Notes on Functional Analysis

Jon Johnsen

Abstract

The present set of notes are written to support our students at the mathematics 4 and 5 levels.

Contents

Chapter 1. Introduction 1
Chapter 2. Topological and metric spaces 3
2.1. Rudimentary Topology 3
2.2. Metric and topological concepts 4
2.3. An example of density: uniform approximation by polynomials 6
Chapter 3. Banach spaces 9
Chapter 4. Hilbert spaces 13
4.1. Inner product spaces 13
4.2. Hilbert spaces and orthonormal bases 16
4.3. Minimisation of distances 20
4.4. The Projection Theorem and self-duality 21
Chapter 5. Examples of Hilbert spaces. Fourier series. 23
5.1. Examples of orthonormal bases. 24
5.2. On Fourier series 25
Chapter 6. Operators on Hilbert spaces 31
6.1. The adjoint operator 31
6.2. Compact operators 32
Chapter 7. Basic Spectral Theory 37
7.1. On spectra and resolvents 37
7.2. Spectra of compact operators 44
7.3. Functional Calculus of compact operators 48
7.4. The Functional Calculus for Bounded Operators 50
Chapter 8. Unbounded operators 53
8.1. Anti-duals 53
8.2. Lax-Milgram's lemma 54
Chapter 9. Further remarks 59
9.1. On compact embedding of Sobolev spaces 59
Bibliography 61

CHAPTER 1

Introduction

Functional Analysis is a vast area within mathematics. Briefly phrased, it concerns a number of features common to the many vector spaces met in various branches of mathematics, not least in analysis. For this reason it is perhaps appropriate that the title of the topic contains the word "analysis".

Even though the theory is concerned with vector spaces, it is not at all the same as linear algebra; it goes much beyond it. This has a very simple explanation, departing from the fact that mainly the infinite dimensional vector spaces are in focus. So, if V denotes a vector space of infinite dimension, then one could try to carry over the succesful notion from linear algebra of a basis to the infinite dimensional case. That is, we could look for families $\left(v_{j}\right)_{j \in J}$ in V such that an arbitrary vector $v \in V$ would be a sum

$$
\begin{equation*}
v=\sum \lambda_{j} v_{j} \tag{1.0.1}
\end{equation*}
$$

for some uniquely determined scalars λ_{j}. However, although one may add two or any finite number of vectors in V, we would need to make sense of the above sum, where the number of summands would be infinite in general. Consequently the discussion of existence and uniqueness of such decompositions of v would have to wait until such sums have been defined.

More specifically, this indicates that we need to define convergence of infinite series; and so it seems inevitable that we need to have a metric d on V. (One can actually make do with a topology, but this is another story to be taken up later.) But given a metric d, it is natural to let (1.0.1) mean that $v=\lim _{j \rightarrow \infty}\left(\lambda_{1} v_{1}+\cdots+\lambda_{j} v_{j}\right)$ with respect to d.

Another lesson from linear algebra could be that we should study maps $T: V \rightarrow V$ that are linear. However, if T is such a linear map, and if there is a metric d on V so that series like (1.0.1) make sense, then T should also be linear with respect to infinite sums, that is

$$
\begin{equation*}
T\left(\sum \lambda_{j} v_{j}\right)=\sum \lambda_{j} T v_{j} \tag{1.0.2}
\end{equation*}
$$

This is just in order that the properties of V and T play well together. But it is a consequence, however, that (1.0.2) holds if T is merely assumed to be a continuous, linear map $T: V \rightarrow V$.

This indicates in a clear way that, for vector spaces V of infinite dimension, various objects that a priori only have an algebraic content (such as bases or linear maps) are intimately connected with topological properties (such as convergence or continuity). This link is far more important for the
infinite dimensional case than, say bases and matrices are - the study of the mere connection constitutes the theory. ${ }^{1}$

In addition to the remarks above, it has been known (at least) since the milestone work of Stephan Banach [Ban32] that the continuous linear maps $V \rightarrow \mathbb{F}$ from a metric vector space V to its scalar field \mathbb{F} (say \mathbb{R} or \mathbb{C}) furnish a tremendous tool. Such maps are called functionals on V, and they are particularly useful in establishing the abovementioned link between algebraic and topological properties. When infinite dimensional vector spaces and their operators are studied from this angle, one speaks of functional analysis - not to hint at what functionals are (there isn't much to add), but rather because one analyses by means of functionals.

[^0]
CHAPTER 2

Topological and metric spaces

As the most fundamental objects in functional analysis, the topological and metric spaces are introduced in this chapter. However, emphasis will almost immediately be on the metric spaces, so the topological ones are mentioned for reference purposes.

2.1. Rudimentary Topology

A topological space T is a set T considered with some collection τ of subsets of T, such that τ fulfils

$$
\begin{gather*}
T \in \tau, \quad \emptyset \in \tau \tag{2.1.1}\\
\bigcap_{j=1}^{k} S_{j} \in \tau \text { for } S_{1}, \ldots, S_{k} \in \tau \tag{2.1.2}\\
\bigcup_{i \in I} S_{i} \in \tau \text { for } S_{i} \in \tau \text { for } i \in I ; \tag{2.1.3}
\end{gather*}
$$

hereby I is an arbitrary index set (possibly infinite). Such a family τ is called a topology on T; the topological space T is rather the pair (T, τ). A trivial example is to take $\tau=\mathscr{P}(T)$, the set of all subsets of T, which clearly satisfies the above requirements.

When τ is fixed, a subset $S \subset T$ is called an open set of T if $S \in \tau$; and it is said to be closed if the complement of S is open. The closure, or closed hull, of S is the smallest closed subset containing S, written \bar{S}. The interior of S, denoted S°, is the largest open set $O \subset S$. A set U is called a neighbourhood of a point $x \in T$ if there is some open set O such that $x \in U \subset O$. On any subset $A \subset T$ there is an induced topology $\alpha=\{A \cap O \mid$ $O \in \tau\}$.

In this setting, a subset $K \subset T$ is compact, if every open covering of K contains a finite subcovering; that is, whenever $K \subset \bigcup_{i \in I} O_{i}$ where $O_{i} \in \tau$ for every $i \in I$, then there exist some i_{1}, \ldots, i_{N} such that also $K \subset O_{i_{1}} \cup \cdots \cup$ $O_{i_{N}}$. In addition, T itself is a connected space, if it is not a disjoint union of two non-trivial open sets, that is if $T=O_{1} \cup O_{2}$ for some $O_{1}, O_{2} \in \tau$ implies that either $O_{1}=\emptyset$ or $O_{2}=\emptyset$.

The space T is called a Hausdorff space, and τ a Hausdorff topology, if to different points x and y in T there exists disjoint open sets O_{x} and O_{y} such that $x \in O_{x}$ and $y \in O_{y}$ (then τ is also said to separate the points in T).

Using open sets, continuity of a map can also be introduced:

Definition 2.1.1. For topological spaces (S, σ) and (T, τ), a map $f: S \rightarrow T$ is said to be continuous if $f^{-1}(O) \in \sigma$ for every $O \in \tau$.

Here $f^{-1}(O)$ denotes the preimage of O, ie $f^{-1}(O)=\{p \in S \mid f(p) \in$ $O\}$. When f is a bijection, so that the inverse map $f^{-1}: T \rightarrow S$ is defined, then f is called a homeomorphism if both f and f^{-1} are continous with respect to the topologies σ, τ.

REMARK 2.1.2. The notion of continuity depends heavily on the considered topologies. Indeed, if $\sigma=\mathscr{P}(S)$ then every map $f: S \rightarrow T$ is clearly continuous; the same conclusion is valid if $\tau=\{\emptyset, T\}$.

2.2. Metric and topological concepts

Most topological spaces met in practice have more structure than just a topology; indeed, it is usually possible to measure distances between points by means of metrics:

A non-empty set M is called a metric space when it is endowed with a map $d: M \times M \rightarrow \mathbb{R}$ fulfilling, for every x, y and $z \in M$,

$$
\begin{align*}
& \text { (d1) } d(x, y) \geq 0 \text {, and } d(x, y)=0 \text { only for } x=y, \tag{2.2.1}\\
& \text { (d2) } d(x, y)=d(y, x), \tag{2.2.2}\\
& \text { (d3) } d(x, z) \leq d(x, y)+d(y, z) . \tag{2.2.3}
\end{align*}
$$

Such a map d is said to be a metric on M; stricly speaking the metric space is the pair (M, d). The inequality (d3) is called the triangle inequality.

The main case of interest is when the set is a vector space V on which there is a norm $\|\cdot\|$, so that d is the induced metric $d(x, y)=\|x-y\|$. However, for clarity, this chapter will review some necessary prerequisites from the theory of abstract metric spaces (but this will not in general be studied per se).

In a metric space (M, d) the open ball centered at $x \in M$, with radius $r>0$ is the set

$$
\begin{equation*}
B(x, r)=\{y \in M \mid d(x, y)<r\} . \tag{2.2.4}
\end{equation*}
$$

A subset $A \subset M$ is said to be open, if to every $x \in A$ there is some $r>0$ such that $B(x, r) \subset A$ (such x are called interior points of A). It straightforward to check that every open ball is an open set and that, moreover, the collection τ of open sets is a topology as defined in Section 2.1.

By referring to the general definitions in Section 2.1, notions such as closed and compact sets in M now also have a meaning. Whether a subset $A \subset M$ is, say closed or not, this is a topological property of A in the sense that it may be settled as soon as one knows the open sets, that is knows the topology τ.

However, some properties are not topological, but rather metric in the sense that they depend on which metric M is endowed with. For example, $A \subset M$ is called bounded if there is some open ball $B(x, r)$ such that $A \subset$
$B(x, r)$. But it is not difficult to see that

$$
\begin{equation*}
d^{\prime}(x, y)=\frac{d(x, y)}{1+d(x, y)} \tag{2.2.5}
\end{equation*}
$$

in any case defines a metric on M and that the two metrics d and d^{\prime} give rise to the same topology on M; but since $d^{\prime}(x, y)<1$ for all x, y it is clear that every $A \subset M$ is bounded in $\left(M, d^{\prime}\right)$. (In particular \mathbb{R} is unbounded with respect to $d(x, y)=|x-y|$, while bounded with respect to $d^{\prime}(x, y)=$ $\frac{|x-y|}{1+|x-y|}$.)

Another example of a topological property is convergence of a sequence:
Definition 2.2.1. A sequence $\left(x_{n}\right)$ in a metric space M is convergent if there is some $x \in M$ for which $d\left(x_{n}, x\right) \rightarrow 0$ for $n \rightarrow \infty$. In this case x is called the limit point of $\left(x_{n}\right)$, and one writes $x_{n} \rightarrow x$ or $x=\lim _{n \rightarrow \infty} x_{n}$.

Since the requirement for convergence is whether, for every $\varepsilon>0$, it holds eventually that $x_{n} \in B(x, \varepsilon)$, convergence is a topological property.

Basic exercises show that the limit point of a sequence is unique (if it exists), and that every convergent sequence is a so-called fundamental sequence, or Cauchy sequence:

Definition 2.2.2. In a metric space (M, d) a sequence is a Cauchy sequence if to every $\varepsilon>0$ there exists some $N \in \mathbb{N}$ such that $d\left(x_{n}, x_{m}\right)<\varepsilon$ for all $n, m>N$.

The space (M, d) itself is said to be complete if every Cauchy sequence is convergent in M.

Completeness is another metric property. Eg \mathbb{R} is incomplete if one uses the metric $d(x, y)=|\arctan x-\arctan y|$, which moreover gives the usual topology on \mathbb{R}.

For many reasons it is rather inconvenient that not all metric spaces are complete. Although this cannot be changed, there is a remedy in the fact that every metric space has a completion, as we shall see below.

In a metric space M, one subset A is said to be everywhere dense, or just dense, in another subset B if to every point $b \in B$ one can find points of A arbitrarily close to b; that is if every ball $B(b, \delta)$ has a non-empty intersection with A. Rephrasing this one has

Definition 2.2.3. For subsets A and B of M, one calls A dense in B if $B \subset \bar{A}$.

As an example, \mathbb{Q} and $\mathbb{R} \backslash \mathbb{Q}$ are dense in one another; notice that these sets are disjoint and that the definition actually allows this.

By abuse of language, a sequence $\left(x_{n}\right)$ in M is called dense if its range $\left\{x_{n} \mid n \in \mathbb{N}\right\}$ is dense in M.

The notion of denseness is very important: for example it allows

Definition 2.2.4. A completion of a metric space (M, d) is a pair $\left(M^{\prime}, T\right)$ consisting of a complete metric space $\left(M^{\prime}, d^{\prime}\right)$ and an isometry T of M onto a dense subspace $T(M)$ of M^{\prime}.

In view of the next theorem, one speaks about the completion of M.
THEOREM 2.2.5. To any metric space (M, d) there exists a completion, and it is uniquely determined up to isometry.

Proof. Let C be the vector space of continuous bounded maps $M \rightarrow \mathbb{R}$. This is complete with the metric $\sup _{M}|f-g|$.

To get a map $M \rightarrow C$, one can set $F_{x}(y)=d(x, y)-d(m, y)$ for a fixed $m \in M$. Indeed, continuity on M of F_{x} follows from that of the metric, while boundedness results from the triangle inequality,

$$
\begin{equation*}
\left|F_{x}(y)\right|=|d(x, y)-d(m, y)| \leq d(x, m) \tag{2.2.6}
\end{equation*}
$$

Similarly any $x, y, z \in M$ gives

$$
\begin{equation*}
\left|F_{x}(y)-F_{z}(y)\right|=|d(x, y)-d(z, y)| \leq d(x, z) \tag{2.2.7}
\end{equation*}
$$

so sup $\left|F_{x}-F_{z}\right|=d(x, z)$; equality follows for $y=z$. Therefore $\Phi(x)=F_{x}$ is isometric, and if M^{\prime} is defined to be the closure of $\left\{F_{x} \mid x \in M\right\}$, it is clear that $\Phi(M)$ is dense in M^{\prime}, so that this is a completion. By composing with Φ^{-1}, any completion is isometric to M^{\prime}.

A metric space M is called separable if there is a dense sequence of points $x_{n} \in M$. This is a rather useful property enjoyed by most spaces met in applications, hence the spaces will be assumed separable whenever convenient in the following.

2.3. An example of density: uniform approximation by polynomials

If \mathscr{P} denotes the set of polynomials on the real line, consider then the question whether a given continuous function $f:[a, b] \rightarrow \mathbb{C}$, on a compact interval $[a, b]$, can be uniformly approximated on $[a, b]$ by polynomials; ie, does there to every $\varepsilon>0$ exist a $p \in \mathscr{P}$ such that $|f(x)-p(x)|<\varepsilon$ for all $x \in[a, b]$.

Using the sup-norm on $C([a, b])$, this classic question amounts to whether \mathscr{P} (or rather the restrictions to $[a, b])$ is dense in the Banach space $C([a, b])$.

Theorem 2.3.1. The polynomials are dense in $C([a, b])$.
This is the Weierstrass approximation theorem.
Proof. By means of an affine transformation, $y=a+x(b-a)$, it suffices to treat the case $[a, b]=[0,1]$. So let f be given in $C([0,1]), \varepsilon>0$.

Consider then the so-called Bernstein polynomials associated with f,

$$
\begin{equation*}
p_{n}(x)=\sum_{k=0}^{n}\binom{n}{k} f(k / n) x^{k}(1-x)^{n-k} \tag{2.3.1}
\end{equation*}
$$

Since $1=(x+(1-x))^{n}$ the binomial formula gives

$$
\begin{equation*}
f(x)-p_{n}(x)=\sum_{k=0}^{n}(f(x)-f(k / n))\binom{n}{k} x^{k}(1-x)^{n-k} . \tag{2.3.2}
\end{equation*}
$$

By uniform continuity there is some $\delta>0$ such that $|f(x)-f(y)|<\varepsilon$ whenever $|x-y|<\delta$ for $0 \leq x, y \leq 1$. Taking out the terms of the above sum for which k is such that $\left|x-\frac{k}{n}\right|<\delta$,

$$
\begin{equation*}
\left|f(x)-p_{n}(x)\right| \leq \varepsilon+\sum_{\left|x-\frac{k}{n}\right| \geq \delta}|f(x)-f(k / n)|\binom{n}{k} x^{k}(1-x)^{n-k} \tag{2.3.3}
\end{equation*}
$$

With $M=\sup |f|$, insertion of $1 \leq \frac{\left|x-\frac{k}{n}\right|^{2}}{\delta^{2}}$ in the sum yields

$$
\begin{equation*}
\left|f(x)-p_{n}(x)\right| \leq \varepsilon+\frac{2 M}{n^{2} \delta^{2}} \sum_{k=0}^{n}|k-x n|^{2}\binom{n}{k} x^{k}(1-x)^{n-k} \tag{2.3.4}
\end{equation*}
$$

Because the variance of the binomial distribution is $n x(1-x)$, this entails

$$
\begin{equation*}
\sup |f-p| \leq \varepsilon+\frac{2 M}{4 n \delta^{2}} \tag{2.3.5}
\end{equation*}
$$

So by taking $n>M /\left(\varepsilon \delta^{2}\right)$, the conclusion $\left\|f-p_{n}\right\|<2 \varepsilon$ follows.

CHAPTER 3

Banach spaces

Recall that a family $\left(v_{j}\right)_{j \in J}$ of vectors in a space V is said to be linearly independent, if every finite subfamily $\left(u_{j_{1}}, \ldots, u_{j_{n}}\right)$ has the familiar property that the equation

$$
\begin{equation*}
0=\lambda_{1} u_{j_{1}}+\cdots+\lambda_{n} u_{j_{n}} \tag{3.0.6}
\end{equation*}
$$

only has the trivial solution $0=\lambda_{1}=\cdots=\lambda_{n}$.
The vector space V itself is said to have infinite dimension, if for every $n \in \mathbb{N}$ there exists n linearly independent vectors in V. In this case one writes $\operatorname{dim} V=\infty$ (regardless of how 'many' linearly independent vectors there are); the study of such 'wild' spaces is a key topic in functional analysis.

As an example, $\operatorname{dim} C(\mathbb{R})=\infty$, for the family of 'tent functions' is an uncountable and linearly independent: the functions $f_{k}(x)$ that, with $k \in \mathbb{R}$ as a parameter, grow linearly from 0 to 1 on $\left[k-\frac{1}{3}, k\right]$ and decrease linearly to 0 on $\left[k, k+\frac{1}{3}\right]$, with the value 0 outside of $\left[k-\frac{1}{3}, k+\frac{1}{3}\right]$, are linearly independent because only $\lambda_{1}=\cdots=\lambda_{n}=0$ have the property that

$$
\begin{equation*}
\lambda_{1} f_{k_{1}}(x)+\cdots+\lambda_{n} f_{k_{n}}(x)=0 \quad \text { for all } \quad x \in \mathbb{R} . \tag{3.0.7}
\end{equation*}
$$

For $k_{1}, \ldots k_{n} \in \mathbb{Z}$ this is clear since $f_{k_{1}}, \ldots, f_{k_{n}}$ have disjoint supports then. Generally, when the k_{m} are real, the claim follows by considering suitable values of x (supply the details!).

Notice that $\operatorname{dim} V=\infty$ means precisely that the below set has no majorants in \mathbb{R} :

$$
\begin{equation*}
\mathscr{N}=\{n \in \mathbb{R} \mid V \text { contains a linearly independent } n \text {-tupel. }\} . \tag{3.0.8}
\end{equation*}
$$

By definition V is finite-dimensional (or has finite dimension) if the above set \mathscr{N} is upwards bounded. In any case, the dimension of V is defined as

$$
\begin{equation*}
\operatorname{dim} V=\sup \mathscr{N} . \tag{3.0.9}
\end{equation*}
$$

Recall from linear algebra that finite-dimensional spaces V and W over the same field are isomorphic if and only if $\operatorname{dim} V=\operatorname{dim} W$. The proof of this non-trivial result relies on suitable choises of bases.

The general concept of bases brings us back to the questions mentioned in the introduction, so it is natural to let V be normed now.

DEFINITION 3.0.2. In a normed vector space V, a sequence $\left(u_{n}\right)$, which may be finite, is a basis if for every $x \in V$ there is a unique sequence $\left(\lambda_{n}\right)$ of scalars in \mathbb{F} such that $x=\sum \lambda_{n} u_{n}$.

In the definition of a basis U, uniqueness of the expansions clearly implies that U is a linearly independent family. So if $\operatorname{dim} V<\infty$, every basis is finite, and the expansions $x=\sum \lambda_{n} u_{n}$ are consequently finite sums; hence the notion of a basis is just the usual one for finite dimensional spaces. For the infinite dimensional case the term Schauder basis is also used.

A subset $W \subset V$ is called total if span $W=V$. Clearly any basis U is a total set.

A normed space V is said to be separable if there is a sequence $\left(v_{n}\right)$ with dense range, ie $V \subset \overline{\left\{v_{n} \mid n \in \mathbb{N}\right\}}$. It is straightforward to see that V is separable, if V has a basis (use density of \mathbb{Q} in \mathbb{R}). For simplicity we shall stick to separable spaces in the sequel (whenever convenient).

Example 3.0 .3 . For every p in $\left[1, \infty\left[\right.\right.$ the sequence space ℓ^{p} has the canonical basis (e_{n}) with

$$
\begin{equation*}
e_{n}=(0, \ldots, \overbrace{n \text {th entry }}, \tag{3.0.10}
\end{equation*}
$$

This is evident from the definition of basis. ℓ^{∞} does not have a basis because it is unseparable.

REmARK 3.0.4. It is not clear whether a total sequence $U=\left(u_{n}\right)$ will imply the existence of expansions as in the definition of a basis: given $x \in V$, there is some $\left(s_{n}\right)$ in span U converging to x, hence $x=\sum_{n=1}^{\infty} y_{n}$ with $y_{n}=$ $s_{n}-s_{n-1}$ (if $s_{0}=0$); here $y_{n} \in \operatorname{span} U$, so $y_{j}=\alpha_{j, 1} u_{j, 1}+\cdots+\alpha_{j, n_{j}} u_{j, n_{j}}$ with $u_{j, m} \in U$ for every $j \in \mathbb{N}$ and $m=1, \ldots, n_{j}$. By renumeration one is lead to consideration of the series $\sum_{j=1}^{\infty} \alpha_{n} u_{n}$, from which $\sum y_{n}$ is obtained by introduction of parentheses; the convergence of $\sum \alpha_{n} u_{n}$ is therefore unclear.

