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ABSTRACT. The present set of lecture notes are written to support our students at the
mathematics 6 level, in the study of Lebesgue integration and set-theoretic measure theory.
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CHAPTER 1

Measure of a set

In the following we shall describe precisely what is meant by the measure of a set.
Examples are many of this notion: length of an interval I on the real axis, area of a rec-
tangle R in the Euclidean plane or space; or the number of elements in the set; or even the
probability of an event represented by the set.

In general a measure µ on a set X is a mapping going from a family, E, of subsets of
X to the positive extended real numbers,

µ : E→ [0,∞]. (1.0.1)

The first requirement on µ is that the domain of µ , which is E, has to form a σ -algebra:

DEFINITION 1.0.1. A family E of subsets of X is said to be a σ -algebra in X if
(i) X ∈ E;

(ii) {E ∈ E whenever E ∈ E;
(iii)

⋃
n∈N En ∈ E whenever E1 , E2 ,. . . are in E.

In view of the first two points above, when E is a σ -algebra, then /0 = {X is a member
of E too. This enters the formal definition of a measure, as does the third point above:

DEFINITION 1.0.2. A mapping µ : E→ [0,∞], defined on a σ -algebra E in X , is said
to be a measure on X if

(i) µ( /0) = 0;
(ii) µ(

⋃
n∈N En) = ∑n∈N µ(En) whenever the sequence of sets En ∈ E are pairwise

disjoint.

Further facts on these fundamental notions are developed in the next sections.

1.1. Measurable sets

When a σ -algebra E in X is given, it is customary to designate the sets E ∈ E as the
(E-)measurable sets, as it were if a measure was defined on E. Moreover, a pair (X ,E)
consisting of a set X and a σ -algebra E in X is often referred to as a measurable space.

Among the basic facts on σ -algebras one has:
A∪B ∈ E
A∩B ∈ E
A\B ∈ E

 whenever A,B ∈ E; (1.1.1)

⋂
n∈N

An ∈ E whenever A1,A2, · · · ∈ E. (1.1.2)

These claims are seen at once, since

A∪B = A∪B∪ /0∪·· ·∪ /0∪ . . . ; (1.1.3)

A∩B = {({A∪{B); (1.1.4)

A\B = A∪{B; (1.1.5)⋂
n∈N

An ∈ E= {(
⋃

n∈N
{An). (1.1.6)
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2 1. MEASURE OF A SET

The power set P(X), consisting of all subsets of X , is of course always a σ -algebra in
X ; and evidently the largest possible one (in the ordering given by inclusion). The system
{X , /0} is clearly the smallest σ -algebra in X .

As for operations on σ -algebras, one may for a family of given σ -algebras Ei in X ,
whereby i runs through an arbitrary index set I , consider the intersection of the family,
namely ⋂

i∈I

Ei = {A⊂ X | ∀i : A ∈ Ei }. (1.1.7)

It is immediately seen that this constitutes another σ -algebra in X .
This leads to the fact that each system D of subsets of X is contained in smallest a

σ -algebra. This is usually called σ(D):

LEMMA 1.1.1. To each system D of subsets of X there exists a smallest σ -algebra
σ(D) in X that contains D. That is,

• σ(D) is a σ -algebra in X satisfying D⊂ σ(D);
• σ(D)⊂ F for every σ -algebra F in X satisfying D⊂ F.

PROOF. Clearly P(X) is a σ -algebra containing D, so the intersection of all the σ -
algebras F such that D ⊂ F gives a non-empty collection E of subsets, which contains D
and is a σ -algebra by the remark given prior to the lemma, cf. (1.1.7). �

One calls σ(D) the σ -algebra generated by D. And when E= σ(D), then D is said
to be a generating system for the σ -algebra E. For a system D = {D1,D2, . . . ,Dn} of n
subsets of X it can be shown inductively that σ(D) contains at most 22n

sets.
Note that the above is a pure existence proof. In general there is no explicit criterion

for given set A ⊂ X to belong to σ(D), which is one of the inconveniences in integration
theory.

1.2. Borel algebras

For a metric space (X ,d), the system G of open sets generates a σ -algebra σ(G),
which is the so-called Borel algebra of X , that is,

B(X) = σ(G). (1.2.1)

It is a classical exercise to see that B(X) = σ(F), when F denotes the system of closed sets
in X . Indeed, the inclusions F⊂ σ(G) and G⊂ σ(F) are obvious; whence σ(F)⊂ σ(G)
and σ(G)⊂ σ(F). Altogether σ(G) = σ(F).

Especially the above applies to the Euclidean spaces Rd of dimension d ≥ 1, where
we write Bd = B(Rd), and B = B1 for simplicity. In this case, Gd and Fd denote the
systems of open and closed sets, respectively.

By denoting the collection of compact sets in Rd by Kd , every F ∈ Fd is a countable
union of compact sets, namely

⋃
N(F ∩ B̄(0,N)), so it follows that Kd also generates the

Borel sets in Rd ,
Bd = σ(Kd). (1.2.2)

However, it is important to obtain further convenient generating systems for Bd . One
choice could be the following type of d -dimensional rectangels induced by real numbers
ai < bi for i = 1, . . . ,d , which is referred to here as standard intervals:

I =]a1,b1]×·· ·× ]ad ,bd ] =
{

x = (x1, . . . ,xd) ∈ Rd ∣∣ ∀i : ai < xi ≤ bi
}
. (1.2.3)

The system of such standard intervals I is denoted by Id . By convention /0 ∈ Id .
One obvious interest of the standard intervals Id is the classical notion of the d -

dimensional volume vd(I) associated to each I ∈ Id ,

vd(I) = (b1−a1) . . .(bd−ad). (1.2.4)
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We shall later see that this definition induces a unique measure md on the Borel algebra Bd
such that md(I) = vd(I) for all I ∈ Id . Here md is the Lebesgue measure on Rd .

As not all sets are standard intervals, we may rethorically pose the following didactic
question:

Why does the unit ball B(0,1) =
{

x ∈ Rd
∣∣ x2

1 + · · ·+ x2
d < 1

}
have

a volume? –or rather: why is the ball Bd -measurable: why does the
Lebesgue measure md(B(0,1)) exist?

A key ingredient in the understanding of this question, and of understanding the extension
of vd on Id to the measure md on Bd , is the fact that also the standard intervals generate
the Borel algebra,

Bd = σ(Id). (1.2.5)
Indeed, every I ∈ Id is a countable intersection of open sets, since

I =]a1,b1]×·· ·× ]ad ,bd ] =
⋂

n∈N

(
]a1,b1 +

1
n [×·· ·× ]ad ,bd +

1
n [
)
. (1.2.6)

Being a σ -algebra, σ(G) = Bd is stable under such intersections, so the above shows
that I ∈ Bd . Since I is arbitrary, σ(Id) ⊂ Bd . As for the converse inclusion, it is seen
analogously that it suffices to show that σ(Id) contains any given open set in Rd :

LEMMA 1.2.1. Every open set G in Rd is a countable union of disjoint cubes in Id .

