eigenvalue f (0) = 0
must be added.

(7.3.2) is also a consequence of Theorem 6.2.4, and (7.3.4) is clear from
(7.3.1) by the calculus of limits. Concerning (7.3.3), note that Parseval’s
identity entails

( f (T )x |y) = ∑ f (λn)(x |en )(y |en ) = (x | f̄ (T )y). (7.3.7)

By the continuity of the inner product, and since f (λn)g(λn) = f ·g(λn),

f (T )g(T )x = ∑ f (λn)(g(T )x |en )en

= ∑ f ·g(λn)(x |en )en = f ·g(T )x, (7.3.8)

so the multiplicativity follows. �

To elucidate the efficacy of the functional calculus, it should suffice to
note that it immediately gives the solution formula (7.2.13). Indeed, for
λ 6= 0 the function

f (t) =

{
1

t−λ
for t ∈ σ(T ), t 6= λ ,

0 for t = λ (void for λ ∈ ρ(T )),
(7.3.9)

belongs to f ∈ B(σ(T )), and if x = f (T )y for some y ⊥ Z(T −λ I), then
(7.3.1) amounts to (7.2.13) and in addition

(T −λ I)x = ∑
λn 6=λ

f (λn)(y |en )(λn−λ )en = y (7.3.10)

so that x = f (T )y solves (7.2.10) (obviously uniquely for λ ∈ ρ(T )).

Since it is clear from (7.3.1) that each λn is an eigenvalue of f (T ), it is
not surprising that the image of f , that is f (σ(T )), is closely related to the
spectrum of f (T ):

COROLLARY 7.3.2 (The Spectral Mapping Theorem). Under hypothe-
ses as in Theorem 7.3.1,

σ( f (T )) = f (σ(T )) (7.3.11)

for all continuous f , that is for f ∈C(σ(T )).

It should be mentioned that if σ(T ) is a finite set, any function σ(T )→
C is automatically both bounded and continuous, so that the continuity as-
sumption on f would be void.
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PROOF. For λ /∈ f (σ(T )) the function g(t) = ( f (t)−λ )−1 belongs to
C(σ(T )), so λ ∈ ρ(T ) since eg.

g(T )( f (T )−λ I) = g · ( f −λ )(T ) = I. (7.3.12)

Together with the observation before the corollary this shows that

f (σp(T ))⊂ σ( f (T ))⊂ f (σ(T )). (7.3.13)

Either 0 ∈ σ(T ) \σp(T ) with λ j → 0 or σ(T ) is finite. In the latter case
(7.3.13) gives the conclusion, and in the former f (λ j)→ f (0) by the conti-
nuity, whence f (σ(T )) = f (σp(T )) and (7.3.11) follows. �

It is clear that the assumption that f should be continuous is essential
for the Spectral Mapping Theorem, for if

T (x1,x2, . . .) = (x1, . . . ,
xn
n , . . .) on `2, (7.3.14)

then σ(T ) = {0}∪{ 1
n | n ∈ N} so that f = 1]0,∞[ gives

f (σ(T )) = {0,1} 6= {1}= σ(I) = σ( f (T )). (7.3.15)

The theory extends in a natural way to so-called normal compact opera-
tors, but it requires more techniques. The interested reader is referred to the
literature, eg [Ped89].

7.4. The Functional Calculus for Bounded Operators

For a bounded, self-adjoint operator T ∈B(H) there is also a functional
calculus as exposed in eg. [RS80, Thm. VII.1].

For this one should note that inside C(σ(T )) the set P , consisting of all
restrictions of polynomials to σ(T ), is a dense set. This was seen in [Ped00]
in case σ(T ) is an interval of R; more generally, σ(T )⊂R since T is self-
adjoint, and any continuous function f on σ(T ) can then be extended to an
interval (by Tietze’s theorem [Ped89, 1.5.8]) and thereafter approximated.
(One can also apply the general Stone–Weierstrass theorem, although this
requires more efforts to establish first.)

In this set-up, the Spectral Mapping Theorem (7.3.2) is still valid, how-
ever the proof is omitted in [RS80] so one is given here:

PROPOSITION 7.4.1. For a self-adjoint operator T ∈ B(H),

σ( f (T )) = f (σ(T )) (7.4.1)

for all f ∈C(σ(T )).