However, it would be nice if denseness (viz. $V=\overline{\operatorname{span}} U$) would be the natural replacement for the requirement, in the finite dimensional case, that $\operatorname{span} U=V$.

REmARK 3.0.5 (Hamel basis). There is an alternative notion of a basis of an arbitrary vector space V over \mathbb{F} : a family $\left(v_{i}\right)_{i \in I}$ is a Hamel basis if every vector has a unique representation as a finite linear combination of the v_{i}, that is, if every $v \in V$ has a unique expansion

$$
\begin{equation*}
v=\sum_{i \in I} \lambda_{i} v_{i}, \quad \text { with } \lambda_{i} \neq 0 \text { for only finitely many } i . \tag{3.0.11}
\end{equation*}
$$

While (also) this coincides with the basis concept for finite-dimensional spaces, it is in general rather difficult to show that a vector space has a Hamel basis. In fact the difficulties lie at the heart of the foundations of mathematics; phrased briefly, one has to use transfinite induction (eg Zorn's lemma) to prove the existence.

It is well known that the existence of a Hamel basis has startling consequences. One such is when \mathbb{R} is considered as a vector space over the field of rational numbers, \mathbb{Q}. Clearly $v=1$ is then not a basis, for $\sqrt{2}=\lambda \nu$ does not hold for any $\lambda \in \mathbb{Q}$; but there exists a Hamel basis $\left(v_{i}\right)_{i \in I}$ in \mathbb{R}, whence
(3.0.11) holds for every $v \in \mathbb{R}$ with rational scalars λ_{i}. By the uniqueness, there are \mathbb{Q}-linear maps $p_{i}: \mathbb{R} \rightarrow \mathbb{Q}$ given by $p_{i}(v)=\lambda_{i}$. In particular they solve the functional equation

$$
\begin{equation*}
f(\lambda x)=\lambda f(x) \quad \text { for all } \quad x \in \mathbb{R}, \lambda \in \mathbb{Q}, \tag{3.0.12}
\end{equation*}
$$

and every p_{i} is a discontinuous function $\mathbb{R} \rightarrow \mathbb{R}$, since a continuous function on \mathbb{R} has an interval as its image.

Moreover, with $a=f(1)$, clearly any solution fulfils $f(\lambda)=a \lambda$ for $\lambda \in \mathbb{Q}$. Since $\mathbb{R}=\overline{\mathbb{Q}}$, every continuous solution to the functional equation is a scaling $x \mapsto a x$; these are not just continuous but actually C^{∞}. So it is rather striking how transfinite induction gives rise to an abundance of other solutions, that are effectively outside of the class of continuous functions $C(\mathbb{R}, \mathbb{R})$. However, it should be emphasised that no-one is able to write down expressions for these more general solutions.

Notes. An exposition on Schauder bases may be found in [You01]. Schauder's definition of a basis was made in 1927, and in 1932 Banach raised the question whether every Banach space has a basis. This was, however, first settled in 1973 by Per Enflo, who gave an example of a separable Banach space without any basis.

CHAPTER 4

Hilbert spaces

The familiar spaces \mathbb{C}^{n} may be seen as subspaces of the infinite dimensional space $\ell^{2}(\mathbb{N})$ of square-summable sequences (by letting the sequences consist only of zeroes from index $n+1$ onwards). The space $\ell^{2}(\mathbb{N})$ has many geometric properties in common with \mathbb{C}^{n} because it is equipped with the inner product $\sum x_{n} \bar{y}_{n}$. It is therefore natural to study infinite dimensional vector spaces with inner products; this is the theory of Hilbert spaces which is developed in this chapter. However, a separable Hilbert space is always isomorphic to ℓ^{2} or \mathbb{C}^{n}, as we shall see. In addition a firm basis for manipulation of coordinates is given, including Bessel's inequality and Parseval's identity. We shall also verify that all this applies to Fourier series of functions in $L^{2}(-\pi, \pi)$.

4.1. Inner product spaces

Before Hilbert spaces can be defined, it is necessary to introduce the concept of an inner product. This is a generalisation of the scalar product from linear algebra.

Definition 4.1.1. An inner product on a vector space V is a map $(\cdot \mid \cdot)$ from $V \times V$ to \mathbb{C} which for all $x, y, z \in V$, all $\lambda, \mu \in \mathbb{F}$ fulfills
(i) $(\lambda x+\mu y \mid z)=\lambda(x \mid z)+\mu(y \mid z)$;
(ii) $(x \mid y)=\overline{(y \mid x)}$;
(iii) $(x \mid x) \geq 0$, with $(x \mid x)=0$ if and only if $x=0$.

The pair $(V,(\cdot \mid \cdot))$ is called an inner product space.
Notice that $(x \mid \lambda y+\mu z)=\bar{\lambda}(x \mid z)+\bar{\mu}(x \mid y)$ is a consequence of the first two conditions; hence an inner product is linear in the first variable, but conjugate linear in the second.

For $x=\left(x_{1}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, \ldots, y_{n}\right)$ in \mathbb{F}^{n} there is of course the familiar expression

$$
\begin{equation*}
(x \mid y)=x_{1} \overline{y_{1}}+\cdots+x_{n} \overline{y_{n}} . \tag{4.1.1}
\end{equation*}
$$

Unless otherwise is stated, this will always define the inner products on \mathbb{R}^{n} and \mathbb{C}^{n}.

Example 4.1.2. As a less elementary example, the space $C_{0}\left(\mathbb{R}^{n}\right)$ is endowed with the inner product

$$
\begin{equation*}
(f \mid g)=\int_{\mathbb{R}^{n}} f(x) \overline{g(x)} m(x) d x \tag{4.1.2}
\end{equation*}
$$

when m is an arbitrary positive weight function.
A similar example would be $L^{2}\left(\mathbb{R}^{n}\right)$, where

$$
\begin{equation*}
(f \mid g)=\int_{\mathbb{R}^{n}} f(x) \overline{g(x)} d x \tag{4.1.3}
\end{equation*}
$$

This is meaningful because of Hölder's inequality.
4.1.1. Identities and inequalities for inner products. A fundamental fact about inner products is that they give rise to a norm on the vector space. This is made precise in

Definition 4.1.3. On a vector space V with inner product $(\cdot \mid \cdot)$ the induced norm on V is given as

$$
\begin{equation*}
\|x\|=\sqrt{(x \mid x)} \tag{4.1.4}
\end{equation*}
$$

The definition is permissible, for the square root makes sense because of condition (iii); so already (4.1.4) may be used as a short-hand. Moreover, the two first conditions for a norm are trivial to verify (do it!), but the triangle inequality could deserve an explanation.

However, it turns out that there are three fundamental facts about inner products which are based on the following obvious consequence of (i) and (ii): for $x, y \in V$ and $\lambda \in \mathbb{F}$,

$$
\begin{align*}
0 & \leq(x-\lambda y \mid x-\lambda y) \\
& =(x \mid x)-\lambda(y \mid x)-\bar{\lambda}(x \mid y)+\lambda \bar{\lambda}(y \mid y) \tag{4.1.5}
\end{align*}
$$

Using (4.1.5), both the triangle inequality, the Cauchy-Schwarz inequality and a vector version of how to "square the sum of two terms" now follow:

PRoposition 4.1.4. For a vector space V with inner product $(\cdot \mid \cdot)$, the following relations hold for arbitrary $x, y \in V$:

$$
\begin{align*}
\text { (i) } & \|x+y\| \leq\|x\|+\|y\| \tag{4.1.6}\\
\text { (ii) } & |(x \mid y)| \leq\|x\|\|y\| \tag{4.1.7}\\
\text { (iii) } & \|x+y\|^{2}=\|x\|^{2}+\|y\|^{2}+2 \operatorname{Re}(x \mid y) . \tag{4.1.8}
\end{align*}
$$

Proof. When $y=0$ then $(x \mid y)=(x \mid 0 y)=0(x \mid y)=0$, so (ii) holds. For $y \neq 0$ insertion of $\lambda=\frac{(x \mid y)}{(y \mid y)}$ into (4.1.5) yields $|(x \mid y)|^{2} \leq(x \mid x)(y \mid y)$, which gives (ii).

Taking instead $\lambda=-1$ yields (iii), since $z+\bar{z}=2 \operatorname{Re} z$ for all $z \in \mathbb{C}$. But $\operatorname{Re} z \leq|\operatorname{Re} z| \leq|z|$, so in (iii) one has by (ii) that

$$
\begin{equation*}
2 \operatorname{Re}(x \mid y) \leq 2\|x\|\|y\| . \tag{4.1.9}
\end{equation*}
$$

Hence (iii) entails that $\|x+y\|^{2} \leq(\|x\|+\|y\|)^{2}$, so (i) holds.
In view of (i) in this proposition, Definition 4.1.3 has now been justified. For simplicity, given an inner product space V, the symbols $(\cdot \mid \cdot)$ and $\|\cdot\|$ will often be used, without further notification, to denote the inner product and the induced norm on V, respectively.

Replacing y by $-y$ in (4.1.8) above and adding the resulting formula to (4.1.8),

$$
\begin{equation*}
\|x+y\|^{2}+\|x-y\|^{2}=2\left(\|x\|^{2}+\|y\|^{2}\right) . \tag{4.1.10}
\end{equation*}
$$

This is known as the parallellogram law.
Using the sesqui-linearity on the right hand sides, the following polarisation identities are easy to verify:

$$
\begin{array}{ll}
(x \mid y)=\frac{1}{4} \sum_{k=0, \ldots, 3} \mathrm{i}^{k}\left\|x+\mathrm{i}^{k} y\right\|^{2} & \text { for } \mathbb{F}=\mathbb{C} \\
(x \mid y)=\frac{1}{4}\left(\|x+y\|^{2}-\|x-y\|^{2}\right) & \text { for } \mathbb{F}=\mathbb{R} \tag{4.1.12}
\end{array}
$$

Conversely, if a norm on a vector space V fulfils (4.1.10), one can show that $(x \mid y)$ defined by the expression on the right hand side above actually is an inner product on V.

Example 4.1.5. Using the above, it is now easy to show the classical fact from geometry, that if $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is an isometry, ie

$$
\begin{equation*}
\|T(x)-T(y)\|=\|x-y\| \quad \text { for all } \quad x, y \in \mathbb{R}^{n} \tag{4.1.13}
\end{equation*}
$$

then T is affine; ie $T(x)=A x+b$ for some orthogonal matrix $A, b \in \mathbb{R}^{n}$.
Indeed, $T(0)=0$ can be assumed, for $T(x)-T(0)$ is also an isometry. Then T is norm preserving, ie $\|T(x)\|=\|x\|$ for all x. In (4.1.8) one can therefore replace x by $T(x)$, and y by $T(y)$, in the norms without changing the values, hence

$$
\begin{equation*}
(T(x) \mid T(y))=(x \mid y) \quad \text { for all } \quad x, y \in \mathbb{R}^{n} . \tag{4.1.14}
\end{equation*}
$$

So for the natural basis $\left(e_{1}, \ldots, e_{n}\right)$ one has $\left(T\left(e_{j}\right) \mid T\left(e_{k}\right)\right)=\delta_{j k}$, whence $\left(T\left(e_{1}\right), \ldots, T\left(e_{n}\right)\right)$ is another orthonormal basis. Writing $T(x)=\sum \lambda_{j} T\left(e_{j}\right)$ it follows by taking inner products with $T\left(e_{k}\right)$ that $\lambda_{k}=\left(T(x) \mid T\left(e_{k}\right)\right)$, so

$$
\begin{equation*}
T(x)=\sum_{j=1, \ldots, n}\left(T(x) \mid T\left(e_{j}\right)\right) T\left(e_{j}\right)=\sum_{j=1, \ldots, n}\left(x \mid e_{j}\right) T\left(e_{j}\right) . \tag{4.1.15}
\end{equation*}
$$

The last expression is linear in x, so that $T(x)=O x$ for an $n \times n$-matrix O. Here (4.1.14) gives $O^{\mathrm{t}} O=I$, hence $O^{\mathrm{t}}=O^{-1}$ as desired.
4.1.2. Continuity of inner products. Just as one can prove the basic fact of normed spaces that the norm is always continuous, it holds for every inner product that it is jointly continuous in both variables.

Proposition 4.1.6. In an inner product space V it holds for any pair of sequences converging with respect to the induced norm, say $x_{n} \rightarrow x$ and $y_{n} \rightarrow y$ in V, that

$$
\begin{equation*}
\left(x_{n} \mid y_{n}\right) \rightarrow(x \mid y) \text { for } \quad n \rightarrow \infty . \tag{4.1.16}
\end{equation*}
$$

Proof. By the triangle and Cauchy-Schwarz inequalities,

$$
\begin{align*}
\mid\left(x_{n} \mid y_{n}\right) & -(x \mid y) \mid \\
& \leq\left|\left(x_{n}-x \mid y_{n}-y\right)\right|+\left|\left(x \mid y_{n}-y\right)\right|+\left|\left(x_{n}-x \mid y\right)\right| \tag{4.1.17}\\
& \leq\left\|x_{n}-x\right\|\left\|y_{n}-y\right\|+\|x\|\left\|y_{n}-y\right\|+\left\|x_{n}-x\right\|\|y\| .
\end{align*}
$$

Here all terms on the right hand side goes to 0 , so (4.1.16) follows.
It is straightforward to see that the proposition is equivalent to the fact that the inner product is a continuous map

$$
\begin{equation*}
(\cdot \mid \cdot): \stackrel{V}{V} \longrightarrow \mathbb{C} \tag{4.1.18}
\end{equation*}
$$

It is clear that the Cauchy-Schwarz inequality is crucial for the above result. In addition it will be seen in Proposition 4.3.1 below that also the parallellogram law has rather striking consequences.
4.1.3. Orthogonality. In an inner product space V, the vectors x and y are called orthogonal if $(x \mid y)=0$; this is symbolically written $x \perp y$.

From (4.1.8) one can now read off Pythagoras' theorem (and a generalisation to the infinite dimensional case) :

PROPOSITION 4.1.7. If $x \perp y$ for two vectors x, y in an inner product space V, then $\|x+y\|^{2}=\|x\|^{2}+\|y\|^{2}$.

For subsets M and N of an inner product space V, one says that M, N are orthogonal, written $M \perp N$ if $(x \mid y)=0$ for every $x \in M, y \in N$. In addition the orthogonal complement of such M is defined as

$$
\begin{equation*}
M^{\perp}=\{y \in V \mid \forall x \in M:(x \mid y)=0\} . \tag{4.1.19}
\end{equation*}
$$

This is clearly a closed subspace of V. Another property is that $\bar{M}^{\perp}=M^{\perp}$.
As a main example, note that

$$
\begin{equation*}
V^{\perp}=\{0\} . \tag{4.1.20}
\end{equation*}
$$

Indeed, $0 \in V^{\perp}$, and if $z \in V^{\perp}$ then $(z \mid z)=0$, whence $z=0$. This fact is used repeatedly (as a theme in proofs) in the following.

Finally, a family $\left(u_{j}\right)_{j \in J}$ in an inner product space V is called an orthogonal family provided

$$
\begin{equation*}
\left(u_{j} \mid u_{k}\right)=0 \text { for } j \neq k \text { and } u_{j} \neq 0 \text { for every } j \in J \tag{4.1.21}
\end{equation*}
$$

The same terminology applies to a sequence, for this is the case with $J=\mathbb{N}$.

4.2. Hilbert spaces and orthonormal bases

To get a useful generalisation of the Euclidean spaces \mathbb{R}^{n}, that are complete with respect to the metric induced by the inner product, Hilbert spaces are defined as follows:

Definition 4.2.1. A vector space H with inner product is called a Hilbert space if it complete with respect to the induced norm.

In particular all Hilbert spaces are Banach spaces. As an example one has $H=\ell^{2}$ endowed with the inner product

$$
\begin{equation*}
\left(\left(x_{n}\right) \mid\left(y_{n}\right)\right)=\sum_{n=1}^{\infty} x_{n} \overline{y_{n}} \quad \text { for } \quad\left(x_{n}\right),\left(y_{n}\right) \in \ell^{2} \tag{4.2.1}
\end{equation*}
$$

Notice that the series converges because $\left|x_{n} \overline{y_{n}}\right| \leq \frac{1}{2}\left(\left|x_{n}\right|^{2}+\left|y_{n}\right|^{2}\right)$. The completeness may be verified directly (try it!). More generally, $L^{2}(A, \mathbb{A}, \mu)$ is a Hilbert space for an arbitrary measure space $\left(A, \mathbb{A}, \mu\right.$) (so ℓ^{2} is also covered by considering the counting measure on \mathbb{N}).

In the rest of this chapter focus will be on Hilbert spaces, for the completion of an inner product space may be shown to have the structure of a Hilbert space, because the inner product extends to the completion in a unique way. It will also often be assumed that the Hilbert spaces are separable. This is done for convenience, but the unseparable case is only rarely met in applications.

Definition 4.2.2. An orthonormal basis of a Hilbert space is a basis $\left(e_{j}\right)_{j \in J}$ which is also an orthonormal set, that is, which also satisfies $\left(e_{j} \mid e_{k}\right)=\delta_{j k}$ for all $j, k \in J$.

For a subset $\left(e_{j}\right)_{j \in J}$ to be an orthonormal basis it suffices, however, that it is orthonormal and total. Indeed, in expansions like $x=\sum_{n=1}^{\infty} \lambda_{n} e_{n}$ it suffices to sum over \mathbb{N} (even if J is uncountable, cf Definition 3.0.2), so the uniqueness is a consequence of (4.2.4):

PRoposition 4.2.3. Let $\left(e_{n}\right)$ be an orthonormal sequence in a Hilbert space H, and let $\left(\lambda_{n}\right)$ be a sequence in \mathbb{F}. Then

$$
\begin{equation*}
\sum_{n=1}^{\infty} \lambda_{n} e_{n} \quad \text { converges in } H \Longleftrightarrow \sum_{n=1}^{\infty}\left|\lambda_{n}\right|^{2}<\infty . \tag{4.2.2}
\end{equation*}
$$

In the affirmative case, with $x:=\sum \lambda_{n} e_{n}$,

$$
\begin{align*}
\|x\| & =\left(\sum_{n=1}^{\infty}\left|\lambda_{n}\right|^{2}\right)^{1 / 2} \tag{4.2.3}\\
\lambda_{n} & =\left(x \mid e_{n}\right) \quad \text { for every } n \in \mathbb{N} . \tag{4.2.4}
\end{align*}
$$

Proof. Setting $s_{n}=\sum_{j=1}^{n} \lambda_{j} e_{j}$, Pythagoras' theorem implies

$$
\begin{equation*}
\left\|s_{n+p}-s_{n}\right\|^{2}=\sum_{j=n+1}^{n+p}\left\|\lambda_{j} e_{j}\right\|^{2}=\sum_{j=n+1}^{n+p}\left|\lambda_{j}\right|^{2} \tag{4.2.5}
\end{equation*}
$$

Therefore $\left(s_{n}\right)$ is fundamental precisely when $\sum\left|\lambda_{n}\right|^{2}$ is a convergent series. And in this case, continuity of the norm and the inner product yields

$$
\begin{align*}
\|x\| & =\lim _{n \rightarrow \infty}\left\|s_{n}\right\|=\lim _{n \rightarrow \infty}\left(\sum_{j=1}^{n}\left|\lambda_{j}\right|^{2}\right)^{1 / 2}=\left(\sum_{n=1}^{\infty}\left|\lambda_{n}\right|^{2}\right)^{1 / 2} \tag{4.2.6}\\
\left(x \mid e_{n}\right) & =\lim _{k \rightarrow \infty}\left(\sum_{j=1}^{k} \lambda_{j} e_{j} \mid e_{n}\right)=\lambda_{n} . \tag{4.2.7}
\end{align*}
$$

Frequently, the proposition is also useful for cases with only finitely many scalars λ_{n}; the trick is then to add infinitely many zeroes to obtain a sequence $\left(\lambda_{n}\right)$. This observation is convenient for the proof of

PROPOSITION 4.2.4 (Bessel's inequality). Let (e_{n}) be an orthonormal sequence in a Hilbert space H. For all $x \in H$ and $n \in \mathbb{N}$,

$$
\begin{align*}
& \left\|x-\sum_{j=1}^{n}\left(x \mid e_{j}\right) e_{j}\right\|^{2}=\|x\|^{2}-\sum_{j=1}^{n}\left|\left(x \mid e_{j}\right)\right|^{2} \tag{4.2.8}\\
& \sum_{j=1}^{\infty}\left|\left(x \mid e_{j}\right)\right|^{2} \leq\|x\|^{2}, \tag{4.2.9}
\end{align*}
$$

and the series $\sum_{j=1}^{\infty}\left(x \mid e_{j}\right) e_{j}$ converges in H.
Proof. Using (4.1.8), the first claim is a direct consequence of (4.2.3), for if $x_{n}=\sum_{j=1}^{n}\left(x \mid e_{j}\right) e_{j}$,

$$
\begin{equation*}
\left\|x-x_{n}\right\|^{2}=\|x\|^{2}+\left\|x_{n}\right\|^{2}-2 \operatorname{Re}\left(x \mid x_{n}\right)=\|x\|^{2}-\sum_{j=1}^{n}\left|\left(x \mid e_{j}\right)\right|^{2} . \tag{4.2.10}
\end{equation*}
$$

Since the left hand side is non-negative, $\sum_{j=1}^{n}\left|\left(x \mid e_{j}\right)\right|^{2} \leq\|x\|^{2}$ for each n, whence (4.2.9). The convergence of the series is then a consequence of Proposition 4.2.3.

Whether equality holds in Bessel's inequality (4.2.9) for all vectors x in H or not, this depends on whether the given orthonormal sequence $\left(e_{n}\right)$ contains enough vectors to be a basis or not; cf (iii) in

Theorem 4.2.5. For an orthonormal sequence (e_{n}) in a Hilbert space H the following properties are equivalent:
(i) $\left(e_{n}\right)$ is an orthonormal basis for H.
(ii) $\quad(x \mid y)=\sum_{n=1}^{\infty}\left(x \mid e_{n}\right)\left(e_{n} \mid y\right)$ for all x, y in H.
(iii) $\|x\|^{2}=\sum_{n=1}^{\infty}\left|\left(x \mid e_{n}\right)\right|^{2} \quad$ for all x in H.
(iv) If x in H is such that $\left(x \mid e_{n}\right)=0$ for all $n \in \mathbb{N}$, then $x=0$.