PROOF. For G 6= /0 we consider the cube Ck,p ∈ Id consisting of the x ∈Rd for which
ki2−p < xi ≤ (ki + 1)2−p for i = 1, . . . ,d . First we let O1 be the union of all the cubes
Ck,1 that are contained in G; inductively we let Op denote the union of the cubes Ck,p that
are contained in G\ (O1∪·· ·∪Op−1). This gives a countable union

⋃
p∈N Op ⊂ G, where

equality moreover holds because every x in G is an inner point. �

Summing up we have,

Bd = σ(Gd) = σ(Fd) = σ(Kd) = σ(Id). (1.2.7)

For example, a countable set {xn ∈ Rd | n ∈ N} (a sequence) is a Borel set, since it is a
countable union of the singletons {xn}, that are closed.

For d = 1, further generating systems for B can be introduced in terms of half-lines.
For example, it is an exercise to derive that

B= σ(
{
]a,∞[

∣∣ a ∈ R
}
). (1.2.8)

On the extended real line R̄ there is, using the convention arctan(±∞) =±π

2 , a metric
given by

d(x,y) = |arctanx− arctany|. (1.2.9)
When restricted to R, this induces the usual topology (i.e. system of open sets) on the real
line. The associated Borel algebra B(R̄) = B̄ is also generated by a family of half-lines,

B̄= σ({ ]a,∞] | a ∈ R}). (1.2.10)

This is related to the usual Borel algebra B by the fact that A ∈ B̄ if and only if A∩R ∈ B.

1.3. Measures

A measure space is a triple (X ,E,µ) consisting of a set X and a fixed σ -algebra E in
X together with a measure µ defined on X , having E as its domain:

µ : E→ [0,∞]. (1.3.1)

Cf. Definition 1.0.2 for this.
Given a measure µ on X , the number µ(E) is referred to as the measure of E for any

measurable set E ⊂ X , i.e. for E ∈ E. Intuitively it may be useful to think of µ as a kind
mass distribution in in X . When µ(X)< ∞, then µ is termed finite; in case µ(X) = 1, the
measure µ is called a probability measure or a (probability) distribution.
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According to Definition 1.0.2 a measure has to be denumerably additive. On the one
hand, this property is decisive for the strong limit theorems for the Lebegue integral, we
shall meet later. On the other hand, it easily implies the (more naive property of) finite
additivity, which is the first of the following basic facts (I)–(VI) on measures:

(I) µ

(⋃n
j=1 E j

)
= ∑

n
j=1 µ(E j) for pairwise disjoint sets E1, . . . ,En ∈ E.

(II) µ(E)≤ µ(F) whenever E ⊂ F for E,F ∈ E.
(III) µ(F \E) = µ(F)−µ(E) whenever E ⊂ F and µ(E)< ∞ for E,F ∈ E.
(IV) µ

(⋃
∞
j=1 E j

)
≤ ∑

∞
j=1 µ(E j) for arbitrary E1,E2 . . . in E.

µ

(⋃n
j=1 E j

)
≤ ∑

n
j=1 µ(E j) for arbitrary E1,E2 . . . ,En in E.

(V) µ(En)↗ µ
(⋃

∞
n=1 En

)
whenever E1 ⊂ E2 ⊂ ·· · ⊂ En ⊂ . . . for En ∈ E.

(VI) µ(En)↘ µ
(⋂

∞
n=1 En

)
whenever µ(E1) < ∞ and E1 ⊃ E2 ⊃ ·· · ⊃ En ⊃ . . . for

En ∈ E.
In fact, (I) can be seen from µ(E1∪·· ·∪En∪ /0∪ /0 . . .) = µ(E1)+ · · ·+µ(En)+0+0+ . . . .
Both (II) and (III) follow from the consequence of (I) that µ(F) = µ(F \E)+µ(E).

Moreover, (IV) is based on the trick that there are pairwise disjoint E-measurable sets

F1 = E1, Fj = E j \ (
⋃
k< j

Ek) for j ≥ 2. (1.3.2)

Clearly
⋃

j∈N Fj =
⋃

j∈N E j , as to every x ∈
⋃

j∈N E j there is a minimal index k such that
x ∈ Ek , and hence x ∈ Fk . Consequently (II) gives that µ

(⋃
j∈N E j

)
= µ

(⋃
j∈N Fj

)
=

∑ j∈N µ(Fj)≤∑ j∈N µ(E j). In case E j = /0 holds eventually, the second part of (IV) follows
readily.

Property (V) reduces to convergence of an infinite series via the disjoint sets Fj in
(IV), which yield µ(En) = ∑

n
j=1 µ(Fj)↗ ∑

∞
j=1 µ(Fj) = µ

(⋃
∞
n=1 En

)
.

Finally, in (VI), setting Dn = E1 \En gives D1 ⊂ D2 ⊂ . . . and
⋃

n Dn = E1 \
⋂

n En so
that (III) and (V) entail

µ(E1)−µ(En) = µ(Dn)↗ µ(
⋃
n

Dn) = µ(E1)−µ(
⋂
n

En).

Using continuity of multiplication by −1 and of addition of µ(E1), one arrives at (VI).
Though the theory of measures is rich, we shall at this point just proceed to give some

uncomplicated examples.

EXAMPLE 1.3.1 (Lebesgue measure). On the real axis there is, as we shall see later, a
unique measure m : B→ [0,∞], the Lebesgue measure, which is defined on the collection
B of all Borel sets B⊂ R and has the property that m( ]a,b]) = b−a whenever a < b.

The classical Riemann integral
∫ b

a f (x)dx of a continuous function f : [a,b]→ R is
equal to the Lebegue integral

∫
[a,b] f dm—but the interest of this lies in the strong results,

say on limits of integrals, which are available for the Lebesgue integral.
The Lebesgue measure m also yields an example of the necessity of the assumption in

property (III) that µ(E)< ∞: for F =]0,∞[ and E =]1,∞[ one has m(F \E) = 1, which
cannot be found as M(F)−M(E) [not even if ∞−∞ were ascribed the value 0].

Likewise it is necessary in (VI) above that µ(E1)< ∞: if En =]n,∞[ for every n ∈N,
then m(∩nEn) = m( /0) = 0, but this is clearly not the limit of m(En) = ∞ for n→ ∞.