PROOF. σ( f (T )) ⊂ f (σ(T )) follows since (7.3.12) also holds here.
Given that λ = f (µ) for some µ ∈ σ(T ), approximative eigenvectors are
contructed as follows. To each ε > 0 there is a polynomial P such that
| f (x)−P(x)| ≤ ε/3 for all x ∈ σ(T ). One can assume that f and P are
real-valued for otherwise the following argument applies to the real and
imaginary parts. Because (7.4.1) is known to hold for f = P, the number
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P(µ) is in σ(P(T )). Since P is real, P(T )∗ = P(T ) and there is then (cf.
the lectures) a unit vector x so that

‖(P(T )−P(µ)I)x‖ ≤ ε/3. (7.4.2)

Since f 7→ f (T ) is isometric, this leads to the conclusion that ‖( f (T )−
λ I)x‖ ≤ 2ε/3+‖(P(T )−P(µ)I)x‖ ≤ ε . Hence λ ∈ σ( f (T )). �





CHAPTER 8

Unbounded operators

The purpose of this chapter is to take a closer look at the unbounded
operators on Hilbert spaces and to point out some features that are useful
for the applications to classical problems in Mathematical Analysis.

8.1. Anti-duals

For a topological vector space V , a functional ϕ : V → F is called con-
jugate (or anti-) linear if ϕ is additive and for all α ∈ F and x ∈V ,

ϕ(αx) = ᾱϕ(x). (8.1.1)

The anti-dual space V ′ consists of all anti-linear functionals on V ; it is
occasionally handy. Clearly V ′ is a subspace of the vector space F (V,F)
of all maps V → F. Instead of redoing functional analysis for the anti-linear
case, it is usually simpler to exploit that the involution on F (V,F) given by
f 7→ f̄ (complex conjugation) maps the dual space V ∗ bijectively onto V ′ .

Using 〈 ·, · 〉 to denote also the action of anti-linear functionals, by defi-
nition of ϕ̄ ,

〈v, ϕ 〉= 〈v, ϕ̄ 〉 for all v ∈V, ϕ ∈V ∗. (8.1.2)

However, on the space V ′ each vector v∈V defines the functional ϕ 7→ϕ(v)
(so that V ⊂ (V ′)∗). Hence it is natural to write (with interchanged roles)

ϕ(v) = 〈ϕ, v〉 for ϕ ∈V ′, v ∈V. (8.1.3)

Using this for a Hilbert space H , it is easily seen that
• H ′ endowed with ‖ϕ‖ = sup{|〈x, ϕ 〉| | x ∈ H, ‖x‖ ≤ 1} is a Ba-

nach space isometrically, but anti-linearly isomorphic to H∗;
• there is a linear, surjective isometry Φ : H → H ′ fulfilling

〈Φ(x), y〉= (x |y) for all x,y ∈ H. (8.1.4)

• H ′ is a Hilbert space since (ξ |η )H ′ := (Φ−1(ξ ) |Φ−1(η))H is an
inner product inducing the norm. H and H ′ are unitarily equivalent
hereby.

For T ∈ B(H1,H), where H1 and H are two Hilbert spaces, there is a
unique T ′ ∈ B(H ′,H ′

1) such that

〈T ′x, y〉= (x |Ty) for x ∈ H, y ∈ H1. (8.1.5)

Indeed, T ′ = Φ1T ∗ when T ∗ ∈ B(H,H1) is the usual Hilbert space ad-
joint of T and Φ1 is the isomorphism H1 → H ′

1 , for (x |Ty) = (T ∗x |y) =
〈Φ1(T ∗x), y〉.

53
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8.2. Lax–Milgram’s lemma

Although unbounded operators on a Hilbert space in general are difficult
to handle, they are manageable when defined by sesqui-linear forms, for
there is a bijective correspondence (explained below) between the bounded
sesqui-linear forms on H and B(H); this allows one to exploit the bounded
case at the expense of introducing auxiliary Hilbert spaces.

In this direction Lax–Milgram’s lemma is the key result. There are,
however, a handful of conclusions to be obtained under this name. But it all
follows fairly easily with just a little prudent preparation.

Let H be a fixed Hilbert space in the sequel. It is fruitful to commence
with the following three observations:

(I) It is necessary to consider Hilbert spaces V densely injected into
H ,

V ↪→ H densely, (8.2.1)

meaning that V is a dense subspace of H , and that V is endowed
with an inner product ( · | ·)V such that V is complete and that there
exists a constant C fulfilling

‖v‖V ≥C‖v‖H for all v ∈V. (8.2.2)

To elucidate the usefulness of this, note that if T is a densely de-
fined, closed operator in H , then D(T ) is a Hilbert space densely
injected into H .