In the affirmative case $x=\sum_{n=1}^{\infty}\left(x \mid e_{n}\right) e_{n}$ holds for every $x \in H$.
Proof. Notice that when $\left(e_{n}\right)$ is an orthonormal basis, then the last statement is true because the basis property shows that $x=\sum \lambda_{n} e_{n}$ holds; then $\lambda_{n}=\left(x \mid e_{n}\right)$ by Proposition 4.2.3.

Now (i) implies (ii) by the continuity of $(\cdot \mid y)$. Moreover, (iii) is a special case of (ii), and (iv) is immediate from (iii), since $\|x\|=0$ only holds for $x=0$. Given that (iv) holds, one can for any x consider $y=\sum_{n=1}^{\infty}\left(x \mid e_{n}\right) e_{n}$, which converges by Proposition 4.2.3 and Bessel's inequality. But then $\left(x-y \mid e_{n}\right)=0$ is seen for every $n \in \mathbb{N}$ by substitution of y; hence $x=y$. Therefore (e_{n}) is total, so (i) holds.

The identity in (iii) is known as Parseval's equation (especially in connection with Fourier series). Notice that in the affirmative case, (ii) expresses that the inner product $(x \mid y)$ may be computed from the coordinates
of x, y, for since $y=\sum y_{n} e_{n}$ with $y_{n}=\left(y \mid e_{n}\right)$ and similarly for x, the identity in (ii) amounts to

$$
\begin{equation*}
(x \mid y)=\sum_{n=1}^{\infty} x_{n} \bar{y}_{n} \tag{4.2.11}
\end{equation*}
$$

It is not a coincidence that the right hand side equals the inner product in ℓ^{2} of the coordinate sequences $\left(x_{n}\right),\left(y_{n}\right)$ - these are clearly in ℓ^{2} because of (iii). Indeed, this fact leads to the proof of the next result.

To formulate it, an operator $U: H_{1} \rightarrow H_{2}$, where H_{1}, H_{2} are Hilbert spaces, will be called unitary when U is a linear bijection fulfilling

$$
\begin{equation*}
(U x \mid U y)=(x \mid y) \quad \text { for all } x, y \in H_{1} . \tag{4.2.12}
\end{equation*}
$$

Theorem 4.2.6. Let H be a separable Hilbert space. Then there exists a unitary operator from H onto $\ell^{2}(J)$ for some $J \subset \mathbb{N}$.

Observe that $\ell^{2}(J)$ is either ℓ^{2} or \mathbb{C}^{n}; the latter possibility occurs if J is finite, for by a renumbering $J=\{1, \ldots, n\}$ may be assumed.

Proof. Let $\left(v_{n}\right)$ be dense in H; then $V:=\operatorname{span}\left(v_{n}\right)$ is dense in H. By extracting a subsequence, one proves the existence of a family $\left(v_{j}\right)_{j \in J}$ with J equal to \mathbb{N}, or to $\{1, \ldots, k\}$ for some $k \in \mathbb{N}$, such that $V=\operatorname{span}\left(v_{j}\right)_{j \in J}$ and $v_{j} \notin \operatorname{span}\left(v_{1}, \ldots, v_{j-1}\right)$ for every $j \in J$. Using Gram-Schmidt orthonormalisation, there is a (possibly finite) sequence $\left(e_{j}\right)$ with $V=\operatorname{span}\left(e_{j}\right)_{j \in J}$, this is a basis for H because V is dense.

The operator $U: H \rightarrow \ell^{2}(J)$ given by $U x=\left(\left(x \mid e_{j}\right)\right)_{j \in J}$ is linear and injective (for $J=\mathbb{N}$ this is because of (iii) in Theorem 4.2.5). It is also surjective because any $\left(\alpha_{j}\right) \in \ell^{2}(J)$ gives rise to the vector $x=\sum_{J} \alpha_{j} e_{j}$ in H, for which $U x=\left(\alpha_{j}\right)$ clearly holds. Finally

$$
\begin{equation*}
(x \mid y)=\sum_{J}\left(x \mid e_{j}\right)\left(e_{j} \mid y\right)=(U x \mid U y) \tag{4.2.13}
\end{equation*}
$$

follows for all $x, y \in H$ from (ii), or from a direct calculation when J is finite.

Note that (iii) expresses that $\|U x\|=\|x\|$ holds for the map U in the above proof, ie that U is norm-preserving, so U is clearly a homeomorphism. As (4.2.13) shows, it also preserves inner products, so one cannot distinguish the Hilbert spaces H and $\ell^{2}(J)$ from one another (two vectors are orthogonal in H if and only if their images are so in $\ell^{2}(J)$ and so on).

Generalising from this example, it is seen that the unitary operators constitute the natural class of isomorphisms on the set of Hilbert spaces; two Hilbert spaces H_{1}, H_{2} are also called unitarily equivalent if there is an isomorphism (ie a unitary operator) from H_{1} onto H_{2}.

Corollary 4.2.7. Two separable Hilbert spaces H_{1} and H_{2} over \mathbb{F} are unitarily equivalent if and only if they both have orthonormal bases indexed by \mathbb{N} (or by $\{1, \ldots, n\}$ for some $n \in \mathbb{N}$). In particular all orthonormal bases of a separable Hilbert space have the same index set.

As another corollary of Theorem 4.2.6 (or of its proof, alternatively), notice that every separable Hilbert space actually has an orthonormal basis.

4.3. Minimisation of distances

It is a crucial geometric property of a Hilbert space H that for any subspace U of finite dimension and any $x \in H$ there exists a uniquely determined point $u_{0} \in U$ with the least possible distance to x. Ie this u_{0} fulfils

$$
\begin{equation*}
\left\|x-u_{0}\right\|=\inf \{\|x-u\| \| u \in U\} . \tag{4.3.1}
\end{equation*}
$$

Since the infimum exists and is ≥ 0, the crux is that it actually is attained at a certain point u_{0} (hence is a minimum).

To see that u_{0} exists, it suffices to take an orthonormal basis for U, say $\left(e_{1}, \ldots, e_{n}\right)$ and verify that for arbitrary $\lambda_{1}, \ldots, \lambda_{n}$ in \mathbb{F},

$$
\begin{equation*}
\left\|x-\sum_{j=1}^{n}\left(x \mid e_{j}\right) e_{j}\right\| \leq\left\|x-\sum_{j=1}^{n} \lambda_{j} e_{j}\right\| . \tag{4.3.2}
\end{equation*}
$$

Indeed, one can then let $u_{0}=\sum_{j=1}^{n}\left(x \mid e_{j}\right) e_{j}$, for this belongs to U and clearly minimises the distance to x. It is straightforward to prove (4.3.2) in the same manner as in the proof of (4.2.8) above.

However, since a finite dimensional subspace always is closed (cf the below Lemma 6.2.1) and moreover convex, the above result also follows from the next result. Recall that $C \subset H$ is convex if $\theta x+(1-\theta) y \in C$ for every $\theta \in[0,1]$ and all $x, y \in C$.

Proposition 4.3.1. Let C be a closed, convex subset of a Hilbert space H. For each $x \in H$ there exists a uniquely determined point $y \in C$ such that

$$
\begin{equation*}
\|x-y\| \leq\|x-v\| \quad \text { for all } v \in C \tag{4.3.3}
\end{equation*}
$$

Proof. Let $\left(y_{n}\right)$ be chosen in C so that $\left\|x-y_{n}\right\| \rightarrow \delta$ where $\delta=$ $\inf \{\|x-v\| \mid v \in C\}$. Applying the parallelogram law and the convexity,

$$
\begin{align*}
\left\|y_{n}-y_{m}\right\|^{2} & =2\left\|y_{n}-x\right\|^{2}+2\left\|x-y_{m}\right\|^{2}-\left\|y_{n}-x-\left(x-y_{m}\right)\right\|^{2} \\
& \left.=2\left\|y_{n}-x\right\|^{2}+2\left\|x-y_{m}\right\|^{2}-4 \| \frac{1}{2}\left(y_{n}+y_{m}\right)-x\right) \|^{2} \tag{4.3.4}\\
& \leq 2\left\|y_{n}-x\right\|^{2}+2\left\|x-y_{m}\right\|^{2}-4 \delta^{2} .
\end{align*}
$$

Since the last expression can be made arbitrarily small, $\left(y_{n}\right)$ is a Cauchy sequence, hence converges to a limit point y. Since C is closed $y \in C$, and by the continuity of the norm $\|x-y\|=\delta$.

If also $\delta=\|x-z\|$ for some $z \in C$, one can substitute y_{n} and y_{m} by y and z, respectively, in the above inequality and derive that $\|y-z\|^{2} \leq$ $2 \delta^{2}+2 \delta^{2}-4 \delta^{2}=0$. Whence $z=y$.

By the proposition, there is a map $P_{C}: H \rightarrow H$ given by $P_{C} x=y$, in the notation of (4.3.3). Clearly $\left(P_{C}\right)^{2}=P_{C}$, so P_{C} is called the projection onto C.

Notice that when U is a subspace of dimension $n \in \mathbb{N}$, say with orthonormal basis $\left(e_{1}, \ldots, e_{n}\right)$, then (4.3.2) ff. shows that

$$
\begin{equation*}
P_{U} x=\sum_{j=1}^{n}\left(x \mid e_{j}\right) e_{j} \quad \text { for } x \in H \tag{4.3.5}
\end{equation*}
$$

Hence P_{U} is linear and bounded. Since $x-P_{U} x$ is orthogonal to every e_{j} and therefore to any vector in U, the operator P_{U} is called the orthogonal projection on U.

4.4. The Projection Theorem and self-duality

It was seen above that orthogonality was involved in the process of finding the minimal distance from a point to a subspace. There are also other geometric properties of Hilbert spaces that are linked to orthogonality, and a few of these are presented here.
4.4.1. On orthogonal projection. For orthogonal subspaces M and N, ie $M \perp N$, the orthogonal sum is

$$
\begin{equation*}
M \oplus N=\{x+y \mid x \in M, \quad y \in N\} . \tag{4.4.1}
\end{equation*}
$$

Hence any vector $z \in M \oplus N$ has a decomposition $z=x+y$ with $x \in M$ and $y \in N$. The orthogonality shows that this decompostion is unique (since $M \perp N \Longrightarrow M \cap N=\{0\}$).

When both M and N are closed in H, then $M \oplus N$ is a closed subspace too, for if $z_{n} \in M \oplus N$ converges in H, Pythagoras' theorem applied to the decompositions $z_{n}=x_{n}+y_{n}$ gives Cauchy sequences $\left(x_{n}\right),\left(y_{n}\right)$ in M and N, and the sum of these converges to an element of $M \oplus N$ (since M, N are closed) as well as to $\lim z_{n}$.

Recall that for a closed subspace M of H, the orthogonal complement is denoted M^{\perp}; alternatively $H \ominus M$ may be used to make it clear that the orthogonal complement is calculated with respect to H. When $H=M \oplus N$ both M and N are called direct summands of H, but for a given M there is, by the orthogonality, only one possible choice of N : this is a consequence of the next result known as the Projection Theorem, which states that as the direct summand N one can take $N=H \ominus M$.

As a transparent example, take the familiar orthogonal sum $\mathbb{R}^{n}=\mathbb{R}^{k} \oplus$ \mathbb{R}^{n-k}, with $\mathbb{R}^{k} \simeq\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} \mid x_{m}=0\right.$ for $\left.m>k\right\}$, for $0 \leq k \leq n$, and a similar identification for \mathbb{R}^{n-k}. The Projection Theorem is a non-trivial generalisation to Hilbert spaces:

Theorem 4.4.1. Let H be a Hilbert space and $M \subset H$ a closed subspace, then $H=M \oplus M^{\perp}$.

Proof. Given $z \in H$ there is by Proposition 4.3.1 an $x \in M$ such that $\|z-x\| \leq\|z-v\|$ for all $v \in M$; letting $y=z-x$ it remains to be verified that $y \in M^{\perp}$. But, for $\lambda \in \mathbb{F}$ and $v \in M$ with $\|v\|=1$,

$$
\begin{equation*}
\|y\|^{2} \leq\|z-(x+\lambda v)\|^{2}=\|y\|^{2}+|\lambda|^{2}-2 \operatorname{Re} \bar{\lambda}(y \mid v), \tag{4.4.2}
\end{equation*}
$$

so $\lambda=(y \mid v)$ entails $|\lambda|^{2} \leq 0$; whence $(y \mid v)=0$ for any $v \in M$.
Thus every $x \in H$ is decomposed as $x=y+z$ with $y \in M$ and $z \in M^{\perp}$. By the uniqueness, there is therefore an operator $P: x \mapsto y$, which is called the orthogonal projection of x on M.

If M has finite dimension, P equals the previously introduced orthogonal projection on M; cf the minimisation in the proof of Theorem 4.4.1. A characterisation of the operators in $\mathbb{B}(H)$ that are ortogonal projections follows in Proposition 6.1.1 below.
4.4.2. On the self-duality. In a Hilbert space H it is immediate that every vector $y \in H$ gives rise to the linear functional $x \mapsto(x \mid y)$; by CauchySchwarz' inequality this is bounded,

$$
\begin{equation*}
|(x \mid y)| \leq\|x\|\|y\| . \tag{4.4.3}
\end{equation*}
$$

It is a very important fact that all elements in H^{*} arise in this way; cf the next theorem, known as Frechet-Riesz' theorem (or the Riesz Representation Theorem).

Theorem 4.4.2. For each $\varphi \in H^{*}$ there exists a vector $z \in H$ such that $\varphi(x)=(x \mid z)$ for all $x \in H$.

Proof. With $N=Z(\varphi)$, which is a closed subspace by the continuity of φ, the Projection Theorem gives $H=N \oplus N^{\perp}$. Clearly $\varphi \equiv 0$ if and only if $N=H$, in which case $z=0$ will do. For $\varphi \neq 0$ there is some $y \in N^{\perp}$ with $\|y\|=1$, and then $v=\varphi(x) y-\varphi(y) x$ belongs to N, regardless of $x \in H$. So it suffices to let $z=\bar{\varphi}(y) y$, for

$$
\begin{equation*}
0=(v \mid y)=\varphi(x)(y \mid y)-\varphi(y)(x \mid y)=\varphi(x)-(x \mid z) . \tag{4.4.4}
\end{equation*}
$$

For the uniqueness, assume $\varphi=(\cdot \mid z)=(\cdot \mid w)$; then $(x \mid z-w)=0$ for all x, yielding $z-w \in H^{\perp}$ and $z=w$.

Notice that eg $\left(\ell^{p}\right)^{*} \neq \ell^{p}$ for $p \in[1, \infty[$ with $p \neq 2$: the sequence with $x_{n}=n^{-1 / r}$ is only in ℓ^{q} for $q>r$ so that there are strict inclusions

$$
\begin{equation*}
\ell^{p} \subsetneq \ell^{q} \quad \text { for } \quad 1 \leq p<q \leq \infty . \tag{4.4.5}
\end{equation*}
$$

Hence Banach spaces do not identify with their duals in general.

CHAPTER 5

Examples of Hilbert spaces. Fourier series.

For an open set $\Omega \subset \mathbb{R}^{n}$ there is the standard Hilbert space $L^{2}(\Omega)$ with inner product $(f \mid g)=\int_{\Omega} f(x) \overline{g(x)} d x$. However, certain subsets of $L^{2}(\Omega)$ are Hilbert spaces in their own right.

Example 5.0.3 (Sobolev spaces). Let the subset $H^{1}(\Omega) \subset L^{2}(\Omega)$ be defined by the requirement that to each $f \in H^{1}(\Omega)$ there exist other functions $f_{1}^{\prime}, \ldots, f_{n}^{\prime}$ in $L^{2}(\Omega)$ such that for every $\varphi \in C_{0}^{\infty}(\Omega)$ it holds that

$$
\begin{equation*}
\int_{\Omega} f(x)\left(-\frac{\partial}{\partial x_{j}} \varphi(x)\right) d x=\int_{\Omega} f_{j}^{\prime}(x) \varphi(x) d x \quad \text { for } \quad j=1, \ldots, n . \tag{5.0.6}
\end{equation*}
$$

Notice that for f in $C_{0}^{1}(\Omega)$ one can take $f_{j}^{\prime}=\frac{\partial f}{\partial x_{j}}$; hence $C_{0}^{1}(\Omega) \subset H^{1}(\Omega)$.
For $f \in H^{1}(\Omega)$ the functions f_{j}^{\prime} are called the (generalised) derivatives of f of the first order, and these are written in operator notation as

$$
\begin{equation*}
\partial_{j} f=\partial_{x_{j}} f=\frac{\partial f}{\partial x_{j}}=f_{j}^{\prime}, \quad \text { for } \quad j=1, \ldots, n . \tag{5.0.7}
\end{equation*}
$$

Here it was used that the derivatives f_{j}^{\prime} are determined by f : if $\tilde{f}_{1}, \ldots, \tilde{f}_{n}$ is another set of functions in $L^{2}(\Omega)$ fulfilling (5.0.6), then $f_{1}^{\prime}-\tilde{f}_{1} \in C_{0}^{\infty}(\Omega)^{\perp}=$ $L^{2}(\Omega)^{\perp}=(0)$; similarly $f_{j}^{\prime}=\tilde{f}_{j}$ for all j. As a consequence these partial differential operators give well defined maps

$$
\begin{equation*}
\partial_{j}: H^{1}(\Omega) \rightarrow L_{2}(\Omega) \quad \text { for } \quad j=1, \ldots, n . \tag{5.0.8}
\end{equation*}
$$

(In $C^{1}(\Omega) \cap H^{1}(\Omega)$ these maps are given by limits of difference quotients. In general the f_{j}^{\prime} equal the so-called distribution derivatives $\partial_{j} f$ of f.)

A topology on $H^{1}(\Omega)$ may be obtained eg as a metric subspace of $L^{2}(\Omega)$. But to have some control over $f_{1}^{\prime}, \ldots, f_{n}^{\prime}$, it is stronger to note that, by the uniqueness and linearity of the generalised derivatives, there is a well defined inner product on $H^{1}(\Omega)$ given by

$$
\begin{equation*}
(f \mid g)_{H^{1}}=(f \mid g)_{L^{2}}+\left(f_{1}^{\prime} \mid g_{1}^{\prime}\right)_{L^{2}}+\cdots+\left(f_{n}^{\prime} \mid g_{n}^{\prime}\right)_{L^{2}} ; \tag{5.0.9}
\end{equation*}
$$

the norm induced is clearly given by

$$
\begin{equation*}
\|f\|_{H^{1}}=\left(\int_{\Omega}\left(|f(x)|^{2}+\sum_{j=1}^{n}\left|\partial_{j} f(x)\right|^{2}\right) d x\right)^{1 / 2} \tag{5.0.10}
\end{equation*}
$$

Actually $H^{1}(\Omega)$ is a Hilbert space, because it is complete with respect to this norm (verify this!). Notice that the injection $H^{1}(\Omega) \hookrightarrow L^{2}(\Omega)$ is
continuous, because for every $f \in H^{1}(\Omega)$ one has $\|f\|_{L^{2}} \leq\|f\|_{H^{1}}$. Moreover, the expression for $\|\cdot\|_{H^{1}}$ implies directly that the differential operators $\partial_{1}, \ldots, \partial_{n}$ in (5.0.8) above all are continuous maps $H^{1} \rightarrow L^{2}$.
$H^{1}(\Omega)$ is called the Sobolev space of order 1 over Ω; this Hilbert space plays a very significant role in the theory of partial differential equations. It is also convenient to introduce the subspace $H_{0}^{1}(\Omega)$ by taking the closure of $C_{0}^{\infty}(\Omega)$ in $H^{1}(\Omega)$, ie

$$
\begin{equation*}
H_{0}^{1}(\Omega)=\left\{f \in H^{1}(\Omega) \mid \exists \varphi_{k} \in C_{0}^{\infty}(\Omega): \lim _{k \rightarrow \infty}\left\|f-\varphi_{k}\right\|_{H^{1}}=0\right\} \tag{5.0.11}
\end{equation*}
$$

Clearly $H_{0}^{1}(\Omega)$ is Hilbert space with the induced inner product from $H^{1}(\Omega)$.
Example 5.0.4. The Sobolev spaces have generalisations to Hilbert spaces $H^{m}(\Omega)$ incorporating higher order derivatives up to some order $m \in$ \mathbb{N}. For this it is useful to adopt the multiindex notation, say for $f \in C^{\infty}(\Omega)$:

For $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{N}_{0}^{n}$, which is said to have length $|\alpha|=\alpha_{1}+\cdots+$ α_{n}, one writes

$$
\begin{equation*}
\partial^{\alpha} f=\frac{\partial^{|\alpha|} \mid f}{\partial_{x_{1}}^{\alpha_{1}^{1} \ldots \partial_{x_{n}}^{\alpha_{n}}}} . \tag{5.0.12}
\end{equation*}
$$

Then the subspace $H^{m}(\Omega) \subset L^{2}(\Omega)$ is defined as the set of f to which there for every $|\alpha| \leq m$ exists some $f_{\alpha} \in L^{2}(\Omega)$ fulfilling the condition $\left(f \mid \partial^{\alpha} \varphi\right)_{L^{2}}=(-1)^{|\alpha|}\left(f_{\alpha} \mid \varphi\right)$ for all $\varphi \in C_{0}^{\infty}(\Omega)$.