EXAMPLE 1.3.2 (Counting measure). The function µ defined on the power set P(X)
of an arbitrary set X (possibly uncountable) by the rule

µ(E) =

{
number of elements in E, for finite subsets E ⊂ X ,
∞, for infinite subsets E ⊂ X ,

(1.3.3)

is a measure on X , known as the counting measure.
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EXAMPLE 1.3.3 (Measure concentrated in a subset). Every measurable subset A ∈ E
in a measure space (X ,E,µ) induces a another measure on X

E 7→ µ(E ∩A), E ∈ E, (1.3.4)

which is concentrated in A in the sense that it is zero on every measurable subset disjoint
from A.

EXAMPLE 1.3.4 (The convex cone of measures). On a measurable space (X ,E) the
measures form a cone, since the product of a measure and a positive number yields another
measure; and the cone is convex since the set of measures is stable under addition.

Indeed, for any (finite or infinite) family of measures (µ j) j∈J , and given numbers
a j ∈ R̄+ for j ∈ J , also the map

µ(E) = ∑
j∈J

a jµ j(E), E ∈ E, (1.3.5)

is a measure on E. In fact, for any sequence E1,E2, . . . of disjoint sets in E,

µ
(⋃

n
En
)
= ∑

j
(a j ∑

n
µ j(En)) = ∑

( j,n)
a jµ j(En) = ∑

n
∑

j
a jµ j(En) = ∑

n
µ(En). (1.3.6)

EXAMPLE 1.3.5 (Dirac measure). In an arbitrary set X there is to each element a ∈ X
a measure εa defined on P(X) by

εa(E) =

{
1, for E 3 a,
0, for E 63 a.

(1.3.7)

This probability measure is the Dirac measure at a, also known as the point measure at a.





CHAPTER 2

Measurable maps

In this chapter we shall study the measurability of a map f : X → Y . Basically this is
a property ascertaining that f is compatible with given σ -algebras in X and Y .

2.1. Measurable preimages

In the following we consider measurable spaces (X ,E), (Y,F) and (Z,G) together
with two mappings

X
f−→ Y

g−→ Z. (2.1.1)

Measurability of such maps are defined in terms of preimages, in analogy with continuity:

DEFINITION 2.1.1. The map f : X → Y is said to be measurable, or more precisely
E-F-measurable, if its preimages of F-measurable sets are E-measurable, that is,

∀F ∈ F : f−1(F) ∈ E. (2.1.2)

F-G-measurability of g is defined analogously.

Since (g◦ f )−1(G) = f−1(g−1(G)), it is clear that (g◦ f )−1(G) ∈ E for every G ∈G
whenever f and g are measurable. This proves

PROPOSITION 2.1.2. When f and g as above are measurable, then the composite
map g◦ f is E-G-measurable.

Since the sets in the σ -algebra F can be difficult to describe, Definition 2.1.1 is in
general somewhat impractical as it stands. However, as a cornerstone it suffices to test the
condition on the preimage for the members of a generating system:

PROPOSITION 2.1.3. Let (X ,E) and (Y,F) be measurable spaces and f : X → Y a
given map. When E= σ(D), then f is E-F-measurable if and only if

f−1(D) ∈ E for all sets D ∈ D. (2.1.3)

PROOF. The necessity of the condition is trivial. To prove its sufficiency we consider
the auxiliary system

H=
{

F ⊂ Y
∣∣ f−1(F) ∈ E

}
. (2.1.4)

The aim is to prove the inclusion F⊂H. By the assumption on f it holds true that D⊂H.
Moreover, H is itself a σ -algebra, for Y ∈H is trivial and {F ∈H holds for all F ∈H since
f−1({F) = X \ f−1(F)∈ E ; whilst f−1(

⋃
n Fn) =

⋃
n f−1(Fn) shows that H is stable under

union of countably many disjoint sets in H (notice that the f−1(Fn) are disjoint members
of E). Hence F= σ(D)⊂H, as desired. �

The attentive reader will have noticed that the above proof contains an important tech-
nique: given the task of proving a statement for all sets in a given σ -algebra, it suffices
to prove that the statement is true for the sets in some σ -algebra H, provided the latter
contains a generating system for the former.

In case X and Y are metric spaces, a map F : X → Y is simply said to be Borel
measurable, if it is B(X)-B(Y )-measurable. For Y = Rd such a map is referred to as a
Borel function.

7
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Using Proposition 2.1.3 with D as the system GY of open sets in Y , it is seen at once
that continuity implies Borel measurability:

PROPOSITION 2.1.4. When (X ,dX ) and (Y ;dY ) are metric spaces, then every contin-
uous map f : X → Y is Borel measurable.

Thus there exists an abundance of Borel functions f : X → R on every metric space
(X ,dX ), as any pair of closed sets in X can be separated by a continuous function (X is a
normal space).

As another application of Proposition 2.1.3, it is seen from (1.2.8) that a criterion for
Borel measurability is that f−1( ]a,∞[ ) ∈ E for every a ∈ R. For functions f : X → R̄ one
may use (1.2.10) instead to reduce Borel mesurability to a test of whether f−1( ]a,∞])∈E.
This may be formulated in an elegant way as

PROPOSITION 2.1.5. For a measurable space (X ,E) a function f : X → R is Borel
measurable if and only if

∀a ∈ R :
{

x ∈ X
∣∣ f (x)> a

}
∈ E. (2.1.5)

The same criterion applies to functions f : X → R̄.

The above is useful also for functions of the form f : X→Rd , for here the Borel mea-
surability of f (x) = ( f1(x), . . . , fd(x)) holds precisely when all the f j are Borel functions:

PROPOSITION 2.1.6. On a measurable space (X ,E) a function f : X → Rd is Borel
measurable if and only if the coordinate function f j is measurable for j = 1, . . . ,d.

PROOF. According to Proposition 2.1.5 the coordinate functions f j are all measurable
if and only if for every (a1, . . . ,ad) ∈ Rd the σ -algebra E contains the sets{

x ∈ X
∣∣ f j(x)> a j

}
= f−1({y ∈ Rd | y j > a j }), j = 1, . . . ,d. (2.1.6)

But this property is by Proposition 2.1.3 equivalent to the measurability of f itself, if it can
be shown that the system D of sets of the form {y ∈ Rd | y j > a j } constitute a generating
system for Bd .

However, it is clear that σ(D) ⊂ Bd , for each set in D is open. Conversely every
standard interval ]a1,b1]×·· ·× ]ad ,bd ] is a member of σ(D), for it is an intersection of
the d sets

{y ∈ Rd | a j < y j ≤ b j }= {y ∈ Rd | a j < y j }\{y ∈ Rd | b j < y j } ∈ σ(D). (2.1.7)

Hence Bd = σ(Id)⊂ σ(D). Altogether D is shown to generate Bd , as desired. �

As a special case of this one has for d = 2, as C identifies with the metric space R2 :

PROPOSITION 2.1.7. A complex function f : X →C on a measurable space (X ,E) is
measurable if and only if Re f and Im f both are measurable maps X → R.