(II) It is convenient to consider the anti-duals H ′ and V ′ , for this gives
a linear isometry A : V →V ′ such that

〈Av, w〉= (v |w)V for all v,w ∈V, (8.2.3)

identifying any v ∈ V with a functional in V ′ . (The anti-linear
isometry V → V ∗ would be less useful for, say linear differential
operators.)

(III) To every sesqui-linear form s : V ×V → F which is bounded, ie
for some constant c

|s(v,w)| ≤ c‖v‖V‖w‖V for all v,w ∈V, (8.2.4)

there corresponds a uniquely determined S∈B(V,V ′) such that for
all v, w in V

s(v,w) = 〈Sv, w〉. (8.2.5)

In addition to (I), note that when I : V ↪→ H densely, then

H ′ ↪→V ′ densely. (8.2.6)

Indeed, the adjoint I′ of the map I in (8.2.1) is injective and has dense range
(as the reader should verify) in view of the formula

〈 I′x, v〉V ′×V = (x | Iv)H = (x |v) for x ∈ H, v ∈V. (8.2.7)
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Here H ′ is identified with H for simplicity’s sake; this gives also the very
important structure

V ⊂ H ⊂V ′. (8.2.8)
One can therefore, to any s as in (III) above and its associated operator
S ∈ B(V,V ′) define an operator T in H simply by restriction:

D(T ) = S−1(H)
T = S|D(T )

}
(8.2.9)

It is easy to see that (8.2.9) coincides with a definition of T as the operator
given by

D(T ) =
{

u ∈V
∣∣ ∃x ∈ H∀v ∈V : s(u,v) = (x |v)H

}
Tu = x.

}
(8.2.10)

In these lines, the notation in the latter is explained by the former. To check
(8.2.10), note that for u∈D(T ) there is some x∈H so that Su = I′x, whence
for v ∈V , by (8.2.7),

s(u,v) = 〈Su, v〉= 〈 I′x, v〉= (x |v)H . (8.2.11)

The other inclusion is shown similarly.
In general T above is an unbounded operator in H . It is called the

operator associated with the triple (H,V,s), or the Lax–Milgram-operator
adjoined to (H,V,s). Moreover, T is also said to be variationally defined,
because the definition in (8.2.10) occurs naturally in the calculus of varia-
tions (where the goal is to find extrema of specific examples of s).

It is customary, when referring to triples (H,V,s), to let it be tacitly
assumed that V is densely injected into H and that s is bounded on V .

Thus motivated, a few properties of sesqui-linear forms are recalled.
First of all there is to any form s on V an adjoint sesqui-linear form s∗

defined by
s∗(v,w) = s(w,v) for v,w ∈V. (8.2.12)

s itself is called symmetric if s≡ s∗; for F = C this takes place if and only
if s(v,v) is real for all v ∈V (by polarisation). Moreover, s gives rise to the
forms

sRe(v,w) = 1
2(s(v,w)+ s∗(v,w)) (8.2.13)

sIm(v,w) = 1
2i(s(v,w)− s∗(v,w)) (8.2.14)

that are both symmetric (but may take complex values outside the diagonal,
whence the notation is a little misleading).

Using (III) on s∗ , there is a unique S̃ ∈ B(V,V ′) such that for v, w ∈V ,

s∗(v,w) = 〈 S̃v, w〉. (8.2.15)

Applying (8.2.10) to the operator T̃ defined from (H,V,s∗), it follows
when T is densely defined that T̃ ⊂ T ∗ .
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The form s is said to be V -elliptic if there exists a constant c0 > 0 such
that

Res(v,v)≥ c0‖v‖2
V for all v ∈V ; (8.2.16)

s is V -coercive if there exist c0 > 0 and k ∈ R such that

Res(v,v)≥ c0‖v‖2
V − k‖v‖2

H for all v ∈V (8.2.17)

Notice that these properties carry over to the adjoint form s∗ and to sRe ,
with the same constants.

To elucidate the strength of these concepts, note that (8.2.16) implies
that

‖Tu‖H ≥ c0‖u‖V for u ∈ D(T ). (8.2.18)

So T is necessarily injective and the range R(T ) is closed in H (as seen
from (8.2.10)). Coerciveness gives operators that are only slightly less well
behaved, and this class furthermore absorbs most of the perturbations of
elliptic forms one naturally meets in the study of partial differential equa-
tions.