Since the f_{α} are uniquely determined, there are maps $\partial^{\alpha} f:=f_{\alpha}$ defined for $f \in H^{m}(\Omega)$. This gives rise to an inner product on $H^{m}(\Omega)$, namely

$$
\begin{equation*}
(f \mid g)_{H^{m}}=\sum_{|\alpha| \leq m} \int_{\Omega} \partial^{\alpha} f(x) \overline{\partial^{\alpha} g(x)} d x \tag{5.0.13}
\end{equation*}
$$

The induced norm has the expression

$$
\begin{equation*}
\|f\|_{H^{m}}=\left(\sum_{|\alpha| \leq m}\left\|\partial^{\alpha} f\right\|_{L^{2}}^{2}\right)^{1 / 2} \tag{5.0.14}
\end{equation*}
$$

With this $H^{m}(\Omega)$ is a Hilbert space. The subspace $H_{0}^{m}(\Omega)$ is defined as the closure of $C_{0}^{\infty}(\Omega)$, that clearly is a Hilbert space. By inspection of the norms, there are bounded, hence continuous maps

$$
\begin{equation*}
\partial^{\alpha}: H^{m}(\Omega) \rightarrow H^{m-|\alpha|}(\Omega), \quad \text { for } \quad|\alpha| \leq m . \tag{5.0.15}
\end{equation*}
$$

5.1. Examples of orthonormal bases.

Some of the elementary functions provide basic examples of orthonormal bases. Eg one has

Proposition 5.1.1. The Hilbert space $L^{2}(0, \pi)$ has an orthonormal basis $\left(e_{n}\right)_{n \in \mathbb{N}_{0}}$ consisting of

$$
\begin{equation*}
e_{0} \equiv \frac{1}{\sqrt{\pi}}, \quad e_{n}=\sqrt{\frac{2}{\pi}} \cos (n t), \quad \text { for } n \in \mathbb{N} . \tag{5.1.1}
\end{equation*}
$$

Indeed, orthonormality is easy to derive from the periodicity and Euler's identities (do it!). It remains to show that $\left(e_{n}\right)_{n \in \mathbb{N}_{0}}$ is total in $L_{2}(0, \pi)$, and for this it suffices by density to approximate an arbitrary $f \in C([0, \pi])$. But to $g(t)=f(\arccos t)$ and $\varepsilon>0$, Weierstrass' approximation theorem (2.3.1) furnishes a polynomial $p=\sum_{j=0}^{N} a_{j} t^{j}$ such that $|g-p|<\varepsilon \pi^{-1 / 2}$ on $[-1,1]$; thence

$$
\begin{equation*}
\left|f(t)-\sum_{j=0}^{N} a_{j}(\cos t)^{j}\right|<\varepsilon \pi^{-1 / 2}, \quad \text { for } \quad t \in[0, \pi] . \tag{5.1.2}
\end{equation*}
$$

Here Euler's identities yield that $(\cos t)^{j}=\sum_{k=-j}^{j} b_{k} e^{i k t}$ for scalars satisfying $b_{k}=b_{-k}$, whence $(\cos t)^{j}$ is in $E_{j}=\operatorname{span}\left(e_{0}, \ldots, e_{j}\right)$. Then $p \circ \cos$ is in E_{N}, and $\|f-p \circ \cos \|<\varepsilon$ in $L_{2}(0, \pi)$ as desired.

Similarly the sine function gives rise to an orthonormal basis.
Proposition 5.1.2. The Hilbert space $L_{2}(0, \pi)$ has an orthonormal basis $\left(e_{n}\right)_{n \in \mathbb{N}}$ given by $e_{n}(x)=\sqrt{\frac{2}{\pi}} \sin (n x)$ for $n \in \mathbb{N}$.

The orthonormality is verified as for the cosines; but that the sequence is total follows at once from the totality of the cosines: if $f \perp \overline{\operatorname{span}}\left(e_{n}\right)$, then $\left(f \mid e_{n}\right)=\int_{0}^{\pi} f(x) \sin (n x) d x=0$ for all n; this yields

$$
\begin{align*}
(f \sin \mid \cos (n \cdot)) & =\int_{0}^{\pi} f(x) \sin (x) \cos (n x) d x \tag{5.1.3}\\
& =\left(f \left\lvert\, \frac{1}{2} \sin ((n+1) \cdot)\right.\right)-\left(f \left\lvert\, \frac{1}{2} \sin ((n-1) \cdot)\right.\right)=0
\end{align*}
$$

Since $\{0\}=\operatorname{span}(\cos (n \cdot))^{\perp}$, this gives $f \sin =0$, hence $f=0$ a.e. Therefore $\left(e_{n}\right)$ is total.

5.2. On Fourier series

It is known from elementary calculus that eg $f(x)=\cos ^{2}(x) \sin (3 x)$ may be resolved into a sum of oscillations with frequencies $\frac{1}{2 \pi}, \frac{3}{2 \pi}$ and $\frac{5}{2 \pi}$, simply by use of Euler's identities:

$$
\begin{equation*}
f(x)=\cos ^{2}(x) \sin (3 x)=\frac{1}{4} \sin (5 x)+\frac{1}{2} \sin (3 x)+\frac{1}{4} \sin x . \tag{5.2.1}
\end{equation*}
$$

This way, a harmonic or Fourier analysis of f is obtained.

The classical claim of J. Fourier (made around 1820?!) is that any function f on the interval $[-\pi, \pi]$ may expressed as an infinite series of harmonic functions, namely

$$
\begin{equation*}
f(x)=\frac{A_{0}}{2}+\sum_{n=1}^{\infty}\left(A_{n} \cos (n x)+B_{n} \sin (n x)\right) \tag{5.2.2}
\end{equation*}
$$

with the coefficients

$$
\begin{align*}
& A_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(y) \cos (n y) d y \text { for } n=0,1,2, \ldots \tag{5.2.3}\\
& B_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(y) \sin (n y) d y \text { for } n=1,2, \ldots \tag{5.2.4}
\end{align*}
$$

Later as the notion of functions was crystallised, it became increasingly important to clarify Fourier's claim.

It is quite remarkable that his assertion is true for functions as general as those in the class $L^{2}(-\pi, \pi)$ (and similarly in dimensions $n>1$).
5.2.1. The one-dimensional case. The results on orthonormal bases of sines and cosines on $[0, \pi]$ lead to the following main result. It is formulated for the Hilbert space $L^{2}\left(-\pi, \pi ; \frac{1}{2 \pi} m_{1}\right)$, where the one-dimensional Lebesgue measure m_{1} is normalised for convenience. Hence $(f \mid g)=$ $\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) \overline{g(x)} d x$ is the inner product of f, g.

THEOREM 5.2.1. The functions $e_{n}(x)=e^{\mathrm{i} n x}$, with $n \in \mathbb{Z}$, constitute an orthonormal basis for $L^{2}\left(-\pi, \pi ; \frac{1}{2 \pi} m_{1}\right)$, and for every f in this space,

$$
\begin{equation*}
f=\sum_{n=-\infty}^{\infty} c_{n} e_{n} \tag{5.2.5}
\end{equation*}
$$

with coefficients $c_{n}=\left(f \mid e_{n}\right)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(y) e^{i-n y} d y$ for $n \in \mathbb{Z}$.
Proof. It is straightforward to see that the sequence is orthonormal, for by the periodicity of $e^{\mathrm{i}(k-n) x} /(k-n)$ for $k \neq n$,

$$
\begin{equation*}
\left(e_{k} \mid e_{n}\right)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{\mathrm{i}(k-n) y} d y=\delta_{k n} \tag{5.2.6}
\end{equation*}
$$

It therefore suffices to see that $\left\{e_{n} \mid n \in \mathbb{Z}\right\}$ is a total subset, which follows if every f in $L^{2}(-\pi, \pi)$ satisfies

$$
\begin{equation*}
f=\lim _{n \rightarrow \infty} \sum_{k=-n}^{n}\left(f \mid e_{k}\right) e_{k} \tag{5.2.7}
\end{equation*}
$$

(This is the meaning of (5.2.5).)
First the case of an even f is considered, ie $f(x)=f(-x)$. For such f it holds that $B_{n}=0$ for every $n \in \mathbb{N}$, for the substitution $y=-x$ leads to

$$
\begin{equation*}
\int_{-\pi}^{0} f(y) \sin (n y) d y=-\int_{0}^{\pi} f(x) \sin (n x) d x \tag{5.2.8}
\end{equation*}
$$

Classically f is therefore assigned the Fourier series

$$
\begin{equation*}
f(x)=\frac{A_{0}}{2}+\sum_{n=1}^{\infty} A_{n} \cos (n x) . \tag{5.2.9}
\end{equation*}
$$

However, for $x \in[0, \pi]$ this holds as an identity in $L^{2}\left(0, \pi ; \frac{2}{\pi} m_{1}\right)$. Indeed, in view of Proposition 5.1.1 the functions $g_{0}(x)=\frac{1}{\sqrt{2}}$ and $g_{n}(x)=\cos (n x)$
with $n \in \mathbb{N}$ for an orthonormal basis, so since f is even,

$$
\begin{align*}
f(x) & =\sum_{n=0}^{\infty}\left(f \mid g_{n}\right) g_{n}(x) \\
& =\frac{1}{\pi} \int_{-\pi}^{\pi} f(y) d y \frac{1}{2}+\sum_{n=1}^{\infty}\left(\frac{1}{\pi} \int_{-\pi}^{\pi} f(y) \cos (n y) d y\right) \cdot \cos (n x) \tag{5.2.10}\\
& =\frac{A_{0}}{2}+\sum_{n=1}^{\infty} A_{n} \cos (n x) .
\end{align*}
$$

Actually (5.2.9) even holds in $L^{2}\left(-\pi, \pi ; \frac{1}{2 \pi} m_{1}\right)$, for if s_{n} denotes the $n^{\text {th }}$ partial sum on the right hand side of (5.2.9),

$$
\begin{equation*}
\left\|f-s_{n}\right\|_{L^{2}(-\pi, \pi)}^{2} \leq\left\|f-s_{n}\right\|_{L^{2}(0, \pi)}^{2} \searrow 0 . \tag{5.2.11}
\end{equation*}
$$

(For the inequality one may use that $\left|f-s_{n}\right|^{2}$ has the same integral on $[-\pi, 0]$ and $[0, \pi]$, since f and the cosines are even.)

Using a completely analogous argument, and that $L^{2}\left(0, \pi ; \frac{2}{\pi} m_{1}\right)$ has another orthonormal basis given by $(\sin (n \cdot))_{n \in \mathbb{N}}$, cf Proposition 5.1.2, it is seen that for odd functions, ie $f(x)=-f(-x)$, all the A_{n} vanish and

$$
\begin{equation*}
f=\sum_{n=0}^{\infty} B_{n} \sin (n \cdot) \quad \text { in } \quad L^{2}\left(-\pi, \pi ; \frac{1}{2 \pi} m_{1}\right) . \tag{5.2.12}
\end{equation*}
$$

Now any function f may be written $f=f_{1}+f_{2}$ where $f_{1}(x):=(f(x)+$ $f(-x)) / 2$ is even and $f_{2}(x):=(f(x)-f(-x)) / 2$ is odd, and the above analyses apply to these terms. Chosing new scalars

$$
\begin{array}{clll}
C_{n}=\frac{1}{2}\left(A_{n}-\mathrm{i} B_{n}\right) & \text { for } & n \in \mathbb{N}_{0}, \tag{5.2.13}\\
C_{-n}=\frac{1}{2}\left(A_{n}+\mathrm{i} B_{n}\right) & \text { for } & n \in \mathbb{N},
\end{array}
$$

Euler's formula leads to

$$
\begin{align*}
f & =f_{1}+f_{2} \\
& =\frac{A_{0}}{2}+\sum_{n=1}^{\infty}\left(A_{n} \cos (n \cdot)+B_{n} \sin (n \cdot)\right) \tag{5.2.14}\\
& =\frac{A_{0}}{2}+\sum_{n=1}^{\infty}\left(C_{n} e^{\mathrm{i} n \cdot}+C_{-n} e^{-\mathrm{i} n \cdot}\right)=\lim _{n \rightarrow \infty} \sum_{k=-n}^{n} C_{k} e^{\mathrm{i} k \cdot} .
\end{align*}
$$

Since insertion of (5.2.3) and (5.2.4) into (5.2.13) shows that $C_{n}=c_{n}$ for every $n \in \mathbb{Z}$, (5.2.14) proves (5.2.7), hence the theorem.

Observe that the classical Parseval's equation for Fourier series now is a gratis consequence of Theorem 4.2.5:

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{-\pi}^{\pi}|f(x)|^{2} d x=\sum_{n=-\infty}^{\infty}\left|c_{n}(f)\right|^{2} \tag{5.2.15}
\end{equation*}
$$

Here $c_{n}(f)=\left(f \mid e_{n}\right)$, but the main change is that as the index set for the basis vectors, \mathbb{Z} must now be used instead of \mathbb{N}. (Here $c_{n}(f):=\left(f \mid e_{n}\right)$.)

In addition, Proposition 4.2 .3 shows that the sequence $\left(c_{n}(f)\right)$ is in $\ell^{2}(\mathbb{Z})$ for every $f \in L^{2}(-\pi, \pi)$, and that conversely any $\left(\alpha_{n}\right)$ in $\ell^{2}(\mathbb{Z})$ equals the Fourier coefficients of some function $g \in L^{2}(-\pi, \pi)$; indeed, $g=\sum \alpha_{n} e_{n}$ by Proposition 4.2.3. (Actually this is just an example of the unitary equivalence mentioned in Theorem 4.2.6!)
5.2.2. Fourier series in higher dimensions. Using the above results it is now possible to deduce the corresponding facts in n dimensions. So consider the cube $Q=]-\pi, \pi]^{n}$ and the corresponding Hilbert space $L^{2}(Q)$ (the Lebegue measure m_{n} is now tacitly normalised by $(2 \pi)^{-n}$).

It is easy to see that there is an orthonormal sequence of functions

$$
\begin{equation*}
e_{k}(x)=e^{\mathrm{i} k \cdot x}=e^{\mathrm{i}\left(k_{1} x_{1}+\cdots+k_{n} x_{n}\right)} \tag{5.2.16}
\end{equation*}
$$

with $x=\left(x_{1}, \ldots, x_{n}\right) \in Q$ and a 'multi-integer' $k=\left(k_{1}, \ldots, k_{n}\right) \in \mathbb{Z}^{n}$. In fact for $k, m \in \mathbb{Z}^{n}$,

$$
\begin{equation*}
\left(e_{k} \mid e_{m}\right)=\frac{1}{(2 \pi)^{n}} \prod_{j=1}^{n} \int_{-\pi}^{\pi} e^{\mathrm{i}\left(k_{j}-m_{j}\right) x_{j}} d x_{j}=\delta_{k_{1} m_{1}} \ldots \delta_{k_{n} m_{n}}=\delta_{k m} . \tag{5.2.17}
\end{equation*}
$$

This system is moreover an orthonormal basis. Indeed, assume that $f \in$ $L^{2}(Q)$ is orthogonal to e_{k} for every $k \in \mathbb{Z}^{n}$. Since $L^{2}(Q) \subset L^{1}(Q)$, the below auxiliary function is well defined (a.e.) by Fubini's theorem,

$$
\begin{equation*}
g\left(x_{n}\right)=\int_{]-\pi, \pi]^{n-1}} \frac{f\left(x_{1}, \ldots, x_{n-1}, x_{n}\right)}{\exp \left(\mathrm{i}\left(k_{1} x_{1}+\cdots+k_{n-1} x_{n-1}\right)\right)(2 \pi)^{n}} d\left(x_{1}, \ldots, x_{n-1}\right) . \tag{5.2.18}
\end{equation*}
$$

Moreover, it is in $L^{2}(-\pi, \pi)$ because Hölder's inequality gives that

$$
\begin{equation*}
\left|g\left(x_{n}\right)\right| \leq\left(\int\left|f\left(x_{1}, \ldots, x_{n-1}, x_{n}\right)\right|^{2} d\left(x_{1}, \ldots, x_{n-1}\right)\right)^{1 / 2} \tag{5.2.19}
\end{equation*}
$$

where the right hand side is quadratic integrable. However, by the identity above, $\left(g \mid e^{i k_{n} \cdot}\right)=\left(f \mid e_{k}\right)=0$. Then the results for dimension 1 give that $g \equiv 0$. Hence $f\left(\cdot, x_{n}\right)$ is orthogonal to all the exponentials in $n-1$ dimensions. Repeating this argument, it is seen that for fixed $\left.\left.x_{2}, \ldots, x_{n} \in\right]-\pi, \pi\right]$, the function $f\left(\cdot, x_{2}, \ldots, x_{n}\right)$ is 0 in $L^{2}(-\pi, \pi)$; by Fubini $\|f\|=0$ in $L^{2}(Q)$, whence $f=0$.

Thereby the following generalisation of Theorem 5.2.1 is an immediate consequence of the general Hilbert space theory:

THEOREM 5.2.2. The functions $e_{k}(x)=e^{i k \cdot x}$, with $k \in \mathbb{Z}^{n}$, constitute an orthonormal basis for $L^{2}(Q)$, where $\left.\left.Q=\right]-\pi, \pi\right]^{n}$, and for every f in this space,

$$
\begin{equation*}
f=\sum_{k \in \mathbb{Z}^{n}} c_{k} e_{k} \tag{5.2.20}
\end{equation*}
$$

with coefficients $c_{k}=\left(f \mid e_{k}\right)=(2 \pi)^{-n} \int_{Q} f(y) e^{-i k \cdot y}$ dy for $k \in \mathbb{Z}$. The sequence $\left(c_{k}\right)$ is in $\ell^{2}\left(\mathbb{Z}^{n}\right)$, and Parseval's identity holds.

Conversely, to any $\left(c_{k}\right) \in \ell^{2}\left(\mathbb{Z}^{n}\right)$ there exists a unique function f in $L^{2}(Q)$ having $\left(c_{k}\right)$ as its Fourier coefficients.

The convergence in (5.2.20) means that for any $\varepsilon>0$ there exists a finite set $K \subset \mathbb{Z}^{n}$ such that

$$
\begin{equation*}
\left\|f-\sum_{k \in K} c_{k} e_{k}\right\|_{L^{2}(Q)}<\varepsilon \tag{5.2.21}
\end{equation*}
$$

Example 5.2.3. For the subspace $H^{1}(Q)$ of $L^{2}(Q)$, introduced in Example 5.0.3 at least if we now take $Q=]-\pi, \pi\left[^{n}\right.$, it is natural to ask for characterisations in terms of Fourier series.

However, this is easier to carry out for the subspace

$$
\begin{align*}
& H^{1}(\mathbb{T})=\left\{f \in H^{1}(Q) \mid \forall j=1, \ldots, n:\right. \\
& x_{j}=0\left.\Longrightarrow f\left(x+\pi e_{j}\right)=f\left(x-\pi e_{j}\right)\right\} . \tag{5.2.22}
\end{align*}
$$

The reason is that any such f may be extended to a 2π-periodic function in all variables without loosing the H^{1}-property (whereas such extensions of functions in $H^{1}(Q)$ would have jump discontinuities at the boundary of Q). Observe, however, that there is an important technical remnant, namely to account for the fact that the elements of $H^{1}(\mathbb{T})$ are so regular that the values at $x \pm \pi e_{j}$ may be calculated in an unambiguous way.

We shall abstain from that here, and just mention the resulting characterisation instead. Indeed, defining $h^{1}\left(\mathbb{Z}^{n}\right) \subset \ell^{2}\left(\mathbb{Z}^{n}\right)$ to be the subspace of sequences $\left(c_{k}\right)$ fulfilling

$$
\begin{equation*}
\left(\sum_{k \in \mathbb{Z}^{n}}\left(1+k_{1}^{2}+\cdots+k_{n}^{2}\right)\left|c_{k}\right|^{2}\right)^{1 / 2}<\infty \tag{5.2.23}
\end{equation*}
$$

then $u \in H^{1}(\mathbb{T})$ holds precisely when its Fourier coefficients $\left(c_{k}\right)$ belong to $h^{1}\left(\mathbb{Z}^{n}\right)$. And $\|u\|_{H^{1}}$ equals the left hand side of the above inequality. Proof of this is given later.

On these grounds, Hilbert space theory is customarily deemed the natural framework for Fourier series.

CHAPTER 6

Operators on Hilbert spaces

6.1. The adjoint operator

As an application of the notion of adjoint operators, one can give the following characterisation of orthogonal projections.

PRoposition 6.1.1. Let $P \in \mathbb{B}(H)$. Then P is an orthogonal projection onto a closed subspace M of H if and only if $P^{*}=P^{2}=P$, that is if P is a self-adjoint idempotent.

In the affirmative case $M=P(H)=Z(I-P)=\{x \in H \mid P x=x\}$, so $H=P(H) \oplus Z(P)$.

Proof. That the orthogonal projection P onto a closed subspace M of H is a bounded, self-adjoint and idempotent operator is easy to see from the definition of P.

Conversely, if $P=P^{*}=P^{2}$ holds for some $P \in \mathbb{B}(H)$, then the identity $I=P+(I-P)$ shows that

$$
\begin{equation*}
\forall x \in H: x \in P(H)+(I-P)(H) . \tag{6.1.1}
\end{equation*}
$$

Now it is straightforward to verify that also $I-P$ is a self-adjoint idempotent. Using this, both subspaces $P(H),(I-P)(H)$ are seen to be closed: if $x_{n} \rightarrow x$ in H for a sequence $\left(x_{n}\right)$ in eg $P(H)$, then $x_{n}=P x_{n} \rightarrow P x$, so $x=P x$. They are ortogonal since $P^{*}(I-P)=P-P^{2} \equiv 0$, so $H=P(H) \oplus(I-P)(H)$ in view of (6.1.1). Since $P=P^{2}$, it also follows from (6.1.1) that P is the orthogonal projection onto $P(H)$. The remaining facts are uncomplicated to verify.

The folowing formula is sometimes useful.
Lemma 6.1.2. If $T \in \mathbb{B}(H)$ is self-adjoint, ie $T^{*}=T$, then

$$
\begin{equation*}
\|T\|=\sup \{|(T x \mid x)| \mid x \in H,\|x\|=1\} . \tag{6.1.2}
\end{equation*}
$$

Proof. If M_{T} denotes the supremum in (6.1.2), it follows from CauchySchwarz' inequality that $M_{T} \leq\|T\|$.

Whenever $T x \neq 0$ it is clear that $\|y\|=\|x\|$ by setting $y=s^{-1} T x$ for $s=\|T x\| /\|x\|$. Then a polarisation and the Parallelogram Law give that

$$
\begin{align*}
4\|T x\|^{2} & =2(T x \mid T x)+2(T T x \mid x)=2 s((T x \mid y)+(T y \mid x)) \\
& =s((T(x+y) \mid x+y)-(T(x-y) \mid x-y)) \\
& \leq s M_{T}\left(\|x+y\|^{2}+\|x-y\|^{2}\right) \tag{6.1.3}\\
& =2 s M_{T}\left(\|x\|^{2}+\|y\|^{2}\right)=4 s M_{T}\|x\|^{2} .
\end{align*}
$$

Therefore $\|T x\| \leq M_{T}\|x\|$ for all x, so $\|T\| \leq M_{T}$.