EXAMPLE 2.1.8. The Dirichlet function 1Q : R→ R is discontinuous at every point
in R, but nonetheless it is a Borel function. Indeed, for every a ∈ R one has

{
x ∈ R

∣∣ 1Q(x)> a
}
=


/0 for a≥ 1,
Q for 0≤ a < 1,
R for a < 0,

(2.1.8)

and the sets /0, Q, R are all Borel sets; cf. Proposition 2.1.5.
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2.2. Limits of measurable functions

In the following E denotes a σ -algebra in a set X 6= /0.

PROPOSITION 2.2.1. Whenever f1, f2, . . . is a sequence of E-measurable functions
X → R̄, then also supn fn , infn fn , limsupn fn and liminfn fn are E-measurable.

PROOF. To show the E-B̄-measurability of supn fn(x)= sup{ fn(x) | n∈N} it suffices
by Proposition 2.1.5 to consider an arbitrary a ∈ R and note that{

x ∈ X
∣∣ sup

n
fn(x)> a

}
=

∞⋃
n=1

{
x ∈ X

∣∣ fn(x)> a
}
∈ E. (2.2.1)

Similarly it is seen for every a ∈R that A =
{

x ∈ X
∣∣ infn fn(x)< a

}
∈ E, whence the

inequality infn fn(x)≥ a holds in {A ∈ E; which by passing to a union of such sets yields
that also

{
x ∈ X

∣∣ infn fn(x)> a
}

is in E. Therefore infn fn is measurable.
Using the above successively on the functions

limsup
n

fn = inf
p≥1

(sup
n≥p

fn), liminf
n

fn = sup
p≥1

( inf
n≥p

fn), (2.2.2)

the measurability also follows for limsupn fn and liminfn fn . �

It is well known that the class of continuous functions on R is too small to be stable
under passage to pointwise limits. E.g. the continuous functions

fn(x) = max(0,min(nx,1)) (2.2.3)

converge pointwise to f = 1 ]0,∞[ , which is discontinuous. Moreover, the differentiable

functions gn(x) =
√

1
n + x2 converge pointwise to the non-smooth function |x|.

However, the class of Borel functions is large enough to be stable under pointwise
convergence. The is first shown for extended real functions.

THEOREM 2.2.2. When a sequence f1, f2, . . . of E-measurable functions fn : X → R̄
is pointwise convergent in R̄, then also the limit function f = limn fn is E-measurable.

PROOF. According to the assumption, ( fn(x)) converges in R̄ for every x ∈ X , so

f (x) = liminf
n

fn(x) = limsup
n

fn(x) for all x ∈ X . (2.2.4)

Hence f inherits the measurability from, say liminfn fn ; cf. Proposition 2.2.1. �

For real and complex functions the corresponding result is also valid:

THEOREM 2.2.3. When a sequence f1, f2, . . . of E-measurable functions fn : X → C
is pointwise convergent in ∈ C, then also the limit function f = limn fn is E-measurable.

PROOF. Clearly f (x) = limn fn(x) has its real and imaginary parts given by the func-
tions limn Re fn(x) and limn Im fn(x). These are E-B̄-measurable by the above, and also
E-B-measurable in view of Proposition 2.1.5. Hence f is E-measurable. �

This theorem is noteworthy inasmuch as it is not every day (!) one encounters a class
of functions, which is stable under pointwise convergence. But it is also a most useful
result, since measurability is the basic requirement for a function f to be integrable.

2.3. Rules of calculus

For brevity it is customary to form new functions f ∧ g and f ∨ g from given ones
f ,g : X → R by setting

f ∧g(x) = min( f (x),g(x)), f ∨g(x) = max( f (x),g(x)). (2.3.1)

For these and the more usual constructions based on f ,g one has:
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PROPOSITION 2.3.1. When f ,g : X → R are E-measurable and c ∈ R, then also the
functions

| f |, c f , f +g, f ∧g, f ∨g, f g (2.3.2)
are E-measurable.

PROOF. The vector function ϕ = ( f ,g) is E-measurable as a map X →R2 according
to Proposition 2.1.6. Therefore the claim follows by composing this with the following
maps, which are continuous R2→ R and hence Borel measurable,

(y1,y2) 7→ y1 + y2 or, respectively, y1∧ y2 , y1∨ y2 and y1y2 . (2.3.3)

Note that c f is covered via the case g≡ c, whence | f |= f ∨ (− f ) gives the rest. �

The case of a rational function f (x)/g(x) requires a special consideration, which
makes it better placed in the complex context:

PROPOSITION 2.3.2. For functions f ,g : X → C and c ∈ C the E-measurability car-
ries over to the functions

| f |, Re f , Im f , f̄ , c f , f +g, f g. (2.3.4)

If in addition g(x) 6= 0 for all x ∈ X , the same is true for f (x)
g(x) .

PROOF. The function | f | is a composite with the continuous map z 7→ |z|, z∈C. Both
Re f , Im f are by definition E-measurable as f is so. Then Proposition 2.3.1 implies that
f̄ = Re f − i Im f is measurable. Similarly for f g = (Re f Reg− Im f Img)+ i(Re f Img+
Im f Reg). The sum f +g is a little easier. The rational function

f (x)
g(x)

= f (x)ḡ(x)
1

|g(x)|2
(2.3.5)

is treated in an exercise. �

EXAMPLE 2.3.3. Given two E-measurable functions f ,g : X → R, it is always the
case that the σ -algebra E contains the sets{

x ∈ X
∣∣ f (x)< g(x)

}
,{

x ∈ X
∣∣ f (x)≤ g(x)

}
,{

x ∈ X
∣∣ f (x) = g(x)

}
.

(2.3.6)

Indeed, for ϕ = g− f the sets are equal to the preimages ϕ−1( ]0,∞[ ), ϕ−1([0,∞[ ) and
ϕ−1({0}), respectively; these belong to E since ϕ is E-measurable by Proposition 2.3.1.

2.4. Subspaces

Each non-empty subset A of a measurable space (X ,E) inherits a σ -algebra, which is
denoted by EA and given by

EA =
{

A∩E
∣∣ E ∈ E

}
. (2.4.1)

Indeed, A = A∩X ∈ EA and the formula A\ (A∩E) = A∩ (X \E) shows that EA is stable
under passage to complements; finally

⋃
∞
n=1(A∩En) = A∩ (

⋃
∞
n=1 En) belongs to EA when

the En are in E.
The inherited σ -algebra EA is also called the induced σ -algebra. The measurable

space (A,EA) is the subspace determined by A and E.
In case A⊂ X is a measurable subset, i.e. A ∈ E, then A∩E is in E for every E ∈ E,

so EA ⊂ E. The converse is clear, so

EA ⊂ E ⇐⇒ A ∈ E. (2.4.2)

In the affirmative case EA = {E ∈ E | E ⊂ A}, as every such E fulfills E = A∩E .
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The inclusion map i = iA,X : A→ X , given by i(x) = x, is always EA -E-measurable,
since i−1(E) = A∩E for every E ∈ E. Moreover, any σ -algebra in A that makes i mea-
surable must contain the intersections A∩E , E ∈ E. This proves

LEMMA 2.4.1. On every subset A 6= /0, the induced σ -algebra EA is the smallest
σ -algebra in A, which makes the inclusion map i measurable.