V -elliptic forms give rise to particularly nice operators:

PROPOSITION 8.2.1. Let (H,V,s) fulfil that s is V -elliptic. Then the
associated operator is a linear homeomorphism S : V →V ′ .

PROOF. For s elliptic and symmetric, s(·, ·) is an inner product on V .
This gives a new Hilbert space structure on V , for the norm

√
s(v,v) is

equivalent to ‖ · ‖V (by the boundedness of s and (8.2.16)) so that V is
complete. By construction S is the linear isometry that identifies V and V ′ .

In the non-symmetric, elliptic case one has

‖Sv‖V ′ ≥ c0‖v‖V for all v ∈V, (8.2.19)

so that S is injective and has closed range. But since S̃ is injective by a
similar argument, the formula

〈Su, v〉= s∗(v,u) = 〈 S̃v, u〉, for u,v ∈V, (8.2.20)

implies that R(S)⊥ = {0}. Therefore R(S) = V , and by the open mapping
theorem S−1 is continuous. �

One should observe from the proof, that for a symmetric, elliptic form
s, the operator S may be taken as the well-known isometric isomorphism
between V and V ′; this only requires a change of inner product on V , which
leaves the Banach space structure invariant, however.

When discussing the induced unbounded operators on H , the coercive
case gives operators with properties similar to those in the elliptic case;
cf the below result. Note however, the difference that the latter case yields
operators that extend to homeomorphisms from V to V ′ by the above propo-
sition.
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The next result is stated as a theorem because of its fundamental impor-
tance for the applications of Hilbert space theory to say, partial differential
operators. For the same reasons all assumptions are repeated.

THEOREM 8.2.2 (Lax–Milgram’s lemma). Let the triple (H,V,s) be
given with complex Hilbert spaces V and H, with V ↪→ H densely, and
with s a bounded sesqui-linear form on V . Denote by T the associated
operator in H. When s is V -coercive, ie fulfils (8.2.17), then T is a closed
operator in H with D(T ) dense in V (hence dense in H too) and with lower
bound m(T ) >−k; in fact

{λ | Reλ ≤−k} ⊂ ρ(T ) (8.2.21)

so that T −λ I is a bijection from D(T ) onto H whenever Reλ ≤−k.
Furthermore the operator associated with s∗ equals T ∗ , the adjoint on

H. And if s is symmetric, then T is self-adjoint and ≥−k.

PROOF. Consider first k = 0, the elliptic case, and let S : V →V ′ be the
homeomorphism determined by s. Because H is dense in V ′ , it is carried
over to a dense set (=D(T )) in V by S−1 . Since S extends T , it is straight-
forward to check that T is closed (using (8.2.6)). Now T ∗ is well defined
and T ∗ ⊃ T̃ as seen above. But T ∗ is injective, since the surjectivity of S
entails R(T ) = H , and T̃ is surjective by the same argument applied to s∗ .
Therefore T ∗ = T̃ , showing the claim on T ∗ .

Because (Tu |u)H = s(u,u) for u ∈ D(T ), it is clear from (8.2.16) that
m(T ) and m(T ∗) both are numbers in [c0C2,∞[ when C is the constant in
(8.2.2). Since c0C2 > 0 this yields the inclusion for the resolvent set in
(8.2.21) for the case k = 0 (and hence the statement after (8.2.21)).

For k 6= 0 the form s(·, ·)+k( · | ·)H is elliptic, so the above applies to the
first term in the splitting T = (T +kI)−kI . The conclusions on the domain,
the closedness, the adjoint and the resolvent set of T are now elementary to
obtain. �

EXAMPLE 8.2.3. For H = L2(Ω) and V = H1
0 (Ω) it is straightforward

to see that s(u,v) = ∑
n
j=1(D ju |D jv)L2(Ω) is elliptic on V . The associated

operator is the so-called Dirichét realisation −∆D of the Laplace opera-
tor; this means that as an unbounded operator in L2(Ω) a function u is in
D(−∆D) if and only if it belongs to H1

0 (Ω) and for some f (= −∆D u) in
L2(Ω) fulfils

−∆u = f in Ω (8.2.22)

u|∂Ω = 0 on ∂Ω. (8.2.23)

The solution operator for this boundary problem is −∆
−1
D . By the theory

this extends to H−1(Ω), and in fact −∆D equals the abstract isomorphism
between H1

0 (Ω) and its anti-dual H−1(Ω), when the Hilbert space structure
is suitably chosen.