6.2. Compact operators

6.2.1. Preliminaries. The next result is often important; it states that for subspaces X of finite dimension one need only consider the coordinates with respect to a fixed basis of X (as we would like to), even when it comes to topological questions.

Lemma 6.2.1. Let X be a finite-dimensional subspace of a normed vector space V over \mathbb{F}, say with $\operatorname{dim} X=n \in \mathbb{N}$. Then every linear bijection $\Phi: \mathbb{F}^{n} \rightarrow X$ is a homeomorphism, and X is closed in V.

Proof. Any Φ of the mentioned type has the form $\left(\alpha_{1}, \ldots, \alpha_{n}\right) \mapsto$ $\alpha_{1} x_{1}+\cdots+\alpha_{n} x_{n}$ for some basis $\left(x_{1}, \ldots, x_{n}\right)$. However, using continuity of the vector operations, induction after n gives that Φ is continuous.
Φ^{-1} is continuous if and only if $\Phi(O)$ is open in X for every open set $O \subset \mathbb{F}^{n}$. By the linearity it suffices to see that $\Phi(B)$ is a neighbourhood of 0 , when B is the open unit ball of \mathbb{F}^{n}. But $S:=\left\{\alpha \mid \alpha_{1}^{2}+\cdots+\alpha_{n}^{2}=1\right\}$ is compact, and so is $\Phi(S)$ by the continuity of Φ. Combining this with the Hausdorff property of X gives a ball C centered at 0 such that $C \cap \Phi(S)=\emptyset$. Now $C \subset \Phi(B)$ follows, for if $C \ni c=\Phi(\alpha)$ with $|\alpha| \geq 1$, the continuous map $t \mapsto\|t \alpha\|$ attains the value 1 for some $\left.\left.t_{0} \in\right] 0,1\right]$, so the convexity of C entails $t_{0} c \in C \cap \Phi(S)=\emptyset$.

Using that V is Hausdorff, a sequence in X cannot converge to a point in $V \backslash X$, for its image under Φ^{-1} converges in \mathbb{F}^{n}. Consequently $\bar{X}=X$.

Notice that for $X=V=\mathbb{F}^{n}$ the lemma gives that all the norms $\|x\|_{p}=$ $\left(\sum_{j=1}^{n}\left|x_{j}\right|^{p}\right)^{1 / p}$ with $1 \leq p<\infty$ and the sup-norm $\|x\|_{\infty}$ give the same topology (which can also be seen directly), and that moreover the same is true for any norm on \mathbb{F}^{n}.

The result of the lemma holds in a much wider context too, for it suffices to presuppose only that V is a Hausdorff topological vector space. (The proof only needs to have the ball C replaced by another type of neighbourhood of 0 in which $t C \subset C$ for scalars with $|t| \leq 1$.)

The rank of a linear map $T: V \rightarrow W$ is defined as $\operatorname{rank} T=\operatorname{dim} T(V)$. In analogy with Lemma 6.2.1, one could wonder whether operators of finite rank are necessarily bounded. But this is not the case, for counterexamples exist already when $\operatorname{rank} T=1$ as seen in the specific construction given below (this also elucidates why a basis U is required to fulfil $V=\overline{\operatorname{span}} U$ rather than $V=\operatorname{span} U$):

Let $\left(e_{n}\right)$ denote the canonical orthonormal basis in $\ell^{2}(\mathbb{N})$; then $\ell^{2} \backslash$ $\operatorname{span}\left(e_{n}\right) \neq \emptyset$ because it contains eg $\left(n^{-1}\right)_{n \in \mathbb{N}}$, and by Zorn's lemma there exists a maximal linearly independent set of the form $\left\{e_{n} \mid n \in \mathbb{N}\right\} \cup\left\{v_{i} \mid\right.$ $i \in I\}$; this is a Hamel basis of ℓ^{2}, cf Remark 3.0.5, so that every $v \in \ell^{2}$
may be written

$$
\begin{equation*}
v=\sum_{n \in \mathbb{N}} \lambda_{n} e_{n}+\sum_{i \in I} \mu_{i} v_{i} \tag{6.2.1}
\end{equation*}
$$

Defining $\varphi: \ell^{2} \rightarrow \mathbb{C}$ by letting $\varphi \nu=\sum \mu_{i}$, it is clear that φ is a linear functional which is nonzero on every v_{i}. Moreover, $Z(\varphi) \supset \operatorname{span}\left(e_{n}\right)$, and since the latter set is dense, φ is discontinuous on ℓ^{2}.
6.2.2. Compact operators. A linear operator is bounded if and only if it maps the unit ball to a bounded set or (the reader should verify that it is equivalent) if and only if T maps every bounded set to a bounded set. To get a subclass of operators with stronger properties one could therefore require that every bounded set should be sent into a compact set:

Definition 6.2.2. Let $T: V \rightarrow W$ be a linear operator between normed spaces V and W. Then T is said to be compact if every bounded set $A \subset V$ has an image with compact closure (ie if $\overline{T(A)}$ is compact in W).

Notice that T is bounded and hence continuous, if it is compact. (It is a rather stronger fact that a compact operator, after restriction to say a ball of its domain, is continuous not only with respect to the induced norm topology,(as just observed), but also with respect to the so-called weak topology. Perhaps for these reasons, compact operators are synonymously called completely continuous.)

As an example, the identity I is not a compact operator in any infinite dimensional Hilbert space H, for an orthonormal sequence is never a Cauchy sequence, hence cannot have convergent subsequences. But the inclusion operator $C^{1}([0,1]) \hookrightarrow C([0,1])$ is compact (although this requires too many efforts to be shown here). Similarly, $H^{1}(\Omega) \subset L^{2}(\Omega)$ is a compact embedding when $\Omega \subset \mathbb{R}^{n}$ is bounded; cf Example 5.0.3-5.2.3 and the proof further below.

A simpler example concerns the operators $T: V \rightarrow W$ of finite rank.
Lemma 6.2.3. Let $T \in \mathbb{B}(V, W)$ be an operator of finite rank between normed spaces V, W. Then T is compact.

Proof. There is a linear homeomorphism $\Phi: T(V) \rightarrow \mathbb{F}^{n}$ for some $n \in \mathbb{N}$, and $T(V)$ is closed in W. Given a bounded set $A \subset V$ it follows that $\overline{T(A)} \subset T(V)$; hence $\Phi(\overline{T(A)})$ is well defined, it is bounded since $T(A)$ is bounded, and closed in \mathbb{F}^{n}, ie compact. Since Φ^{-1} is continuous this yields the compactness of $\overline{T(A)}$, and eventually also of T.

More generally, there is a convenient way to write down numerous operators, in fact, one for each sequence $\left(\lambda_{n}\right)$. Indeed, let $\left(e_{n}\right)$ be an orthonormal basis for a Hilbert space H, and consider for each sequence $\left(\lambda_{n}\right)$ in \mathbb{F} the operator T in H given by the expression

$$
\begin{equation*}
T x=\sum_{n=1}^{\infty} \lambda_{n}\left(x \mid e_{n}\right) e_{n}, \tag{6.2.2}
\end{equation*}
$$

and by its 'maximal' domain

$$
\begin{equation*}
D(T)=\left\{x \in H \mid \sum_{n=1}^{\infty} \lambda_{n}\left(x \mid e_{n}\right) e_{n} \text { converges in } H\right\} \tag{6.2.3}
\end{equation*}
$$

Notice by insertion of $x=e_{n}$ that every λ_{n} is an eigenvalue of the defined T. Moreover, simple properties such as boundedness and compactness are also easy to verify:

THEOREM 6.2.4. Under the above hypotheses, the operator T given by the formulae (6.2.2)-(6.2.3) is densely defined and linear, and it holds that

$$
\begin{equation*}
T \in \mathbb{B}(H) \Longleftrightarrow\left(\lambda_{n}\right) \in \ell^{\infty} \tag{6.2.4}
\end{equation*}
$$

$$
\begin{equation*}
\text { Tis compact } \Longleftrightarrow \lambda_{n} \rightarrow 0 \tag{6.2.5}
\end{equation*}
$$

In the affirmative case, $\|T\|_{\mathbb{B}(H)}=\left\|\left(\lambda_{n}\right)\right\|_{\ell \infty}$.
Proof. To see that $D(T)$ is dense, notice that T clearly is defined on any finite linear combination of the e_{n}, hence on the dense set $\operatorname{span}\left(e_{n}\right)$; linearity follows from the calculus of limits.

If $\left|\lambda_{n}\right| \leq C$ for every n, then $\left(\lambda_{n}\left(x \mid e_{n}\right)\right)$ is in ℓ^{2} for all $x \in H$, so $D(T)=$ H by Proposition 4.2.3; and T is bounded with $\|T\| \leq \sup \left|\lambda_{n}\right|$ because

$$
\begin{equation*}
\|T x\| \leq\left(\sum_{n=1}^{\infty}\left|C\left(x \mid e_{n}\right)\right|^{2}\right)^{1 / 2} \leq C\|x\| \tag{6.2.6}
\end{equation*}
$$

Conversely, if $T \in \mathbb{B}(H)$, insertion of $x=e_{n}$ shows that $\left|\lambda_{n}\right| \leq\|T\|$.
Given that $\lambda_{n} \rightarrow 0$, there is a sequence of compact operators (they have finite rank)

$$
\begin{equation*}
T_{k} x=\sum_{n \leq k} \lambda_{n}\left(x \mid e_{n}\right) e_{n} \tag{6.2.7}
\end{equation*}
$$

T is compact because $T_{k} \rightarrow T$ in $\mathbb{B}(H)$,

$$
\begin{equation*}
\left\|\left(T-T_{k}\right)\right\|^{2}=\sup _{\|x\| \leq 1} \sum_{n>k}\left|\lambda_{n}\right|^{2}\left|\left(x \mid e_{n}\right)\right|^{2} \leq \sup _{n>k}\left|\lambda_{n}\right|^{2} \searrow 0 . \tag{6.2.8}
\end{equation*}
$$

If $\lambda_{n} \nrightarrow 0$ there exist an $\varepsilon>0$ and $n_{1}<n_{2}<\ldots$ such that $\left|\lambda_{n_{k}}\right|>\varepsilon$ for all k. Since ($e_{n_{k}}$) is orthonormal,

$$
\begin{equation*}
\left\|T e_{n_{j}}-T e_{n_{k}}\right\|^{2}=\left\|\lambda_{n_{j}} e_{n_{j}}-\lambda_{n_{k}} e_{n_{k}}\right\|^{2}=\left|\lambda_{n_{j}}\right|^{2}+\left|\lambda_{n_{k}}\right|^{2} \geq 2 \varepsilon^{2} \tag{6.2.9}
\end{equation*}
$$

so $\left(T e_{n_{k}}\right)$ is not a Cauchy sequence. Therefore T 's image of the unit ball in H does not have compact closure, and T is thus not compact.

Notice that T given by (6.2.2) is diagonalised in the sense that the coefficient in front of e_{n} only contains $\left(x \mid e_{n}\right)$, the $n^{\text {th }}$ coordinate of x with respect to to basis $\left(e_{k}\right)$.

It will be seen later in the so-called Spectral Theorem, that every selfadjoint, compact operator actually has the particularly nice form in (6.2.2).

As direct application of Theorem 6.2.4, this chapter is concluded with a useful construction of a compact operator.

Example 6.2.5. Consider the Hilbert space $\ell^{2}(\mathbb{N})$ and the subspace

$$
\begin{equation*}
h^{1}(\mathbb{N})=\left\{\left.\left(x_{k}\right) \in \ell^{2}(\mathbb{N})\left|\sum\left(1+k^{2}\right)\right| x_{k}\right|^{2}<\infty\right\} \tag{6.2.10}
\end{equation*}
$$

(met in connection with Fourier series in Example 5.2.3). It is straightforward to see that h^{1} is a Hilbert space with respect to the norm

$$
\begin{equation*}
\left\|\left(x_{k}\right)\right\|_{h^{1}}=\left(\sum\left(1+k^{2}\right)\left|x_{k}\right|^{2}\right)^{1 / 2} \tag{6.2.11}
\end{equation*}
$$

Clearly the injection $h^{1} \hookrightarrow \ell^{2}$ is continuous, for $\left\|\left(x_{k}\right)\right\|_{\ell^{2}} \leq\left\|\left(x_{k}\right)\right\|_{h^{1}}$; but the identity $I: h^{1} \rightarrow \ell^{2}$ is actually even compact, and for this reason h^{1} is said to be compactly embedded into ℓ^{2}.

The compactness follows from Theorem 6.2.4; indeed K given by

$$
\begin{equation*}
K\left(x_{k}\right)=\left(\left(1+k^{2}\right)^{-1 / 2} x_{k}\right), \tag{6.2.12}
\end{equation*}
$$

is compact in ℓ^{2} because $\left(1+k^{2}\right)^{-1 / 2} \rightarrow 0$ for $k \rightarrow \infty$; and K is an isometry onto h^{1}, so $K^{-1}: h^{1} \rightarrow \ell^{2}$ is bounded. So, to any bounded sequence v_{n} of vectors in h^{1}, there is $B>0$ for which

$$
\begin{equation*}
\left\|K^{-1} v_{n}\right\|_{\ell^{2}} \leq B \quad \text { for every } n \tag{6.2.13}
\end{equation*}
$$

and because $v_{n}=K K^{-1} v_{n}$, where K is compact, there exists a subsequence $\left(v_{n_{p}}\right)$ converging in ℓ^{2}. It follows that I is compact.

CHAPTER 7

Basic Spectral Theory

The idea behind spectral theory is that by representing the elements of $\mathbb{B}(H)$ by a suitable subset of \mathbb{C}, called the spectrum, one can get a useful overview of the complicated behaviour such operators may have. This is in analogy with the spectral lines used to describe the wawelengths entering various (whitish) light rays.

However, in Linear Algebra an $n \times n$-matrix is usually seen as an operator $\mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ and its spectrum consists of its complex eigenvalues (in order that characteristic roots in $\mathbb{C} \backslash \mathbb{R}$ do not require special treatment). Hence the above-mentioned idea is only really fruitful if spectra of complex numbers are allowed; and since only normal matrices are unitarily equivalent to diagonal matrices, strong results can only be expected for certain subclasses of $\mathbb{B}(H)$. Indeed, this leads one to the Spectral Theorem for self-adjoint, compact operators in Theorem 7.2.3 below.

At no extra cost, the general definitions and basic results, even for unbounded operators, will be given first.

7.1. On spectra and resolvents

Let in the following H be a complex Hilbert space and T be a linear operator in H, that is $D(T) \subset H$. Recall that $Z(T)$ denotes the null-space of T whilst $R(T)$ stands for its range.

It is a central notion to study the following operator $R_{\lambda}(T)$, which is parametrised by certain $\lambda \in \mathbb{C}$:

$$
\begin{equation*}
R_{\lambda}(T)=(T-\lambda I)^{-1} . \tag{7.1.1}
\end{equation*}
$$

More precisely, this is defined whenever it makes sense, so λ should be such that $T-\lambda I$ is injective and then $D\left(R_{\lambda}(T)\right)=R(T-\lambda I)$.

Since T need not be everywhere defined, it might be worthwhile to write out (7.1.1) in all details: the requirement is that

$$
\begin{array}{lll}
R_{\lambda}(T)(T x-\lambda x)=x & \text { for every } & x \in D(T) \\
(T-\lambda I) R_{\lambda}(T) y=y & \text { for every } & y \in R(T-\lambda I) . \tag{7.1.3}
\end{array}
$$

The operator $R_{\lambda}(T)$ is called the resolvent of T, because it (re)solves the problem of finding, for given data $y \in H$, those $x \in H$ for which

$$
\begin{equation*}
T x-\lambda x=y . \tag{7.1.4}
\end{equation*}
$$

Indeed, provided that λ is such that $T-\lambda I$ is injective, any solution to this equation is unique, and it exists if and only if $y \in D\left(R_{\lambda}(T)\right)$; in the affirmative case it is given by $x=R_{\lambda}(T) y$; cf (7.1.3).

For simplicity $R_{\lambda}:=R_{\lambda}(T)$ when T is fixed. It is clear from the above that R_{λ} exists if and only if λ is not an eigenvalue of T. However, in order to have a name for those λ for which R_{λ} has nice properties, it is customary to introduce two sets:

Definition 7.1.1. 1°. A complex number λ belongs to the resolvent set of T, denoted by $\rho(T)$, if R_{λ} exists, is densely defined and bounded (on its domain $R(T-\lambda I)$).
2°. The spectrum of T is the complement of $\rho(T)$, ie $\sigma(T):=\mathbb{C} \backslash \rho(T)$.
Example 7.1.2. Even a simple case may be instructive: consider the injection of a subspace $I_{V}: V \hookrightarrow H$, where V is dense in H (an often met situation). Then it is clear that $\lambda=1$ is an eigenvalue of I_{V} because $I_{V}-$ $\lambda I \subset 0$. In sharp contrast to this, any $\lambda \neq 1$ is in the resolvent set, $R_{\lambda}\left(I_{V}\right)$ being multiplication by $(1-\lambda)^{-1}$ on the dense set V (clearly R_{λ} is then restriction to V of an element in $B(H)$).

For clarity it should be emphasised that R_{λ} for each $\lambda \in \rho(T)$ necessarily has an extension by continuity to an operator in $\mathbb{B}(H)$. But when T is closed, then R_{λ} itself is in $\mathbb{B}(H)$:

Lemma 7.1.3. Let T be a closed linear operator in H and let $\lambda \in \rho(T)$. Then R_{λ} is everywhere defined, ie $D\left(R_{\lambda}\right)=H$.

Proof. By the definition of resolvent set, it suffices to show that $D\left(R_{\lambda}\right)$ is closed. Let $y_{n}:=(T-\lambda I) x_{n} \rightarrow y$. Since $x_{n}=R_{\lambda} y_{n}$, it is straightforward to see that $\left(x_{n}\right)$ is a Cauchy sequence. Hence $x_{n} \rightarrow x$ for some $x \in H$. Since $T-\lambda I$ is closed, the Closed Graph Theorem gives that $x \in D(T-\lambda I)$ with $(T-\lambda I) x=y$. It follows that $D\left(R_{\lambda}\right)$ is closed.

Some authors specify $\rho(T)$ by the requirement that $R_{\lambda}(T)$ should belong to $\mathbb{B}(H)$; since most operators in the applications are closed (if not bounded), this usually gives the same subset of \mathbb{C} by the above lemma. However, the present definition is slightly more general and flexible.

In view of Definition 7.1.1 there are three different reasons why a given number λ could belong to $\sigma(T)$.

- Either $T-\lambda I$ is not injective.
- Or $T-\lambda I$ is injective but far from surjective, in the sense that $\overline{D\left(R_{\lambda}\right)} \neq H$.
- Or, finally, $T-\lambda I$ is injective and R_{λ} is densely defined, but R_{λ} is unbounded.
In the third case the criterion for boundedness of R_{λ} is whether there exists some constant $c_{\lambda}>0$ such that

$$
\begin{equation*}
\|(T-\lambda I) x\| \geq c_{\lambda}\|x\| \quad \text { for all } \quad x \in D(T) . \tag{7.1.5}
\end{equation*}
$$

Corresponding to these three possibilities, one says that λ is an eigenvalue of T (or belongs to $\sigma_{\mathrm{p}}(T)$, the so-called point spectrum of T), or that λ is in the residual spectrum of T (written $\sigma_{\mathrm{res}}(T)$), respectively in the continuous spectrum of $T\left(\sigma_{\text {cont }}(T)\right)$.

This gives a disjoint decomposition of $\sigma(T)$ as

$$
\begin{equation*}
\sigma(T)=\sigma_{\mathrm{p}}(T) \cup \sigma_{\mathrm{res}}(T) \cup \sigma_{\mathrm{cont}}(T) \tag{7.1.6}
\end{equation*}
$$

One should observe that $R_{\lambda}(T)$ is defined on the set $\mathbb{C} \backslash \sigma_{\mathrm{p}}(T)$, so that it also makes sense as an operator in H for λ in $\sigma_{\text {res }}(T) \cup \sigma_{\text {cont }}(T)$. The resolvent set $\rho(T)$ is the smaller set where R_{λ} is densely defined and (7.1.5) holds.

To demystify the notion of spectrum, it is shown now that one can read off immediately what $\sigma(T)$ is when T is diagonalisable:

Proposition 7.1.4. Let T be an operator in a Hilbert space H, with orthonormal basis $\left(e_{n}\right)_{n \in \mathbb{N}}$, defined from a (not necessarily bounded) sequence $\left(\lambda_{n}\right)$ in \mathbb{F} as in Theorem 6.2.4; that is

$$
\begin{equation*}
T x=\sum_{n=1}^{\infty} \lambda_{n}\left(x \mid e_{n}\right) e_{n} \tag{7.1.7}
\end{equation*}
$$

Then $\Lambda=\left\{\lambda_{n} \mid n \in \mathbb{N}\right\}$ equals the point spectrum of T, ie $\sigma_{p}(T)=\Lambda$; the residual spectrum is empty; and $\sigma_{\mathrm{cont}}(T)=\bar{\Lambda} \backslash \Lambda$. Consequently $\sigma(T)=\bar{\Lambda}$.

Proof. Clearly $\Lambda \subset \sigma_{p}(T)$, so let $\lambda \in \mathbb{C} \backslash \Lambda$. For every $x \in D(T)$

$$
\begin{equation*}
T x-\lambda x=\sum_{n=1}^{\infty}\left(\lambda_{n}-\lambda\right)\left(x \mid e_{n}\right) e_{n} \tag{7.1.8}
\end{equation*}
$$

So if $T x-\lambda x=0$, then $\left(\lambda-\lambda_{n}\right)\left(x \mid e_{n}\right)=0$ for every n, and this entails $x \perp \operatorname{span}\left(e_{n}\right)$, hence $x=0$; so λ is not an eigenvalue, ie $\sigma_{\mathrm{p}}(T)=\Lambda$. Using this for T^{*}, it follows that $\bar{\lambda} \notin \sigma_{\mathrm{p}}\left(T^{*}\right)$, ie $Z\left(T^{*}-\bar{\lambda} I\right)=(0)$, and for this reason $H=\overline{R(T-\lambda I)}$. This means that $\sigma_{\mathrm{res}}(T)=\emptyset$.