In the situation ϕ : X → Y is a measurable map between measurable spaces (X ,E)
and (Y,F), one may consider its restriction ϕ|A to a non-empty subset A⊂ X , yielding the
commutative diagram:

A
ϕ|A−−−−→ Y

i

y yi

X
ϕ−−−−→ Y

(2.4.3)

Since the restriction fulfills ϕ|A = ϕ ◦ i, it is always EA -E-measurable.
Dual to this situation, one can always endow a map with a larger codomain, and this

does not affect the measurability either, provided the smaller codomain has the σ -algebra,
which is induced by the larger. In fact, when ϕ(X)⊂ B for some (necessarily non-empty)
subset B⊂ Y , there is a map ϕ̃ : X → B acting like ϕ and a commutative diagram

X
ϕ̃−−−−→ B

i

y yi

X
ϕ−−−−→ Y

(2.4.4)

Here ϕ̃ is E-FB -measurable if and only if ϕ is E-F-measurable, as ϕ̃−1(B∩F) =ϕ−1(F).
Building on these considerations, it is also possible to show that ϕ is measurable

whenever it is pieced together from measurable pieces:

PROPOSITION 2.4.2. Let ϕ : X → Y be given as

ϕ(x) =


ϕ1(x) for x ∈ A1,

ϕ2(x) for x ∈ A2,

. . .

ϕn(x) for x ∈ An,

(2.4.5)

whereby X = A1∪A2∪·· ·∪An is a partition of X into disjoint non-empty sets Ai ∈ E and
each ϕi is a map Ai→ Y . If ϕi is EAi -F-measurable for each i ∈ {1,2, . . . ,n}, then ϕ is
E-F-measurable.

PROOF. For every set F ∈ F we have

ϕ
−1(F) = (

n⋃
i=1

Ai)∩ϕ
−1(F) =

n⋃
i=1

(Ai∩ϕ
−1(F)) =

n⋃
i=1

ϕ
−1
i (F). (2.4.6)

Here the set on the right-hand side is in E, because ϕ
−1
i (F) ∈ EAi ⊂ E. �

EXAMPLE 2.4.3. There is a Borel function f : R→ R given by

f (x) =


0 for x < 0,
cosx for 0≤ x < 2π,

logx for x≥ 2π.

(2.4.7)

Indeed, cos : R→R is continuous hence Borel, so by (2.4.3) its restriction to A2 = [0,2π[
is BA2 -measurable (cf. Proposition 2.4.2). Via the trick of noting the continuity R→ R of
0∨ log, it is similarly seen that log is BA3 -measurable for A3 = [2π,∞[ .
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EXAMPLE 2.4.4. For two E-measurable functions f ,g : X → [0,∞], it is also always
the case that the σ -algebra E contains the sets{

x ∈ X
∣∣ f (x)< g(x)

}
,

{
x ∈ X

∣∣ f (x)≤ g(x)
}
,

{
x ∈ X

∣∣ f (x) = g(x)
}
. (2.4.8)

However, as the difference g− f may be undefined in this case, another argument than that
in Example 2.3.3 is required.

First, by (2.4.4) the E-measurability of f , g means that they are measurable as maps
X → R̄. Secondly, using this it is straightforward to verify from (1.2.10) that E contains
the sets

F∞ =
{

x ∈ X
∣∣ f (x) = ∞

}
= f−1({∞}),

G∞ =
{

x ∈ X
∣∣ g(x) = ∞

}
= g−1({∞}),

F =
{

x ∈ X
∣∣ f (x)< ∞

}
= X \F∞,

G =
{

x ∈ X
∣∣ g(x)< ∞

}
= X \G∞.

(2.4.9)

So to verify that e.g. A =
{

x ∈ X
∣∣ f (x)< g(x)

}
belongs to E one may note that

A = (F ∩G∞)∪{x ∈ F ∩G | f (x)< g(x)} (2.4.10)

and that the last of these sets belongs to EF∩G according to (2.4.3) and Example 2.3.3; since
EF∩G ⊂ E this implies that A ∈ E. The two other sets in (2.4.8) are treated analogously.



CHAPTER 3

The Lebesgue integral

EXAMPLE 3.0.5. The function f (x) = sinx
1+x2 belongs to L (R,B,m): It is continuous,

hence a Borel function on R. Introducing the auxiliary function g(x) = 1
1+x2 in M+(R,B)

we have
∫
R gdm = limn→∞

∫
g1 ]−n,n] dm = limn→∞(arctan(n)−arctan(−n)) = π < ∞, and

g is a majorant for f as

| f (x)|= |sinx|| 1
1+ x2 | ≤ 1 · 1

1+ x2 = g(x). (3.0.11)

Consequently f (x) = sinx
1+x2 is Lebesgue integrable on the real axis R.
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CHAPTER 4

Fourier transformation, the naive approach

15





CHAPTER 5

Uniqueness theorem for measures

In the formal construction of the Lebesgue measure md on Rd , one arrives at the
following result: for each Borel set B ∈ Bd ,

md(B) = inf
{

∑
n∈N

vd(In)
∣∣ B⊂

⋃
n∈N

In, ∀n : In ∈ Id
}
. (5.0.12)

in rough terms, this means that the Lebesgue measure of a Borel set B is the total volume
of the “most economical” covering of B by standard intervals.

DEFINITION 5.0.6. A measure µ : E→ [0,∞] is said to be finite if µ(X)< ∞, and it
is called σ -finite when X =

⋃
n∈N An for a sequence of sets An ∈ E satisfying µ(An) < ∞

for all n ∈ N. The same terminology applies to the measure space (X ,E,µ).

In the affirmative case one can arrange, if practical, that A1 ⊂ A2 ⊂ . . . , for An can be
replaced by A′n = A1∪ ·· ·∪An , as µ(A′n) < ∞. Or conversely, the An can be redefined so
that they are pairwise disjoint.

A main example is the Lebesgue measure md on Rd , which is σ -finite since obviously
Rd =

⋃
n∈N[−n,n]d .