CHAPTER 9

Further remarks

9.1. On compact embedding of Sobolev spaces

Below follows a proof of the fact that the first-order Sobolev space
H1(Ω) is compactly embedded into L2(Ω), provided Ω⊂ Rn is a bounded
open set — a cornerstone result in the analysis of boundary problems of dif-
ferential equations. Although one can go much further with results of this
type (with the necessary technical preparations), we stick with this single
result here, partly because it often suffices, partly because the reader should
be well motivated to see a short proof of such an important, non-trivial re-
sult.

As a useful preparation, let us show the claim in Example 5.2.3, that
functions u in H1(T), interpreted as the periodic subspace of H1(Q) for
Q =]−π,π[n , are characterised by their Fourier coefficients.

For a more precise statement, recall first that the Fourier transformation

Fu = (ck)k∈Zn, with ck = (u |ek ), (9.1.1)

is an isometry L2(Q)→ `2(Zn). Secondly there is the Hilbert space h1(Zn)
of those sequences (xk) in `2(Zn) for which

‖(xk)‖h1 := ( ∑
k∈Zn

(1+ k2
1 + · · ·+ k2

n)|xk|2)1/2 < ∞; (9.1.2)

cf Example 6.2.5. Now the claim is that any (ck) in `2 is in F (H1(T)) if
and only if the sum in (9.1.2) is finite; and this is a consequence of

LEMMA 9.1.1. There is a commutative diagram

H1(T) I−−−→ L2(Q)

F

y yF

h1(Zn) −−−→
I

`2(Zn),

(9.1.3)

where F is an isometry in both columns

PROOF. By repeated use of Parseval’s identity,

‖u‖2
H1 = ∑(|ck|2 + |(D1u |ek )|2 + · · ·+ |(Dnu |ek )|2), (9.1.4)

so it follows that ‖Fu‖h1 = ‖u‖H1 if and only if

(D ju |ek ) = k jck for all j = 1, . . . ,n; k ∈ Zn. (9.1.5)
59



60 9. FURTHER REMARKS

To show this, it is clear for u ∈ C∞(Q) that, with the splitting x = (x′,xn)
and Q′ =]−π,π[n−1 ,∫

Q′

− i(−1)kn

eik′·x′ (u(x′,π)−u(x′,−π))dx′ =
∫

Q
Dn(uek)dx

= (Dnu |ek )− (u |kek )
(9.1.6)

If an arbitrary u ∈ H1(T) is approximated in H1(Q) by a sequence um in
C∞(Q), this identity applies to each um; since um → u and Dnum → Dnu
in the topology of L2 one may pass to the limit on the right hand side, and
by continuity of the trace operators also the left hand side converges for
m → ∞; there the limit is zero. This shows (9.1.5) for j = n; the other
values of j are analogous.

By the above, F is isometric and hence injective on H1(T); but any
(ck) in h1 defines a function u ∈ L2(Q) with D ju = ∑k jckek (by continuity
of D j in D ′), and here the right hand side is in L2 . �

The reader should observe that the embedding of H1(T) into L2(Q) in
the first row of (9.1.3) is compact; this follows from the diagram and the
earlier result that h1 ↪→ `2 is compact; cf Example 6.2.5.

That also the larger space H1(Q) is compactly embedded into L2(Q) is
now a consequence of

THEOREM 9.1.2. For every bounded open set Ω ⊂ Rn the embedding
H1(Ω) ↪→ L2(Ω) is a compact operator.

PROOF. Clearly Ω ⊂ ]−R,R[n =: QR for all sufficiently large R > 0.
The above carries over to this cube if on the torus TR = Rn/QR one consid-
ers ek(x) = cR exp(2π ik · x/R) for some suitable cR; so H1(TR) ↪→ L2(QR)
is compact also for such R.

Given any bounded sequence in H1(Ω) with Ω⊂QR , it may be taken as
restriction of a sequence in H1(Q3R), for which the supports are contained
in Q2R , so that the sequence is in H1(T3R). Therefore there exists a sub-
sequence converging in L2(Q3R), and a fortiori the restricted subsequence
converges in L2(Ω).

�
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Warszawa, 1932.
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