Let $c_{\mu}=\inf \{|\mu-\lambda| \mid \lambda \in \Lambda\}$ for $\mu \in \mathbb{C}$. Notice that $c_{\mu}>0$ is equivalent to $\mu \notin \bar{\Lambda}$. For all $x \in D(T)$ it is seen from (7.1.8) that

$$
\begin{equation*}
\|T x-\mu x\|=\left(\sum\left|\lambda_{n}-\mu\right|^{2}\left|\left(x \mid e_{n}\right)\right|^{2}\right)^{1 / 2} \geq c_{\mu}\|x\| . \tag{7.1.9}
\end{equation*}
$$

So if $\mu \in \bar{\Lambda} \backslash \Lambda$ it follows that μ belongs to neither $\sigma_{\mathrm{p}}(T)$ nor $\sigma_{\mathrm{res}}(T)$ but, in view of (7.1.5), and since $c_{\mu}>0$, that $\mu \in \sigma_{\mathrm{cont}}(T)$. Conversely, if μ is an element of the continuous spectrum, then by (7.1.5) it holds that $c_{\mu}=0$, so $\mu \in \bar{\Lambda}$; and $\mu \notin \Lambda$ since it is not an eigenvalue.

It is a fascinating programme of spectral theory to prove that the spectrum of an operator "behaves the like the operator does". To explain this,
consider the following types of operators in $\mathbb{B}(H)$:

$$
\begin{array}{lll}
T & \text { self-adjoint, } & T^{*}=T \\
U & \text { unitary, } & U^{*} U=U U^{*}=I \\
P & \text { projection, } & P^{2}=P \\
T & \text { positive, } & (T x \mid x) \geq 0 \quad \text { for every } x \in H . \tag{7.1.13}
\end{array}
$$

The idea is to make replacements $T \rightsquigarrow \lambda$ and $T^{*} \rightsquigarrow \bar{\lambda}$, whereby $\lambda \in \sigma(T)$ can be arbitrary. For the four cases above this would give

$$
\begin{align*}
\bar{\lambda}=\lambda, & \text { ie } \sigma(T) \subset \mathbb{R} \tag{7.1.14}\\
\bar{\lambda} \lambda=1, & \text { ie } \sigma(U) \subset\{z \in \mathbb{C}||z|=1\} \tag{7.1.15}\\
\lambda^{2}-\lambda=0, & \text { ie } \sigma(P) \subset\{0,1\} \tag{7.1.16}\\
\lambda \geq 0, & \text { ie } \sigma(T) \subset[0, \infty[. \tag{7.1.17}
\end{align*}
$$

These inferences are actually true, but in this chapter only the first case will be treated, for simplicity's sake.

REmark 7.1.5. The four types above are all normal operators; an operator $N \in \mathbb{B}(H)$ is normal if it commutes with its adjoint, ie if $N^{*} N=N N^{*}$. At first sight, it is surprising that the above replacements for a normal operator gives the tautology $\bar{\lambda} \lambda=\lambda \bar{\lambda}$. But for one thing, if N is normal so is $N+z I$ for all $z \in \mathbb{C}$ so that normal operators can have spectra "everywhere" in \mathbb{C}. Secondly, this is actually an indication that the class of normal operators is a natural one to develop a spectral theory for. But for simplicity focus will be restrained to the much smaller class of self-adjoint compact operators here.
7.1.1. The self-adjoint case. For an operator T in a Hilbert space H to be self-adjoint it is necessary that the adjoint should be defined, whence that $D(T)$ should be dense in H. In this section, this denseness will be understood whenever T is assumed to be self-adjoint.

For spectra one has the elementary observation that any eigenvalue of a self-adjoint operator T is real, ie $\sigma_{\mathrm{p}}(T) \subset \mathbb{R}$. Indeed, if $T x=\lambda x$ for a non-trivial x, say with $\|x\|=1$,

$$
\begin{equation*}
\bar{\lambda}=(x \mid \lambda x)=\left(x \mid T^{*} x\right)=(T x \mid x)=\lambda . \tag{7.1.18}
\end{equation*}
$$

Using this, one can show in a similar way that the eigenspaces of T are orthogonal; ie $Z(T-\lambda I) \perp Z(T-\mu I)$ for $\lambda \neq \mu$.

Furthermore, for $T=T^{*}$ it holds that λ is an eigenvalue if and only if $\bar{\lambda}$ is, so for all $\lambda \in \mathbb{C}$,

$$
\begin{equation*}
R(T-\lambda I)^{\perp}=Z(T-\bar{\lambda} I)=Z(T-\lambda I) \tag{7.1.19}
\end{equation*}
$$

One can now conclude the rather stronger and fundamental facts in

Proposition 7.1.6. For a densely defined operator T in H

$$
T=T^{*} \Longrightarrow\left\{\begin{array}{l}
\sigma_{\mathrm{res}}(T)=\emptyset \tag{7.1.20}\\
\sigma(T) \subset \mathbb{R}
\end{array}\right.
$$

Proof. For $\lambda \notin \sigma_{\mathrm{p}}(T)$ it follows from (7.1.19) that $R(T-\lambda I)$ is dense, whence $\sigma_{\mathrm{res}}(T)=\emptyset$. Since $T=T^{*}$ the number $(T x \mid x)$ is always real, so (4.1.8) gives for real β

$$
\begin{equation*}
\|T x-\mathrm{i} \beta x\|^{2}=\|T x\|^{2}+\|\beta x\|^{2}+2 \operatorname{Rei} \beta(T x \mid x) \geq|\beta|^{2}\|x\|^{2} . \tag{7.1.21}
\end{equation*}
$$

This formula also applies to $T-\alpha I$ for $\alpha \in \mathbb{R}$, since this is self-adjoint; therefore $T-(\alpha+\mathrm{i} \beta) I$ with $\alpha \in \mathbb{R}, \beta \neq 0$ is injective and has dense range (since $\sigma_{\text {res }}(T)=\emptyset$ has just been proved) and bounded inverse. Hence $\rho(T) \supset(\mathbb{C} \backslash \mathbb{R})$.

Another nice fact about self-adjoint operators is that the spectrum is characterised by the existence of approximate eigenvectors: if $\lambda \in \mathbb{C}$ is such that there exists a sequence $\left(x_{n}\right)$ in H with $\left\|x_{n}\right\|=1$ for every n and such that $\left\|T x_{n}-\lambda x_{n}\right\| \rightarrow 0$, one calls the x_{n} approximate eigenvectors corresponding to λ.

The number λ need not be an eigenvalue, but one has
Proposition 7.1.7. Let T be a self-adjoint operator in a Hilbert space H. Then $\lambda \in \sigma(T)$ if and only if there is a sequence $\left(x_{n}\right)$ of approximate eigenvectors corresponding to λ.

Proof. If such a sequence exists, (7.1.2) implies that R_{λ} is unbounded, so $\lambda \in \sigma(T)$. Conversely, given that λ is in the point spectrum of T, the claim is trivial for the sequence may be taken constantly equal to a normalised eigenvector. Or, if $\lambda \in \sigma_{\mathrm{cont}}(T)$, it follows from (7.1.5) that

$$
\begin{equation*}
0=\inf \{\|T x-\lambda x\| \mid x \in H,\|x\|=1\} \tag{7.1.22}
\end{equation*}
$$

hence there exists a sequence as desired.
7.1.2. Examples. First a perspective is put on linear algebra from the present point of view. Secondly it will be seen that eg differential operators can have spectra that are much larger sets than the spectra met in linear algebra; indeed even $\sigma(T)=\mathbb{C}$ is possible. Lastly, also bounded operators may have uncountable spectra.

Example 7.1.8. Any linear map $T: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ may be represented by a matrix, say with respect to the natural basis in \mathbb{C}^{n}; the eigenvalues of T is precisely the characteristic roots of the matrix. Repeating eigenvalues according to the multiplicities, $\sigma_{\mathrm{p}}(T)=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$. When λ is not an eigenvalue, $T-\lambda I$ is injective and hence a surjection; moreover, $R_{\lambda}(T)$ is in $\mathbb{B}\left(\mathbb{C}^{n}\right)$, so λ is in the resolvent set then. Altogether T has pure point spectrum and $\sigma(T)=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$ whilst $\rho(T)=\mathbb{C} \backslash\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$.

Example 7.1.9. Consider $\partial=\frac{d}{d t}$ with domain $C^{1}([0,1])$ as an operator in $H=L^{2}(] 0,1[)$. Clearly $(\partial-\lambda I) e^{\lambda t}=0$ for every $\lambda \in \mathbb{C}$; therefore $\sigma_{p}(\partial)=\mathbb{C}$ so that ∂ has pure point spectrum. The resolvent set is empty, $\rho(\partial)=\emptyset$, for the spectrum of ∂ fills the entire complex plane.

Example 7.1.10 (The one-sided shift operator). In $\mathbb{B}\left(\ell^{2}(\mathbb{N})\right)$ there is an operator T given by

$$
\begin{equation*}
T\left(x_{1}, x_{2}, x_{3}, \ldots\right)=\left(x_{2}, x_{3}, \ldots\right) \tag{7.1.23}
\end{equation*}
$$

For every $\lambda \in \mathbb{C}$ and $x=\left(x_{n}\right) \in \ell^{2}$, the equation $(T-\lambda I) x=0$ is equivalent to the system where $x_{j+1}=\lambda x_{j}$ for every $j \in \mathbb{N}$. If only those x with $x_{1}=1$ are considered, then this is equivalent to

$$
\begin{equation*}
x_{j+1}=\lambda^{j} \quad \text { for every } \quad j \in \mathbb{N} ; \tag{7.1.24}
\end{equation*}
$$

the sequence defined by this is in ℓ^{2} if and only if $\sum_{j=1}^{\infty}\left|\lambda^{j-1}\right|^{2}<\infty$, which is the case precisely when $|\lambda|<1$. It follows from this analysis that λ is an eigenvalue of T if and only if $|\lambda|<1$; hence $\sigma_{p}(T)$ is the open unit disk in \mathbb{C}.

Because $\|T x\|=\|x\|$ holds if $x_{1}=0$, it follows that $\|T\|=1$. As a consequence of results proved below, $\sigma(T)$ is a closed set contained in $\{z \in \mathbb{C}||z| \leq 1\}$. It was found above that $\sigma(T)$ is dense in this, so $\sigma(T)$ equals the closed unit disk.
7.1.3. Spectral theory for $\mathbb{B}(H)$. For an operator $T \in \mathbb{B}(H)$, where H is a Hilbert space, there are a few facts on spectra and resolvent sets that may be established without any further assumptions. Such results are very convenient eg for the determination of specific spectra, as seen in Example 7.1.10 above.

Notice that since any $T \in \mathbb{B}(H)$ is closed, $R_{\lambda}(T) \in \mathbb{B}(H)$ for every $\lambda \in \rho(T)$ because of Lemma 7.1.3.

Proposition 7.1.11. Let H be a Hilbert space and $T \in \mathbb{B}(H)$. Then the resolvent set of T is an open subset of \mathbb{C} and the map $\rho(T) \rightarrow \mathbb{B}(H)$ given by $\lambda \mapsto R_{\lambda}(T)$ is continuous in the norm topology of $\mathbb{B}(H)$.

Proof. If $\rho(T)=\emptyset$, it is open; so let $\mu \in \rho(T)$. Then $R_{\mu} \in \mathbb{B}(H)$ and $(T-\mu I) R_{\mu} x=x$ for every $x \in H$. Therefore every $\lambda \in \mathbb{C}$ gives

$$
\begin{equation*}
T-\lambda I=T-\mu I-(\lambda-\mu) I=(T-\mu I)\left(I-(\lambda-\mu) R_{\mu}\right) . \tag{7.1.25}
\end{equation*}
$$

Here the right hand side has an inverse in $\mathbb{B}(H)$ if both factors have that; by the Neumann series this is the case if

$$
\begin{equation*}
\left\|(\lambda-u) R_{\mu}\right\|<1 . \tag{7.1.26}
\end{equation*}
$$

This holds for all λ such that $|\lambda-\mu|<\left\|R_{\mu}\right\|^{-1}$, ie in a ball around μ. Thus $\rho(T)$ is shown to consist of interior points only.

When $|\lambda-\mu|<\left\|R_{\mu}\right\|$, one can invert both sides of the identity above and subtract R_{μ}; in this way,

$$
\begin{equation*}
\left\|R_{\lambda}-R_{\mu}\right\|=\left\|\sum_{k=1}^{\infty}(\lambda-\mu)^{k} R_{\mu}^{k}\right\| \leq \frac{|\lambda-\mu|\left\|R_{\mu}\right\|}{1-|\lambda-\mu|\left\|R_{\mu}\right\|} . \tag{7.1.27}
\end{equation*}
$$

This implies that $\left\|R_{\lambda}-R_{\mu}\right\| \rightarrow 0$ for $\lambda \rightarrow \mu$, so R_{λ} depends continuously on λ as claimed.

One can also prove that $\lambda \mapsto R_{\lambda}$ is holomorphic (in a specific sense), but details are omitted here.

It is easy to imagine that boundedness of an operator T on H should have consequences for the spectrum of T; eg it would be natural to expect that $\sigma(T)$ must be bounded for bounded T. But more than that holds:

Proposition 7.1.12. Let $T \in \mathbb{B}(H)$ for some Hilbert space H. Then $\sigma(T)$ is a compact set in \mathbb{C} and it is contained in the closed ball of radius $\|T\|$ and centre 0.

Proof. In view of Proposition 7.1.11, compactness of $\sigma(T)$ follows if it can be shown to be bounded. So it suffices to show that every λ with $|\lambda|>\|T\|$ is in $\rho(T)$. But for such λ the operator $T-\lambda I=-\lambda\left(I-\frac{1}{\lambda} T\right)$ has a bounded inverse, since $\frac{1}{\lambda} T$ has norm less than 1 .

The ball referred to in this result is often called the norm ball of T. There is another natural ball in \mathbb{C} to consider for $T \in \mathbb{B}(H)$, namely the smallest ball centred at 0 , which contains $\sigma(T)$. To make this precise we need

Definition 7.1.13. For an operator T in a Hilbert space H, the spectral radius of T is the number

$$
\begin{equation*}
r(T)=\sup \{|\lambda| \mid \lambda \in \sigma(T)\} \tag{7.1.28}
\end{equation*}
$$

For $T \in \mathbb{B}(H)$ it is seen from Proposition 7.1.12 that $r(T) \leq\|T\|$. Moreover, the supremum is attained because $\sigma(T)$ is compact, so $\bar{B}(0, r(T)) \supset$ $\sigma(T)$; no smaller ball has this property, whence $\bar{B}(0, r(T))$ is the smallest ball containing the spectrum of T, as desired.

Remark 7.1.14. For normal T, that is $T^{*} T=T T^{*}$, it is a cornerstone of the theory that the two numbers are equal:

$$
\begin{equation*}
T \quad \text { is normal } \Longrightarrow r(T)=\|T\| \tag{7.1.29}
\end{equation*}
$$

This result has many applications, eg in the spectral theorem of normal operators (and also in applied mathematics).

It would however lead too far to prove this here. But for self-adjoint compact operators, it will be proved as a substitute in the next section that either $\pm\|T\|$ is an eigenvalue (implying the above formula for such operators). Using this it is possible to give a relatively elementary proof of the spectral theorem for such operators anyway.

7.2. Spectra of compact operators

The main goal of this section is to prove the Spectral Theorem of compact, self-adjoint operators on Hilbert spaces.

It will be clear further below that compact self-adjoint operators have spectra consisting mainly of eigenvalues. Therefore it is natural to observe already now that these (except possibly for 0) always have finite multiplicity.

Proposition 7.2.1. Let T be a compact operator on a Hilbert space H. For every eigenvalue $\lambda \neq 0$ the corresponding eigenspace

$$
\begin{equation*}
H_{\lambda}=\{x \in H \mid T x=\lambda x\} \tag{7.2.1}
\end{equation*}
$$

has finite dimension, ie $\operatorname{dim} H_{\lambda}<\infty$.
Proof. Assuming that H_{λ} has a sequence of linearly independent vectors, there is even an orthonormal sequence $\left(x_{n}\right)$ in H_{λ}. By Pythagoras, $\left\|x_{n+k}-x_{n}\right\|=\sqrt{2}$, and since $\left.T\right|_{H_{\lambda}}$ just multiplies by $\lambda \neq 0$, the sequence ($T x_{n}$) has no fundamental subsequences. Therefore T is not compact.

The next result is essential for the proof of the Spectral Theorem. It holds quite generally, cf Remark 7.1.14, but in the context of compact operators there is a rather elementary proof.

Proposition 7.2.2. When T is a compact, self-adjoint operator on a Hilbert space, then the spectral radius formula is valid, that is

$$
\begin{equation*}
r(T)=\|T\|, \tag{7.2.2}
\end{equation*}
$$

for either $\lambda=\|T\|$ or $\lambda=-\|T\|$ is an eigenvalue of T. Moreover,

$$
\begin{equation*}
\|T\|=\sup \{|(T x \mid x)| \mid x \in H,\|x\|=1\} \tag{7.2.3}
\end{equation*}
$$

and the supremum is attained for an eigenvector in (at least) one of the spaces $H_{ \pm\|T\|}$.

Proof. The expression for $\|T\|$ was shown in Lemma 6.1.2, and it suffices to show that the supremum is attained in the claimed way, for then $\sigma(T)$ contains one of $\pm\|T\|$, so that $\|T\| \leq r(T)$.

Take first a normalised sequence $\left(x_{n}\right)$ such that $\left|\left(T x_{n} \mid x_{n}\right)\right| \rightarrow\|T\|$. Then $\left(T x_{n} \mid x_{n}\right)$ has an accumulation point in $\{-\|T\|,\|T\|\}$. Denoting any of these by λ and extracting a subsequence $\left(y_{n}\right)$ for which $\left(T y_{n} \mid y_{n}\right) \rightarrow \lambda$, it is seen that

$$
\begin{align*}
\left\|T y_{n}-\lambda y_{n}\right\|^{2}=\left\|T y_{n}\right\|^{2}+|\lambda|^{2}-2 \operatorname{Re} & \lambda\left(T y_{n} \mid y_{n}\right) \\
\leq & 2 \lambda^{2}-2 \lambda\left(T y_{n} \mid y_{n}\right) \searrow 0 . \tag{7.2.4}
\end{align*}
$$

Therefore $\left(y_{n}\right)$ is a sequence of approximate eigenvectors corresponding to λ, whence $\lambda \in \sigma(T)$.

It follows that λ is an eigenvalue; for $T=0$ this is trivial, so assume that $\lambda>0$. Because T is compact, it may be assumed that $\left(y_{n}\right)$ is such that $\left(T y_{n}\right)$ converges. However, $\lim \left(T y_{n}-\lambda y_{n}\right)=0$ so also $\left(y_{n}\right)$ converges, say to
some $z \in H$. By continuity $\|z\|=1$ and $T z=\lambda z$, so λ is an eigenvalue; and $(T z \mid z)=\lambda$ so that the supremum is a maximum in the claimed way.

Theorem 7.2.3 (Spectral Theorem for Compact Self-adjoint Operators). Let H be a separable Hilbert space and $T \in \mathbb{B}(H)$ a compact, selfadjoint operator. Then H has an orthonormal basis $\left(e_{j}\right)_{j \in J}$, with index set $J \subset \mathbb{N}$, of eigenvectors for T with corresponding eigenvalues $\lambda_{j} \in \mathbb{R}$.This means that

$$
\begin{equation*}
\forall x \in H: \quad x=\sum_{j}\left(x \mid e_{j}\right) e_{j} \wedge T x=\sum_{j} \lambda_{j}\left(x \mid e_{j}\right) e_{j} \tag{7.2.5}
\end{equation*}
$$

In the affirmative case either $\operatorname{dim} H<\infty$, or it holds that $\lambda_{j} \rightarrow 0$ and $\sigma(T)=\{0\} \cup\left\{\lambda_{j} \mid j \in \mathbb{N}\right\}$.

For H of finite dimension, the statement is clearly that any $T=T^{*}$ has a diagonal matrix $\left(\begin{array}{ccc}\lambda_{1} & & 0 \\ & \ddots & \\ 0 & & \lambda_{n}\end{array}\right)$ with respect to a certain basis.

When H is infinite dimensional, T can either have finite rank or the nonzero λ_{j} form a sequence which may be numbered such that $\left|\lambda_{2}\right| \geq\left|\lambda_{2}\right| \geq$ $\cdots \geq\left|\lambda_{j}\right| \geq \cdots>0$. (This will be done in the below proof.) However, with such a convention (7.2.5) would not hold as it stands, but it would suffice to add a vector $x_{0} \in Z(T)$ to the expansion of x, for in the sum yielding $T x$ only $\lambda_{j} \neq 0$ enter then.

Proof. 1°. The last claim is a consequence of Proposition 7.1.4.
2°. Notice that if $Q \subset H$ is a closed, T-invariant subspace, then $\left.T\right|_{Q}$ is both self-adjoint and compact in $\mathbb{B}(Q)$. Indeed, $(T x \mid y)=(x \mid T y)$ holds in particular for $x, y \in Q$, and if $B \subset Q$ is a bounded set then $T(B) \subset Q \cap K$ for some compact set $K \subset H$; and $Q \cap K$ is compact since Q is closed.
3°. Consider the case in which, for some $n \in \mathbb{N}$, there are eigenvalues $\left|\lambda_{1}\right| \geq \cdots \geq\left|\lambda_{n}\right|$ with orthonormalised eigenvectors e_{1}, \ldots, e_{n} together with closed, T-invariant subspaces $Q_{1} \supset \cdots \supset Q_{n}$ fulfilling $Q_{k}=$ $\operatorname{span}\left(e_{1}, \ldots, e_{k}\right)^{\perp}$; and moreover, for $k=1, \ldots, n$,

$$
\begin{equation*}
\left|\lambda_{k}\right|=\max \left\{|(T x \mid x)| \mid x \in Q_{k-1}, \quad\|x\|=1\right\} . \tag{7.2.6}
\end{equation*}
$$

Observe that with $Q_{0}=H$ this actually holds for $n=1$, since firstly Proposition 7.2.2 shows that (λ_{1}, e_{1}) exists and fulfils (7.2.6), secondly $Q_{1}=$ $\left\{e_{1}\right\}^{\perp}$ is T-invariant because $\left(T q \mid e_{1}\right)=\lambda_{1}\left(q \mid e_{1}\right)=0$ does so for $q \in Q_{1}$.