17





CHAPTER 6

Product measures

In this chapter we shall develop the fact that, under some liberal conditions, one can
interchange the order of integration because both reiterated integrals identify with the in-
tegral over the product set X×Y ,∫

X

(∫
Y

f (x,y)dν(y)
)

dµ(x) =
∫

X×Y
f dµ⊗ν =

∫
Y

(∫
X

f (x,y)dµ(x)
)

dν(y). (6.0.13)

This is a cornerstone of the whole theory, an area where the benefit of the Lebesgue integral
is very apparent. In fact, the technical difficulties are moved away from designing partitions
of X and Y and into the construction of the central subject: the product measure µ⊗ν .

6.1. Products of measure spaces

In the following we consider two measure spaces (X ,E,µ) and (Y,F,ν). The task is
then to introduce the derived measure space (X×Y,E⊗F,µ⊗ν).

This is build on the Cartesian product X ×Y =
{
(x,y)

∣∣ x ∈ X , y ∈ Y
}

. The product
σ -algebra E⊗F is straightforward to discuss—but construction of the product measure
µ⊗ν is non-trivial and requires σ -finiteness of X and Y .

6.1.1. Measurability on a Cartesian product. As a guidance for the Cartesian prod-
uct X×Y , we consider the two projections

π1 : X×Y → X , π2 : X×Y → Y. (6.1.1)

If G is a given σ -algebra on X×Y which makes both π1 , π2 measurable, then G contains
π
−1
1 (A) = A×Y and π

−1
2 (B) = X×B for all A ∈ E and B ∈ F, so

π
−1
1 (A)

⋂
π
−1
2 (B) = A×B ∈G. (6.1.2)

Therefore such a σ -algebra G must necessarily contain the collection of R of measurable
rectangles,

R =
{

A×B
∣∣ A ∈ E, B ∈ F

}
. (6.1.3)

Consequently σ(R)⊂G then holds. Conversely, it is seen from (6.1.2) that π1 , π2 are in
fact measurable with respect to σ(R). This leads to

DEFINITION 6.1.1. The product σ -algebra E⊗F in the Cartesian product X ×Y is
the smallest making π1 , π2 measurable. That is, E⊗F= σ(R).

Obviously there will in general be many sets in E⊗F that are not rectangles in R .
There is one rule for measurability we need to add for the product set X ×Y . This

concerns the tensor product g⊗h, which is given by

(x,y) 7→ g(x)h(y) for (x,y) ∈ X×Y . (6.1.4)

Hereby g and h are functions defined on X and Y , respectively, having values in the same
set in {R, R̄,C}. E.g., when A⊂ X , B⊂ Y , then 1A⊗1B = 1A×B .

The tensor product g⊗h inherits measurability thus:

LEMMA 6.1.2. When g is E-measurable on X and h is F-measurable on Y , then the
tensor product g⊗h is measurable with respect to the product σ -algebra E⊗F on X×Y .

19
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PROOF. Using the definition, we may write g⊗ h(x,y) = g(x) · h(y) = g⊗ 1Y (x,y) ·
1X ⊗ h(x,y) with the understanding that tensor products precede multiplication in the hi-
rarchy. Hence it suffices to obtain measurability of the tensor products g⊗1Y and 1X ⊗h.

In the first case we obtain for every Borel set D in the codomain (R, R̄ or C),

(g⊗1Y )
−1(D) = {(x,y) | g(x) ∈ D}= g−1(D)×Y ∈ E⊗F. (6.1.5)

The second function 1X ⊗h is proved measurable in an analogous way. �

The two sets X and Y identify with subsets of X ×Y in multiple ways. In fact, it is
convenient to introduce injections jx : Y → X×Y and jy : X → X×Y parametrised by the
members x ∈ X and y ∈ Y , respectively. These maps are given by

jx(y) = (x,y), jy(x) = (x,y). (6.1.6)

Here each jx is F-E⊗F-measurable, since for each generating set A×B ∈R ,

j−1
x (A×B) =

{
B in case A 3 x,
/0 in case A 63 x.

(6.1.7)

Similarly each jy is E-E⊗F-measurable.
These injections are useful for the discussion of sections of sets G ⊂ X ×Y and of

functions f : X ×Y → R, say. Indeed, G has sections Gx and Gy parametrised by the
x ∈ X and y ∈ Y , namely

Gx = {y ∈ Y | (x,y) ∈ G}, Gy = {x ∈ X | (x,y) ∈ G}. (6.1.8)

The function f gives rise to the two sections f (x, ·) : Y → R and f (·,y) : X → R, which
are obtained by freezing the first and the second entry, respectively.

Such sections are highly compatible with product σ -algebra measurability:

PROPOSITION 6.1.3. Let x∈X and y∈Y be fixed. Then Gx ∈E and Gy ∈F whenever
G ∈ E⊗F. For every E⊗F-measurable function f (having values in R, R̄ or C) the
section f (x, ·) is F-measurable and the section f (·,y) is E-measurable.

PROOF. The statements are immediate consequences of the four obvious formulas
Gx = j−1

x (G) and Gy = j−1
y (G) and, respectively, f (x, ·) = f ◦ jx and f (·,y) = f ◦ jy . �

To give a main example, note that Rp×Rq identifies with Rp+q by interpreting (x,y)
with x = (x1, . . . ,xp) and y = (y1, . . . ,yq) as the element (x1, . . . ,xp,y1, . . . ,yq) in Rp+q .
Hereby Bp⊗Bq emerges as a candidate for a σ -algebra in Rp+q :

PROPOSITION 6.1.4. The Borel algebra Bp+q coincides with the product σ -algebra
Bp⊗Bq ; that is Bp+q = Bp⊗Bq .

PROOF. Setting d = p+q, the projections π1 : Rd → Rp and π2 : Rd → Rq are con-
tinuous, hence Borel maps. Since Bp⊗Bq is the smallest σ -algebra with respect to which
they are both measurable, this yields Bp⊗Bq ⊂ Bd .

The converse inclusion Bd ⊂ Bp ⊗Bq results because any standard interval I ∈ Id
can be written I = I1× I2 for standard intervals I1 ∈ Ip ⊂ Bp and I2 ∈ Iq ⊂ Bq ; whence
Bd = σ(Id)⊂ Bp⊗Bq . �

As a corollary to the inclusion Bp+q ⊂ Bp⊗Bq and Proposition 6.1.3 it should be
observed that every section of a Borel set (or of a Borel function) in Rd is another Borel
set (Borel function).

And as a corollary to the inclusion Bp⊗Bq ⊂ Bp+q it is noted that A×B is a Borel
set in Rp+q whenever A and B are Borel sets in Rp and Rq , respectively, and that Borel
functions g and h on Rp and Rq give rise to the Borel function g⊗h on Rp+q .
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6.1.2. Product measures. In the construction of the product measure µ⊗ν it is cru-
cial to require that both µ and ν are σ -finite. But in this situation, it is easy to show
that there is at most one measure on E⊗F giving the “product of the side lengths” on the
measurable rectangles—this follows from the Uniqueness Theorem for Measures:

PROPOSITION 6.1.5. When (X ,E,µ) and (Y,F,ν) are σ -finite measure spaces, then
there is at most one measure π : E⊗F→ [0,∞] satisfying

π(A×B) = µ(A)ν(B) for all A ∈ E, B ∈ F. (6.1.9)

In the affirmative case the measure space (X×Y,E⊗F,π) is also σ -finite.

PROOF. Suppose both ρ and π are two measures satisfying (6.1.9), that is,

π(A×B) = µ(A)ν(B) = ρ(A×B) for all A ∈ E, B ∈ F. (6.1.10)

The measurable rectangles R =
{

A×B
∣∣ A ∈ E, B ∈ F

}
is by definition a generating

system for the product σ -algebra E⊗F, and R is obviously stable under intersections as

(A×B)∩ (A′×B′) = (A∩A′)× (B∩B′) ∈R. (6.1.11)

By the assumed σ -finiteness, there are sequences (An) and (Bn) in E and F, respectively,
such that A1 ⊂ A2 ⊂ . . . and X =

⋃
n∈N An while µ(An) < ∞ for all n, and B1 ⊂ B2 ⊂ . . .

and Y =
⋃

n∈N Bn while ν(Bn) < ∞ for all n. Using this to set Kn = An×Bn , we have
Kn ∈R ⊂ E⊗F for n ∈ N and

K1 ⊂ K2 ⊂ ·· · ⊂
⋃

n∈N
Kn = X×Y. (6.1.12)

Moreover, (6.1.10) yields that π(Kn) = µ(An)ν(Bn)< ∞ for all n ∈ N, so the Uniqueness
Theorem for Measures states that ρ(G) = π(G) for all G ∈ E⊗F; that is, ρ = π .

When such a measure π exists, it is seen at once from the above considerations on the
Kn that π is σ -finite. �

Existence of a measure π : E⊗F→ [0,∞] having property (6.1.9) is a more demanding
matter. However, in principle the situation is simple inasmuch as one can write down the
following expressions for its action on any set G ∈ E⊗F:

π(G) =
∫

X
ν(Gx)dµ(x) =

∫
Y

µ(Gy)dν(y). (6.1.13)

These identities are natural because they show that measures can be found by integration
after “cutting into slices”.

Whilst ν(Gx) ≥ 0 and µ(Gy) ≥ 0 are obvious, it is non-trivial that these functions
are E- and F-measurable, which is what remains to make the above integrals defined. For
simplicity we give the details for ν(Gx).

As a convenient notation we may introduce the function ϕG(x) = ν(Gx). It is straight-
forward to see that

ϕA×B = ν(B)1A for A×B ∈R, (6.1.14)

ϕ⋃n∈N Gn = ∑
n∈N

ϕGn for pairwise disjoint sets Gn ∈ E⊗F. (6.1.15)

However, we shall utilise σ -classes to obtain the measurability:

LEMMA 6.1.6. The function ϕG(x) = ν(Gx) is E-measurable whenever G ∈ E⊗F.

PROOF. The lemma is first shown under the additional assumption that ν(Y ) < ∞.
Here we see at once from (6.1.14) that there is an inclusion R ⊂H, namely, the measurable
rectangles in R all belong to the system of subsets

H=
{

G ∈ E⊗F
∣∣ ϕG ∈M+(X ,E)

}
. (6.1.16)
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In particular X ×Y ∈ H. And if G1,G2, · · · ∈ H are pairwise disjoint, then G =
⋃

n∈N Gn
also belongs to H: when ϕGn ∈M+(X ,E) for n ∈ N the rules of calculus of measur-
able functions and formula (6.1.15) yield that ϕG = ∑n ϕGn ∈M+(X ,E). Finally G ∈ H
implies {G ∈H, for (6.1.14) and (6.1.15) entail that

ϕG +ϕ{G = ϕX×Y = ν(Y )< ∞; (6.1.17)

so by subtraction of real numbers we have ϕ{G = ν(Y )−ϕG , where the left-hand side is
positive and the right-hand side is E-measurable. Altogether H is a σ -class.

From this it follows that H = E⊗F (as desired), for the generating set R is stable
under intersections (cf. the proof of Proposition 6.1.5), which by the fundamental lemma
gives

D(R)⊂H⊂ E⊗F= σ(R) = D(R). (6.1.18)

In general, when ν is merely σ -finite, the above is exploited thus: first we fix sets
B1 ⊂ B2 ⊂ . . . in F such that Y =

⋃
n Bn and ν(Bn) < ∞ for all n; then we introduce the

necessarily finite measures νn(B) = ν(B∩Bn) for n ∈ N. So for any given G ∈ E⊗F, the
above yields ϕ

(n)
G (x) = νn(Gx) ∈M+(X ,E). Then a general property of measures gives

ϕ
(n)
G (x) = ν(Gx∩Bn)↗ ν(Gx) = ϕG(x), (6.1.19)

which implies the measurability of ϕG . Hence ϕG ∈M+(X ,E). �

Thus prepared, we arrive at the main theorem on product measures:

THEOREM 6.1.7. When (X ,E,µ) and (Y,F,ν) are σ -finite measure spaces, then
there is a uniquely determined measure π : E⊗F→ [0,∞] for which

π(A×B) = µ(A)ν(B) for all A ∈ E, B ∈ F. (6.1.20)

The product measure π = µ ⊗ ν is given by the formulas in (6.1.13), and the measure
space (X×Y,E⊗F,µ⊗ν) is σ -finite.

PROOF. From the measurability in Lemma 6.1.6 it is now clear that the first integral
in (6.1.13) makes sense; so does the second as it is only notation that differs (the order of E
and F in E⊗F is immaterial). It therefore suffices to show that the first integral defines a
measure π fulfilling (6.1.20); the argument then shows the same thing for the second inte-
gral, and they give the same measure because of the uniqueness result in Proposition 6.1.5.

Now, by (6.1.14) we have π(A×B) =
∫

X ϕA×B dµ = ν(B)
∫

X 1A dµ = µ(A)ν(B) for
all A×B ∈R , so the map π satisfies (6.1.20). Hence π( /0) = π( /0× /0) = µ( /0)ν( /0) = 0.