Now $Q_{n}=\{0\}$ would imply $H=\operatorname{span}\left(e_{1}, \ldots, e_{n}\right)$, and then (7.2.5) would be evident. And if $Q_{n} \neq\{0\}$, Proposition 7.2.2 applies to $\left.T\right|_{Q_{n}}$ in view of 2°, and this gives a pair $\left(\lambda_{n+1}, e_{n+1}\right)$ in $\mathbb{R} \times Q_{n}$ fulfilling (7.2.6) for $k=n+1$ and $T e_{n+1}=\lambda_{n+1} e_{n+1},\left\|e_{n+1}\right\|=1$. Then the subspace $Q_{n+1}=\operatorname{span}\left(e_{1}, \ldots, e_{n+1}\right)^{\perp}$ is closed and T-invariant, and (7.2.6) implies that $\left|\lambda_{n+1}\right| \leq\left|\lambda_{n}\right|$ while $\left(e_{1}, \ldots, e_{n+1}\right)$ is orthonormal (since $e_{n+1} \in Q_{n}$).
4°. For $\operatorname{dim} H=\infty$ one may by 3° define λ_{n}, e_{n} inductively so that $\left(\left|\lambda_{n}\right|\right)$ is a decreasing, non-negative hence convergent sequence. But $\lambda_{n}=$
$\left\|T e_{n}\right\| \rightarrow 0$, because T is compact. $\sigma(T)$ is closed so it contains the limit 0.
5°. The main case is when $\left|\lambda_{n}\right|>0$ for all $n \in \mathbb{N}$. Then $H=M \oplus M^{\perp}$ for $M=\overline{\operatorname{span}}\left\{e_{n} \mid n \in \mathbb{N}\right\}$. Here $M^{\perp}=Z(T)$, for since $M^{\perp} \subset \cap_{n} Q_{n}$ it holds for any $y \in M^{\perp}$ that

$$
\begin{equation*}
\forall n \in \mathbb{N}:\|T y\| \leq\|T\|_{\mathbb{B}\left(Q_{n}\right)}\|y\| \leq\left|\lambda_{n+1}\right|\|y\| \searrow 0 \tag{7.2.7}
\end{equation*}
$$

so $\left.T\right|_{M^{\perp}}=0$; conversely any $z \in Z(T)$ equals $m+m^{\perp}$ for $m \in M$ and $m^{\perp} \in$ $M^{\perp} \subset Z(T)$, and here $m=0$ because $m=\sum \alpha_{n} e_{n}$ yields $0=T z=\sum \lambda_{n} \alpha_{n} e_{n}$ so that $\lambda_{n} \alpha_{n}=0$ for all n.

Since M^{\perp} is separable (it is closed), it has a countable orthonormal basis $\left\{f_{1}, f_{2}, \ldots\right\}$. The orthonormal set $\left\{e_{1}, f_{1}, e_{2}, f_{2}, \ldots\right\}$ is a basis for H, for if $x=m+z$ with $m \in M$ and $z \in Z(T)$, then $m=\sum \alpha_{n} e_{n}$ and $z=\sum \beta_{n} f_{n}$; then the triangle inequality gives

$$
\begin{equation*}
x=\lim _{n \rightarrow \infty} \sum_{j=1}^{n}\left(\alpha_{j} e_{j}+\beta_{j} f_{j}\right) \tag{7.2.8}
\end{equation*}
$$

(It is understood that the terms $\beta_{j} f_{j}$ only occur for $j \leq \operatorname{dim} M^{\perp}$.) Corresponding to this basis there are the eigenvalues $\left\{\lambda_{1}, 0, \lambda_{2}, 0, \ldots\right\}$. Renumerating both this and the basis for H one obtains $\left(\lambda_{n}\right)_{n \in \mathbb{N}}$ and $\left(e_{n}\right)_{n \in \mathbb{N}}$. The first part of (7.2.5) has just been proved above, but for $x \in H$,

$$
\begin{equation*}
T\left(\sum_{j=1}^{\infty}\left(x \mid e_{j}\right) e_{j}\right)=\lim _{n \rightarrow \infty} \sum_{j=1}^{n} \lambda_{j}\left(x \mid e_{j}\right) e_{j}=\sum_{j=1}^{\infty} \lambda_{j}\left(x \mid e_{j}\right) e_{j} \tag{7.2.9}
\end{equation*}
$$

so also the second part of (7.2.5) holds.
6° Finally, T has finite rank if and only if there is some N such that $\lambda_{n}=0$ for $n>N$. One may then proceed as in 5° with the modification that M should equal span $\left\{e_{1}, \ldots, e_{N}\right\}$; details are left for the reader.

It is clear now that (if the case $\operatorname{dim} H<\infty$ is excluded) a self-adjoint, compact operator T on H always has 0 as a very special point of it spectrum: indeed, the eigenvalues $\lambda \neq 0$ are isolated and have finite-dimensional eigenspaces H_{λ}, by Proposition 7.2.1 — but 0 may have infinite multiplicity if $\operatorname{dim} Z(T)=\infty$ (eg if $\operatorname{rank} T$ is finite), and in any case it is an accumulation point since $\lambda_{n} \rightarrow 0$ (even if T has finite rank). Therefore the point 0 has a character rather different from the rest of $\sigma(T)$ (in fact it belongs to $\sigma_{\text {ess }}(T)$, the so-called essential spectrum of T).

In view of this the Spectral Theorem conveys two messages, one about the structure of $\sigma(T)$ and the second being that such T may be diagonalised; cf (7.2.5).

The Spectral Theorem has various generalisations, eg a version for normal operators $T \in \mathbb{B}(H)$, but in such cases $\sigma(T)$ is usually uncountable, so that the sum in (7.2.5) needs to be replaced by certain integrals. The reader may consult the literature for this.

Remark 7.2.4. Notice a difference to [Ped00]: his statement implies that self-adjoint finite rank operators are compact only if $\operatorname{dim} H<\infty$, for otherwise they would have a whole sequence of non-zero eigenvalues, hence have $\left(e_{n}\right)$ in $R(T)$ in contradiction with the finite rank.

EXAMPLE 7.2.5. As an application of the Spectral theorem, one can for a compact, self-adjoint operator $T \in \mathbb{B}(H)$ discuss the solvability of

$$
\begin{equation*}
(T-\lambda I) x=y \tag{7.2.10}
\end{equation*}
$$

for given data $y \in H$. The interesting case is $\operatorname{dim} H=\infty$, and additionally $\lambda \neq 0$ is assumed (for even if T^{-1} exists it is unbounded).

In the notation of Theorem 7.2.3, (7.2.10) is equivalent to

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\lambda_{n}-\lambda\right)\left(x \mid e_{n}\right) e_{n}=\sum_{n=1}^{\infty}\left(y \mid e_{n}\right) e_{n} \tag{7.2.11}
\end{equation*}
$$

hence to

$$
\begin{equation*}
\forall n \in \mathbb{N}:\left(\lambda_{n}-\lambda\right)\left(x \mid e_{n}\right)=\left(y \mid e_{n}\right) \tag{7.2.12}
\end{equation*}
$$

Since $\left(\frac{1}{\lambda_{n}-\lambda}\right)$ is a bounded sequence for $\lambda \notin \sigma(T)$ and $\left(\left(y \mid e_{n}\right)\right) \in \ell^{2}$, equation (7.2.10) is therefore uniquely solved by

$$
\begin{equation*}
x=\sum_{\lambda_{n} \neq \lambda} \frac{\left(y \mid e_{n}\right)}{\lambda_{n}-\lambda} e_{n} . \tag{7.2.13}
\end{equation*}
$$

This reflects the solution formula $x=R_{\lambda}(T) y$, valid for $\lambda \in \rho(T)$.
For $\lambda \in \sigma(T) \backslash\{0\}$ it is necessary for solvability of (7.2.10) that $y \in$ $\overline{R(T-\lambda I)}$, ie $y \in Z(T-\lambda I)^{\perp}$; with $Z(T-\lambda I)=\operatorname{span}\left(e_{i_{1}}, \ldots, e_{i_{N}}\right)$ this means

$$
\begin{equation*}
\left(y \mid e_{i_{j}}\right)=0 \quad \text { for } \quad j=1, \ldots, N \tag{7.2.14}
\end{equation*}
$$

This condition is also sufficient, for the right hand side of (7.2.11) is then a sum over $n \notin\left\{i_{1}, \ldots, i_{N}\right\}$, ie over $\lambda_{n} \neq \lambda$, so that (7.2.13) also defines a solution of (7.2.10) in this case (seen by simple insertion). This reflects the invertibility of $T-\lambda I$ on $Z(T-\lambda I)^{\perp}$.

The result in (7.2.13) is remarkable because it is a solution formula for the "infinitely many equations with infinitely many unknowns" in (7.2.10). (Notice that the discussion does not carry over to $\lambda=0$, because the sequence $\left(\frac{1}{\lambda_{n}-\lambda}\right)$ is unbounded then.)

The reader may have noticed that the question of the closedness of $R(T-\lambda I)$ not only appeared implicitly above, but also disappeared again. This indicates that the next statement should be true.

Lemma 7.2.6. Let $T=T^{*}$ be a compact operator on a Hilbert space H and let $\lambda \neq 0$ be an eigenvalue. Then $R(T-\lambda I)$ is closed in H.

Proof. $c_{\lambda}:=\min \{|\mu-\lambda| \mid \mu \in \sigma(T) \backslash\{\lambda\}\}>0$ since λ is not an accumulation point of $\sigma(T)$. For a Cauchy sequence $\left(y_{k}\right)$ in $R(T-\lambda I)$, let
$\left(x_{k}\right)$ be defined by means of (7.2.13). Then

$$
\begin{equation*}
\left\|x_{k}-x_{m}\right\|^{2} \leq c_{\lambda}^{-2} \sum_{n=1}^{\infty}\left|\left(y_{k}-y_{m} \mid e_{n}\right)\right|^{2}=c_{\lambda}^{-2}\left\|y_{k}-y_{m}\right\|^{2} \tag{7.2.15}
\end{equation*}
$$

so that x_{k} converges to some x in H and $y_{n} \rightarrow(T-\lambda I) x$.
Using this lemma (and [Ped00, Prop. 5.2]) one can now most easily derive a famous result.

Example 7.2.7 (Fredholm's Alternative). Let T be a self-adjoint, compact operator on a separable Hilbert space H. For given data $y \in H$ and $\lambda \neq 0$, uniqueness of the solutions to

$$
\begin{equation*}
(T-\lambda I) x=y \tag{7.2.16}
\end{equation*}
$$

implies the existence of a solution $x \in H$. (This is the case if $\lambda \in \rho(T)$.)
Alternatively there are non-trivial solutions to the homogeneous equation $(T-\lambda I) z=0$, and then there exist solutions $x \in H$ of (7.2.16) if and only if $y \perp Z(T-\lambda I)$. In the affirmative case the complete solution equals $x_{0}+Z(T-\lambda I)$ for some particular solution x_{0} of (7.2.16). (This holds for $\lambda \in \sigma(T)$.)

Nowadays this conclusion is rather straightforward, but it was established by Fredholm for integral operators around 1900, decades before the notion of operators (not to mention their spectral theory) was coined in the present concise form.

7.3. Functional Calculus of compact operators

Using the Spectral Theorem, it is now easy to give a precise meaning to functions $f(T)$ of certain operators.

In order to do so, let $B(\sigma(T))$ denote the sup-normed space of bounded functions $\sigma(T) \rightarrow \mathbb{C}$.

THEOREM 7.3.1. Let T be a self-adjoint, compact operator on a separable Hilbert space H with an orthonormal basis $\left(e_{n}\right)$ of H consisting of eigenvectors of T, corresponding to eigenvalues λ_{n} in $\sigma(T)$.

Then any $f \in B(\sigma(T))$ gives rise to an operator $f(T)$ in $\mathbb{B}(H)$ defined by

$$
\begin{equation*}
f(T) x=\sum_{n} f\left(\lambda_{n}\right)\left(x \mid e_{n}\right) e_{n} \tag{7.3.1}
\end{equation*}
$$

The map $f \mapsto f(T)$ has the properties

$$
\begin{align*}
\|f(T)\|_{\mathbb{B}(H)} & =\|f\|_{B(\sigma(T))} \tag{7.3.2}\\
f(T)^{*} & =\bar{f}(T) \tag{7.3.3}\\
(\lambda f+\mu g)(T) & =\lambda f(T)+\mu g(T) \tag{7.3.4}\\
f \cdot g(T) & =f(T) g(T) \tag{7.3.5}
\end{align*}
$$

for arbitrary $f, g \in B(\sigma(T))$ and $\lambda, \mu \in \mathbb{F}$.

For infinite dimensional H and $f \in B(\sigma(T))$,
$f(T)$ is compact $\Longleftrightarrow \lim _{t \rightarrow 0} f(t)=0 \wedge\left[f(0)=0\right.$ if $\left.0 \in \sigma_{\mathrm{p}}(T)\right]$.
Since $B(\sigma(T))$ is a Banach algebra with involution (complex conjugation, $f \mapsto \bar{f})$, the content is that the map $f \mapsto f(T)$ is an isometric $*-$ isomorphism of $B(\sigma(T))$ on a subalgebra of $\mathbb{B}(H)$.

Proof. That $f(T)$ is well defined by (7.3.1) was seen earlier in Theorem 6.2.4; the criterion for compactness is that $f\left(\lambda_{n}\right) \rightarrow 0$, and if $0 \notin \sigma_{\mathrm{p}}(T)$ this amounts to $\lim _{t \rightarrow 0} f(t)=0$, whereas when 0 is an eigenvalue $f(0)=0$ must be added.
(7.3.2) is also a consequence of Theorem 6.2.4, and (7.3.4) is clear from (7.3.1) by the calculus of limits. Concerning (7.3.3), note that Parseval's identity entails

$$
\begin{equation*}
(f(T) x \mid y)=\sum f\left(\lambda_{n}\right)\left(x \mid e_{n}\right) \overline{\left(y \mid e_{n}\right)}=(x \mid \bar{f}(T) y) \tag{7.3.7}
\end{equation*}
$$

By the continuity of the inner product, and since $f\left(\lambda_{n}\right) g\left(\lambda_{n}\right)=f \cdot g\left(\lambda_{n}\right)$,

$$
\begin{align*}
& f(T) g(T) x=\sum f\left(\lambda_{n}\right)\left(g(T) x \mid e_{n}\right) e_{n} \\
&=\sum f \cdot g\left(\lambda_{n}\right)\left(x \mid e_{n}\right) e_{n}=f \cdot g(T) x, \tag{7.3.8}
\end{align*}
$$

so the multiplicativity follows.
To elucidate the efficacy of the functional calculus, it should suffice to note that it immediately gives the solution formula (7.2.13). Indeed, for $\lambda \neq 0$ the function

$$
f(t)= \begin{cases}\frac{1}{t-\lambda} & \text { for } t \in \sigma(T), t \neq \lambda \tag{7.3.9}\\ 0 & \text { for } t=\lambda(\text { void for } \lambda \in \rho(T))\end{cases}
$$

belongs to $f \in B(\sigma(T))$, and if $x=f(T) y$ for some $y \perp Z(T-\lambda I)$, then (7.3.1) amounts to (7.2.13) and in addition

$$
\begin{equation*}
(T-\lambda I) x=\sum_{\lambda_{n} \neq \lambda} f\left(\lambda_{n}\right)\left(y \mid e_{n}\right)\left(\lambda_{n}-\lambda\right) e_{n}=y \tag{7.3.10}
\end{equation*}
$$

so that $x=f(T) y$ solves (7.2.10) (obviously uniquely for $\lambda \in \rho(T)$).
Since it is clear from (7.3.1) that each λ_{n} is an eigenvalue of $f(T)$, it is not surprising that the image of f, that is $f(\sigma(T))$, is closely related to the spectrum of $f(T)$:

Corollary 7.3.2 (The Spectral Mapping Theorem). Under hypotheses as in Theorem 7.3.1,

$$
\begin{equation*}
\sigma(f(T))=f(\sigma(T)) \tag{7.3.11}
\end{equation*}
$$

for all continuous f, that is for $f \in C(\sigma(T))$.
It should be mentioned that if $\sigma(T)$ is a finite set, any function $\sigma(T) \rightarrow$ \mathbb{C} is automatically both bounded and continuous, so that the continuity assumption on f would be void.

Proof. For $\lambda \notin f(\sigma(T))$ the function $g(t)=(f(t)-\lambda)^{-1}$ belongs to $C(\sigma(T))$, so $\lambda \in \rho(T)$ since eg.

$$
\begin{equation*}
g(T)(f(T)-\lambda I)=g \cdot(f-\lambda)(T)=I \tag{7.3.12}
\end{equation*}
$$

Together with the observation before the corollary this shows that

$$
\begin{equation*}
f\left(\sigma_{\mathrm{p}}(T)\right) \subset \sigma(f(T)) \subset f(\sigma(T)) . \tag{7.3.13}
\end{equation*}
$$

Either $0 \in \sigma(T) \backslash \sigma_{\mathrm{p}}(T)$ with $\lambda_{j} \rightarrow 0$ or $\sigma(T)$ is finite. In the latter case (7.3.13) gives the conclusion, and in the former $f\left(\lambda_{j}\right) \rightarrow f(0)$ by the continuity, whence $f(\sigma(T))=\overline{f\left(\sigma_{\mathrm{p}}(T)\right)}$ and (7.3.11) follows.

It is clear that the assumption that f should be continuous is essential for the Spectral Mapping Theorem, for if

$$
\begin{equation*}
T\left(x_{1}, x_{2}, \ldots\right)=\left(x_{1}, \ldots, \frac{x_{n}}{n}, \ldots\right) \quad \text { on } \quad \ell^{2} \tag{7.3.14}
\end{equation*}
$$

then $\sigma(T)=\{0\} \cup\left\{\left.\frac{1}{n} \right\rvert\, n \in \mathbb{N}\right\}$ so that $f=1_{] 0, \infty[}$ gives

$$
\begin{equation*}
f(\sigma(T))=\{0,1\} \neq\{1\}=\sigma(I)=\sigma(f(T)) . \tag{7.3.15}
\end{equation*}
$$

The theory extends in a natural way to so-called normal compact operators, but it requires more techniques. The interested reader is referred to the literature, eg [Ped89].

7.4. The Functional Calculus for Bounded Operators

For a bounded, self-adjoint operator $T \in \mathbb{B}(H)$ there is also a functional calculus as exposed in eg. [RS80, Thm. VII.1].

For this one should note that inside $C(\sigma(T))$ the set \mathscr{P}, consisting of all restrictions of polynomials to $\sigma(T)$, is a dense set. This was seen in [Ped00] in case $\sigma(T)$ is an interval of \mathbb{R}; more generally, $\sigma(T) \subset \mathbb{R}$ since T is selfadjoint, and any continuous function f on $\sigma(T)$ can then be extended to an interval (by Tietze's theorem [Ped89, 1.5.8]) and thereafter approximated. (One can also apply the general Stone-Weierstrass theorem, although this requires more efforts to establish first.)

In this set-up, the Spectral Mapping Theorem (7.3.2) is still valid, however the proof is omitted in [RS80] so one is given here:

Proposition 7.4.1. For a self-adjoint operator $T \in \mathbb{B}(H)$,

$$
\begin{equation*}
\sigma(f(T))=f(\sigma(T)) \tag{7.4.1}
\end{equation*}
$$

for all $f \in C(\sigma(T))$.
Proof. $\sigma(f(T)) \subset f(\sigma(T))$ follows since (7.3.12) also holds here. Given that $\lambda=f(\mu)$ for some $\mu \in \sigma(T)$, approximative eigenvectors are contructed as follows. To each $\varepsilon>0$ there is a polynomial P such that $|f(x)-P(x)| \leq \varepsilon / 3$ for all $x \in \sigma(T)$. One can assume that f and P are real-valued for otherwise the following argument applies to the real and imaginary parts. Because (7.4.1) is known to hold for $f=P$, the number
$P(\mu)$ is in $\sigma(P(T))$. Since P is real, $P(T)^{*}=P(T)$ and there is then (cf. the lectures) a unit vector x so that

$$
\begin{equation*}
\|(P(T)-P(\mu) I) x\| \leq \varepsilon / 3 \tag{7.4.2}
\end{equation*}
$$

Since $f \mapsto f(T)$ is isometric, this leads to the conclusion that $\|(f(T)-$ $\lambda I) x\|\leq 2 \varepsilon / 3+\|(P(T)-P(\mu) I) x \| \leq \varepsilon$. Hence $\lambda \in \sigma(f(T))$.

CHAPTER 8

Unbounded operators

The purpose of this chapter is to take a closer look at the unbounded operators on Hilbert spaces and to point out some features that are useful for the applications to classical problems in Mathematical Analysis.

8.1. Anti-duals

For a topological vector space V, a functional $\varphi: V \rightarrow \mathbb{F}$ is called conjugate (or anti-) linear if φ is additive and for all $\alpha \in \mathbb{F}$ and $x \in V$,

$$
\begin{equation*}
\varphi(\alpha x)=\bar{\alpha} \varphi(x) . \tag{8.1.1}
\end{equation*}
$$

The anti-dual space V^{\prime} consists of all anti-linear functionals on V; it is occasionally handy. Clearly V^{\prime} is a subspace of the vector space $\mathscr{F}(V, \mathbb{F})$ of all maps $V \rightarrow \mathbb{F}$. Instead of redoing functional analysis for the anti-linear case, it is usually simpler to exploit that the involution on $\mathscr{F}(V, \mathbb{F})$ given by $f \mapsto \bar{f}$ (complex conjugation) maps the dual space V^{*} bijectively onto V^{\prime}.

Using $\langle\cdot, \cdot\rangle$ to denote also the action of anti-linear functionals, by definition of $\bar{\varphi}$,

$$
\begin{equation*}
\overline{\langle v, \varphi\rangle}=\langle v, \bar{\varphi}\rangle \quad \text { for all } \quad v \in V, \varphi \in V^{*} . \tag{8.1.2}
\end{equation*}
$$

However, on the space V^{\prime} each vector $v \in V$ defines the functional $\varphi \mapsto \varphi(v)$ (so that $\left.V \subset\left(V^{\prime}\right)^{*}\right)$. Hence it is natural to write (with interchanged roles)

$$
\begin{equation*}
\varphi(v)=\langle\varphi, v\rangle \quad \text { for } \quad \varphi \in V^{\prime}, v \in V \text {. } \tag{8.1.3}
\end{equation*}
$$

Using this for a Hilbert space H, it is easily seen that

- H^{\prime} endowed with $\|\varphi\|=\sup \{|\langle x, \varphi\rangle| \mid x \in H,\|x\| \leq 1\}$ is a Banach space isometrically, but anti-linearly isomorphic to H^{*};
- there is a linear, surjective isometry $\Phi: H \rightarrow H^{\prime}$ fulfilling

$$
\begin{equation*}
\langle\Phi(x), y\rangle=(x \mid y) \quad \text { for all } \quad x, y \in H . \tag{8.1.4}
\end{equation*}
$$

- H^{\prime} is a Hilbert space since $(\xi \mid \eta)_{H^{\prime}}:=\left(\Phi^{-1}(\xi) \mid \Phi^{-1}(\eta)\right)_{H}$ is an inner product inducing the norm. H and H^{\prime} are unitarily equivalent hereby.

For $T \in \mathbb{B}\left(H_{1}, H\right)$, where H_{1} and H are two Hilbert spaces, there is a unique $T^{\prime} \in \mathbb{B}\left(H^{\prime}, H_{1}^{\prime}\right)$ such that

$$
\begin{equation*}
\left\langle T^{\prime} x, y\right\rangle=(x \mid T y) \quad \text { for } \quad x \in H, y \in H_{1} . \tag{8.1.5}
\end{equation*}
$$

Indeed, $T^{\prime}=\Phi_{1} T^{*}$ when $T^{*} \in \mathbb{B}\left(H, H_{1}\right)$ is the usual Hilbert space adjoint of T and Φ_{1} is the isomorphism $H_{1} \rightarrow H_{1}^{\prime}$, for $(x \mid T y)=\left(T^{*} x \mid y\right)=$ $\left\langle\Phi_{1}\left(T^{*} x\right), y\right\rangle$.

8.2. Lax-Milgram's lemma

Although unbounded operators on a Hilbert space in general are difficult to handle, they are manageable when defined by sesqui-linear forms, for there is a bijective correspondence (explained below) between the bounded sesqui-linear forms on H and $\mathbb{B}(H)$; this allows one to exploit the bounded case at the expense of introducing auxiliary Hilbert spaces.

In this direction Lax-Milgram's lemma is the key result. There are, however, a handful of conclusions to be obtained under this name. But it all follows fairly easily with just a little prudent preparation.

Let H be a fixed Hilbert space in the sequel. It is fruitful to commence with the following three observations:
(I) It is necessary to consider Hilbert spaces V densely injected into H,

$$
\begin{equation*}
V \hookrightarrow H \text { densely, } \tag{8.2.1}
\end{equation*}
$$

meaning that V is a dense subspace of H, and that V is endowed with an inner product $(\cdot \mid \cdot)_{V}$ such that V is complete and that there exists a constant C fulfilling

$$
\begin{equation*}
\|v\|_{V} \geq C\|v\|_{H} \quad \text { for all } \quad v \in V . \tag{8.2.2}
\end{equation*}
$$

To elucidate the usefulness of this, note that if T is a densely defined, closed operator in H, then $D(T)$ is a Hilbert space densely injected into H.
(II) It is convenient to consider the anti-duals H^{\prime} and V^{\prime}, for this gives a linear isometry $A: V \rightarrow V^{\prime}$ such that

$$
\begin{equation*}
\langle A v, w\rangle=(v \mid w)_{V} \quad \text { for all } \quad v, w \in V, \tag{8.2.3}
\end{equation*}
$$

identifying any $v \in V$ with a functional in V^{\prime}. (The anti-linear isometry $V \rightarrow V^{*}$ would be less useful for, say linear differential operators.)
(III) To every sesqui-linear form $s: V \times V \rightarrow \mathbb{F}$ which is bounded, ie for some constant c

$$
\begin{equation*}
|s(v, w)| \leq c\|v\|_{V}\|w\|_{V} \quad \text { for all } \quad v, w \in V \tag{8.2.4}
\end{equation*}
$$

there corresponds a uniquely determined $S \in \mathbb{B}\left(V, V^{\prime}\right)$ such that for all v, w in V

$$
\begin{equation*}
s(v, w)=\langle S v, w\rangle . \tag{8.2.5}
\end{equation*}
$$

In addition to (I), note that when $I: V \hookrightarrow H$ densely, then

$$
\begin{equation*}
H^{\prime} \hookrightarrow V^{\prime} \text { densely. } \tag{8.2.6}
\end{equation*}
$$

Indeed, the adjoint I^{\prime} of the map I in (8.2.1) is injective and has dense range (as the reader should verify) in view of the formula

$$
\begin{equation*}
\left\langle I^{\prime} x, v\right\rangle_{V^{\prime} \times V}=(x \mid I v)_{H}=(x \mid v) \quad \text { for } \quad x \in H, v \in V . \tag{8.2.7}
\end{equation*}
$$

Here H^{\prime} is identified with H for simplicity's sake; this gives also the very important structure

$$
\begin{equation*}
V \subset H \subset V^{\prime} \tag{8.2.8}
\end{equation*}
$$

One can therefore, to any s as in (III) above and its associated operator $S \in \mathbb{B}\left(V, V^{\prime}\right)$ define an operator T in H simply by restriction:

$$
\left.\begin{array}{rl}
D(T) & =S^{-1}(H) \tag{8.2.9}\\
T & =\left.S\right|_{D(T)}
\end{array}\right\}
$$

It is easy to see that (8.2.9) coincides with a definition of T as the operator given by

$$
\begin{align*}
D(T) & =\left\{u \in V \mid \exists x \in H \forall v \in V: s(u, v)=(x \mid v)_{H}\right\} \tag{8.2.10}\\
T u & =x .
\end{align*}
$$

In these lines, the notation in the latter is explained by the former. To check (8.2.10), note that for $u \in D(T)$ there is some $x \in H$ so that $S u=I^{\prime} x$, whence for $v \in V$, by (8.2.7),

$$
\begin{equation*}
s(u, v)=\langle S u, v\rangle=\left\langle I^{\prime} x, v\right\rangle=(x \mid v)_{H} . \tag{8.2.11}
\end{equation*}
$$

The other inclusion is shown similarly.
In general T above is an unbounded operator in H. It is called the operator associated with the triple (H, V, s), or the Lax-Milgram-operator adjoined to (H, V, s). Moreover, T is also said to be variationally defined, because the definition in (8.2.10) occurs naturally in the calculus of variations (where the goal is to find extrema of specific examples of s).

It is customary, when referring to triples (H, V, s), to let it be tacitly assumed that V is densely injected into H and that s is bounded on V.

Thus motivated, a few properties of sesqui-linear forms are recalled. First of all there is to any form s on V an adjoint sesqui-linear form s^{*} defined by

$$
\begin{equation*}
s^{*}(v, w)=\overline{s(w, v)} \quad \text { for } \quad v, w \in V \tag{8.2.12}
\end{equation*}
$$

s itself is called symmetric if $s \equiv s^{*} ;$ for $\mathbb{F}=\mathbb{C}$ this takes place if and only if $s(v, v)$ is real for all $v \in V$ (by polarisation). Moreover, s gives rise to the forms

$$
\begin{align*}
& s_{\mathrm{Re}}(v, w)=\frac{1}{2}\left(s(v, w)+s^{*}(v, w)\right) \tag{8.2.13}\\
& s_{\mathrm{Im}}(v, w)=\frac{1}{2 \mathrm{i}}\left(s(v, w)-s^{*}(v, w)\right) \tag{8.2.14}
\end{align*}
$$

that are both symmetric (but may take complex values outside the diagonal, whence the notation is a little misleading).

Using (III) on s^{*}, there is a unique $\tilde{S} \in \mathbb{B}\left(V, V^{\prime}\right)$ such that for $v, w \in V$,

$$
\begin{equation*}
s^{*}(v, w)=\langle\tilde{S} v, w\rangle . \tag{8.2.15}
\end{equation*}
$$

Applying (8.2.10) to the operator \tilde{T} defined from $\left(H, V, s^{*}\right)$, it follows when T is densely defined that $\tilde{T} \subset T^{*}$.

The form s is said to be V-elliptic if there exists a constant $c_{0}>0$ such that

$$
\begin{equation*}
\operatorname{Re} s(v, v) \geq c_{0}\|v\|_{V}^{2} \quad \text { for all } v \in V \tag{8.2.16}
\end{equation*}
$$

s is V-coercive if there exist $c_{0}>0$ and $k \in \mathbb{R}$ such that

$$
\begin{equation*}
\operatorname{Re} s(v, v) \geq c_{0}\|v\|_{V}^{2}-k\|v\|_{H}^{2} \quad \text { for all } v \in V \tag{8.2.17}
\end{equation*}
$$

Notice that these properties carry over to the adjoint form s^{*} and to s_{Re}, with the same constants.

To elucidate the strength of these concepts, note that (8.2.16) implies that

$$
\begin{equation*}
\|T u\|_{H} \geq c_{0}\|u\|_{V} \quad \text { for } u \in D(T) \tag{8.2.18}
\end{equation*}
$$

So T is necessarily injective and the range $R(T)$ is closed in H (as seen from (8.2.10)). Coerciveness gives operators that are only slightly less well behaved, and this class furthermore absorbs most of the perturbations of elliptic forms one naturally meets in the study of partial differential equations.
V-elliptic forms give rise to particularly nice operators:
Proposition 8.2.1. Let (H, V, s) fulfil that s is V-elliptic. Then the associated operator is a linear homeomorphism $S: V \rightarrow V^{\prime}$.

Proof. For s elliptic and symmetric, $s(\cdot, \cdot)$ is an inner product on V. This gives a new Hilbert space structure on V, for the norm $\sqrt{s(v, v)}$ is equivalent to $\|\cdot\|_{V}$ (by the boundedness of s and (8.2.16)) so that V is complete. By construction S is the linear isometry that identifies V and V^{\prime}.

In the non-symmetric, elliptic case one has

$$
\begin{equation*}
\|S v\|_{V^{\prime}} \geq c_{0}\|v\|_{V} \quad \text { for all } \quad v \in V \tag{8.2.19}
\end{equation*}
$$

so that S is injective and has closed range. But since \tilde{S} is injective by a similar argument, the formula

$$
\begin{equation*}
\langle S u, v\rangle=\overline{s^{*}(v, u)}=\overline{\langle\tilde{S} v, u\rangle}, \quad \text { for } \quad u, v \in V, \tag{8.2.20}
\end{equation*}
$$

implies that $R(S)^{\perp}=\{0\}$. Therefore $R(S)=V$, and by the open mapping theorem S^{-1} is continuous.

One should observe from the proof, that for a symmetric, elliptic form s, the operator S may be taken as the well-known isometric isomorphism between V and V^{\prime}; this only requires a change of inner product on V, which leaves the Banach space structure invariant, however.

When discussing the induced unbounded operators on H, the coercive case gives operators with properties similar to those in the elliptic case; cf the below result. Note however, the difference that the latter case yields operators that extend to homeomorphisms from V to V^{\prime} by the above proposition.

The next result is stated as a theorem because of its fundamental importance for the applications of Hilbert space theory to say, partial differential operators. For the same reasons all assumptions are repeated.

Theorem 8.2.2 (Lax-Milgram's lemma). Let the triple (H, V, s) be given with complex Hilbert spaces V and H, with $V \hookrightarrow H$ densely, and with s a bounded sesqui-linear form on V. Denote by T the associated operator in H. When s is V-coercive, ie fulfils (8.2.17), then T is a closed operator in H with $D(T)$ dense in V (hence dense in H too) and with lower bound $m(T)>-k$; in fact

$$
\begin{equation*}
\{\lambda \mid \operatorname{Re} \lambda \leq-k\} \subset \rho(T) \tag{8.2.21}
\end{equation*}
$$

so that $T-\lambda I$ is a bijection from $D(T)$ onto H whenever $\operatorname{Re} \lambda \leq-k$.
Furthermore the operator associated with s^{*} equals T^{*}, the adjoint on H. And if s is symmetric, then T is self-adjoint and $\geq-k$.

Proof. Consider first $k=0$, the elliptic case, and let $S: V \rightarrow V^{\prime}$ be the homeomorphism determined by s. Because H is dense in V^{\prime}, it is carried over to a dense set $(=D(T))$ in V by S^{-1}. Since S extends T, it is straightforward to check that T is closed (using (8.2.6)). Now T^{*} is well defined and $T^{*} \supset \tilde{T}$ as seen above. But T^{*} is injective, since the surjectivity of S entails $R(T)=H$, and \tilde{T} is surjective by the same argument applied to s^{*}. Therefore $T^{*}=\tilde{T}$, showing the claim on T^{*}.

Because $(T u \mid u)_{H}=s(u, u)$ for $u \in D(T)$, it is clear from (8.2.16) that $m(T)$ and $m\left(T^{*}\right)$ both are numbers in $\left[c_{0} C^{2}, \infty[\right.$ when C is the constant in (8.2.2). Since $c_{0} C^{2}>0$ this yields the inclusion for the resolvent set in (8.2.21) for the case $k=0$ (and hence the statement after (8.2.21)).

For $k \neq 0$ the form $s(\cdot, \cdot)+k(\cdot \mid \cdot)_{H}$ is elliptic, so the above applies to the first term in the splitting $T=(T+k I)-k I$. The conclusions on the domain, the closedness, the adjoint and the resolvent set of T are now elementary to obtain.

Example 8.2.3. For $H=L_{2}(\Omega)$ and $V=H_{0}^{1}(\Omega)$ it is straightforward to see that $s(u, v)=\sum_{j=1}^{n}\left(D_{j} u \mid D_{j} v\right)_{L_{2}(\Omega)}$ is elliptic on V. The associated operator is the so-called Dirichét realisation $-\Delta_{D}$ of the Laplace operator; this means that as an unbounded operator in $L_{2}(\Omega)$ a function u is in $D\left(-\Delta_{D}\right)$ if and only if it belongs to $H_{0}^{1}(\Omega)$ and for some $f\left(=-\Delta_{D} u\right)$ in $L_{2}(\Omega)$ fulfils

$$
\begin{array}{ll}
-\Delta u=f & \text { in } \Omega \\
\left.u\right|_{\partial \Omega}=0 & \text { on } \partial \Omega . \tag{8.2.23}
\end{array}
$$

The solution operator for this boundary problem is $-\Delta_{D}^{-1}$. By the theory this extends to $H^{-1}(\Omega)$, and in fact $-\Delta_{D}$ equals the abstract isomorphism between $H_{0}^{1}(\Omega)$ and its anti-dual $H^{-1}(\Omega)$, when the Hilbert space structure is suitably chosen.

CHAPTER 9

Further remarks

9.1. On compact embedding of Sobolev spaces

Below follows a proof of the fact that the first-order Sobolev space $H^{1}(\Omega)$ is compactly embedded into $L^{2}(\Omega)$, provided $\Omega \subset \mathbb{R}^{n}$ is a bounded open set - a cornerstone result in the analysis of boundary problems of differential equations. Although one can go much further with results of this type (with the necessary technical preparations), we stick with this single result here, partly because it often suffices, partly because the reader should be well motivated to see a short proof of such an important, non-trivial result.

As a useful preparation, let us show the claim in Example 5.2.3, that functions u in $H^{1}(\mathbb{T})$, interpreted as the periodic subspace of $H^{1}(Q)$ for $Q=]-\pi, \pi\left[{ }^{n}\right.$, are characterised by their Fourier coefficients.

For a more precise statement, recall first that the Fourier transformation

$$
\begin{equation*}
\mathscr{F} u=\left(c_{k}\right)_{k \in \mathbb{Z}^{n}}, \quad \text { with } \quad c_{k}=\left(u \mid e_{k}\right), \tag{9.1.1}
\end{equation*}
$$

is an isometry $L^{2}(Q) \rightarrow \ell^{2}\left(\mathbb{Z}^{n}\right)$. Secondly there is the Hilbert space $h^{1}\left(\mathbb{Z}^{n}\right)$ of those sequences $\left(x_{k}\right)$ in $\ell^{2}\left(\mathbb{Z}^{n}\right)$ for which

$$
\begin{equation*}
\left\|\left(x_{k}\right)\right\|_{h^{1}}:=\left(\sum_{k \in \mathbb{Z}^{n}}\left(1+k_{1}^{2}+\cdots+k_{n}^{2}\right)\left|x_{k}\right|^{2}\right)^{1 / 2}<\infty ; \tag{9.1.2}
\end{equation*}
$$

cf Example 6.2.5. Now the claim is that any $\left(c_{k}\right)$ in ℓ^{2} is in $\mathscr{F}\left(H^{1}(\mathbb{T})\right)$ if and only if the sum in (9.1.2) is finite; and this is a consequence of

Lemma 9.1.1. There is a commutative diagram

where \mathscr{F} is an isometry in both columns
Proof. By repeated use of Parseval's identity,

$$
\begin{equation*}
\|u\|_{H^{1}}^{2}=\sum\left(\left|c_{k}\right|^{2}+\left|\left(D_{1} u \mid e_{k}\right)\right|^{2}+\cdots+\left|\left(D_{n} u \mid e_{k}\right)\right|^{2}\right) \tag{9.1.4}
\end{equation*}
$$

so it follows that $\|\mathscr{F} u\|_{h^{1}}=\|u\|_{H^{1}}$ if and only if

$$
\begin{equation*}
\left(D_{j} u \mid e_{k}\right)=k_{j} c_{k} \quad \text { for all } \quad j=1, \ldots, n ; k \in \mathbb{Z}^{n} . \tag{9.1.5}
\end{equation*}
$$

To show this, it is clear for $u \in C^{\infty}(\bar{Q})$ that, with the splitting $x=\left(x^{\prime}, x_{n}\right)$ and $\left.Q^{\prime}=\right]-\pi, \pi\left[{ }^{n-1}\right.$,

$$
\begin{align*}
\int_{Q^{\prime}} \frac{-\mathrm{i}(-1) k_{n}}{e^{i k^{\prime} \cdot x^{\prime}}}\left(u\left(x^{\prime}, \pi\right)-u\left(x^{\prime},-\pi\right)\right) d x^{\prime} & =\int_{Q} D_{n}\left(u \overline{e_{k}}\right) d x \tag{9.1.6}\\
& =\left(D_{n} u \mid e_{k}\right)-\left(u \mid k e_{k}\right)
\end{align*}
$$

If an arbitrary $u \in H^{1}(\mathbb{T})$ is approximated in $H^{1}(Q)$ by a sequence u_{m} in $C^{\infty}(\bar{Q})$, this identity applies to each u_{m}; since $u_{m} \rightarrow u$ and $D_{n} u_{m} \rightarrow D_{n} u$ in the topology of L^{2} one may pass to the limit on the right hand side, and by continuity of the trace operators also the left hand side converges for $m \rightarrow \infty$; there the limit is zero. This shows (9.1.5) for $j=n$; the other values of j are analogous.

By the above, \mathscr{F} is isometric and hence injective on $H^{1}(\mathbb{T})$; but any $\left(c_{k}\right)$ in h^{1} defines a function $u \in L^{2}(Q)$ with $D_{j} u=\sum k_{j} c_{k} e_{k}$ (by continuity of D_{j} in \mathscr{D}^{\prime}), and here the right hand side is in L^{2}.

The reader should observe that the embedding of $H^{1}(\mathbb{T})$ into $L^{2}(Q)$ in the first row of (9.1.3) is compact; this follows from the diagram and the earlier result that $h^{1} \hookrightarrow \ell^{2}$ is compact; cf Example 6.2.5.

That also the larger space $H^{1}(Q)$ is compactly embedded into $L^{2}(Q)$ is now a consequence of

ThEOREM 9.1.2. For every bounded open set $\Omega \subset \mathbb{R}^{n}$ the embedding $H^{1}(\Omega) \hookrightarrow L^{2}(\Omega)$ is a compact operator.

Proof. Clearly $\Omega \subset]-R, R{ }^{n}=: Q_{R}$ for all sufficiently large $R>0$. The above carries over to this cube if on the torus $\mathbb{T}_{R}=\mathbb{R}^{n} / Q_{R}$ one considers $e_{k}(x)=c_{R} \exp (2 \pi \mathrm{i} k \cdot x / R)$ for some suitable c_{R}; so $H^{1}\left(\mathbb{T}_{R}\right) \hookrightarrow L^{2}\left(Q_{R}\right)$ is compact also for such R.

Given any bounded sequence in $H^{1}(\Omega)$ with $\Omega \subset Q_{R}$, it may be taken as restriction of a sequence in $H^{1}\left(Q_{3 R}\right)$, for which the supports are contained in $Q_{2 R}$, so that the sequence is in $H^{1}\left(\mathbb{T}_{3 R}\right)$. Therefore there exists a subsequence converging in $L^{2}\left(Q_{3 R}\right)$, and a fortiori the restricted subsequence converges in $L^{2}(\Omega)$.

Bibliography

[Ban32] S. Banach, Théorie des opérations linéaires, Monografje matematyczne, vol. 1, Warszawa, 1932.
[Hör89] L. Hörmander, Linear functional analysis, Technical University of Lund, Sweden, 1989, Lecture notes.
[Ped89] Gert K. Pedersen, Analysis now, Springer Verlag, 1989.
[Ped00] Michael Pedersen, Functional analysis in applied mathematics and engineering, Chapman \& Hall/CRC, Boca Raton, FL, 2000. MR 2000k:46002
[RS80] M. Reed and B. Simon, Methods of modern mathemtical physics. I: Functional analysis. Revised and enlarged edition, Academic Press, 1980.
[You01] R. M. Young, An introduction to nonharmonic Fourier series, Academic Press, 2001.

[^0]: ${ }^{1}$ When applying functional analysis to problems in, say mathematical analysis, it is often these 'connections' one needs. However, this is perhaps best illustrated with words from Lars Hörmander's lecture notes on the subject [Hör89]: "functional analysis alone rarely solves an analytical problem; its role is to clarify what is essential in it".