Finally, whenever we have pairwise disjoint sets Gn ∈ E⊗F, then (6.1.15) gives

π(
⋃

n∈N
Gn) =

∫
X

ϕ⋃n∈N Gn dµ = ∑
n∈N

∫
X

ϕGn dµ = ∑
n∈N

π(Gn). (6.1.21)

Therefore the map π is a measure on the product σ -algebra E⊗F, as claimed. �

The general result above gives the following reassuring result for the Euclidean spaces:

THEOREM 6.1.8. By identifying Rp×Rq with Rp+q , the Lebesgue measures mp , mq
and mp+q defined on the Borel algebras Bp , Bq and Bp+q , respectively, satisfy

mp⊗mq = mp+q. (6.1.22)

PROOF. Since Bp⊗Bq = Bp+q was shown in Proposition 6.1.4, and since mp and mq
are σ -finite, the product measure mp⊗mq is defined on the Borel algebra Bp+q . Its value
is mp(I)mq(J) = vp(I)vq(J) for every standard interval I× J = I1× . . . Ip× J1× . . .Jq in
Ip+q ; that is, the value is the product of the side lengths. But this property characterises
the Lebesgue measure mp+q on Bp+q . �
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6.2. Theorems of Tonelli and Fubini

Using the construction of the product measure µ ⊗ ν on the product set X ×Y of
two σ -finite measure spaces, one can now derive the below Theorem 6.2.2 on reiterated
integration of functions f (x,y) in M+ .

However, it is instructive first to study a typical example:

EXAMPLE 6.2.1. The function f (x,y) = 1
1+(xy)2 is continuous, hence in M+(R2,B2).

By integrating y out, one obtains a function I(x) given by

I(x) =
1
x

∫
R

x
1+(xy)2 dy =

π

|x|
, for x 6= 0,

I(0) =
∫
R

1dx = m(R) = ∞.

(6.2.1)

So obviously integration theory contains functions that attain the value ∞ for good reasons.

The fact that I(x) in the above example belongs to M+(R,B) (even though I(0) = ∞)
illustrates part (i) in the following general result:

THEOREM 6.2.2 (Tonelli). Let (X ,E,µ) and (Y,F,ν) be two σ -finite measure spaces.
For every function f : X×Y → [0,∞] in M+(X×Y,E⊗F) one has:

(i) the function x 7→
∫

Y f (x, ·)dν is in M+(X ,E);
(ii) ∫

X

(∫
Y

f (x,y)dν(y)
)

dµ(x) =
∫

X×Y
f dµ⊗ν . (6.2.2)

The analogous results are valid for the function y 7→
∫

X f (·,y)dµ .

PROOF. As f is assumed E⊗F-measurable, the section f (x, ·) is in M+(Y,F) for
every x ∈ X . Therefore g(x) =

∫
Y f (x, ·)dν is a well-defined function on X . To show its

measurability and the formula for its integral, we proceed in three steps.
In case f (x,y) = 1G(x,y) for some G ∈ E⊗F, the claims are essentially shown pre-

viously: 1G(x, ·) = 1Gx for x ∈ X , whence g(x) =
∫

Y 1G(x, ·)dν =
∫

Y 1Gx dν = ν(Gx) is
E-measurable according to Lemma 6.1.6; cf. (i). Moreover, its integral is by (6.1.13) the
product measure of G; that is,

∫
gdµ = µ⊗ν(G) =

∫
1G dµ⊗ν , obtaining (ii).

Now the two properties extend to every simple function f = c11G1 + · · ·+ cn1Gn on
X×Y such that 0< c j <∞ and G j ∈E⊗F for each j ∈{1, . . . ,n}. For it is straightforward
to see that the set of functions in M+(X ×Y,E⊗F) satisfying (i) and (ii) is stable under
addition and under multiplication by scalars in ]0,∞[ .

Finally, to each f ∈M+(X×Y,E⊗F) there is a sequence of simple E⊗F-measurable
functions fn such that fn↗ f . By monotone convergence and the already proved part of
the theorem,∫

X×Y
f dµ⊗ν = lim

n→∞

∫
X×Y

fn dµ⊗ν = lim
n→∞

∫
X
(
∫

Y
fn(x, ·)dν)dµ. (6.2.3)

Since fn(x, ·)↗ f (x, ·) holds for the sections for every x ∈ X , a second application of the
monotone convergence theorem yields

gn(x) =
∫

fn(x, ·)dν ↗
∫

f (x, ·)dν = g(x). (6.2.4)

Here the gn are E-measurable, as (i) is shown for the simple functions fn , so this yields
that g is E-measurable; i.e. (i) holds for f . A third use of monotone convergence now
gives

lim
n→∞

∫
X

gn dµ =
∫

X
gdµ. (6.2.5)

Insertion of this into the above shows that also (ii) is valid for f ∈M+(X×Y,E⊗F). �
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It is noteworthy that the theorem holds under natural assumptions, inasmuch as no
other requirement has been made on f (x,y) than it should be positive and measurable.
From the contents of the theorem it is seen then that both reiterated integrals in formula
(6.0.13) make sense and are equal to

∫
X×Y f dµ ⊗ ν . The necessesity of the σ -finiteness

of X , Y is seen in an exercise.

EXAMPLE 6.2.3. Tonelli’s theorem allows us to calculate

I =
∫ 1

0
(
∫ 1

y

1
1+ x4 dx)dy =

π

8
. (6.2.6)

Indeed, via the triangle T = {(x,y) ∈ R2 | 0≤ y≤ x≤ 1} we may consider the function

f (x,y) = 1T (x,y)
1

1+ x4 ∈M+(R2,B2). (6.2.7)

One section of this is f (·,y) = 1[0,1](y)1[y,1](·) 1
1+(·)4 , and by Tonelli’s theorem we may

integrate x out (for fixed y ∈R) and follow up by integration with respect to y. This yields∫
R2

f dm2 =
∫
R

1[0,1](y)(
∫
R

1[y,1](x)
1

1+ x4 dx)dy = I. (6.2.8)

But the other section of f is given by f (x, ·) = 1[0,1](x)1[0,x](·) 1
1+x4 , so by integrating

in the opposite order, as we may (cf. the last part of Tonelli’s theorem), we get∫
R2

f dm2 =
∫
R

1[0,1](x)
( 1

1+ x4

∫
R

1[0,x](y)dy
)

dx =
∫ 1

0

1
1+ x4 xdx

=
1
2

∫ 1

0
arctan′(x2)(x2)′ dx =

1
2
[
arctan(x2)

]1
0 =

π

8
.

(6.2.9)

It follows that I = π

8 as claimed.

EXAMPLE 6.2.4 (Integration in polar coordinates). Each point (x,y) ∈ R2 has polar
coordinates (r,θ), where r =

√
x2 + y2 and θ ∈ R fulfils (x,y) = r(cosθ ,sinθ). Since

points (x,y) 6= (0,0) only have θ determined modulo 2π , we may introduce the map

ϕ : X → Y,

X =]−π,π[×R+,

Y = R2 \{(x,0) | x≤ 0}.
(6.2.10)

This is a bijection with both ϕ , ϕ−1 belonging to C∞ , so Jacobi’s transformation theorem
applies. Now

detDϕ(r,θ) =
∣∣∣∣cosθ −r sinθ

sinθ r cosθ

∣∣∣∣= r, (6.2.11)

so since the excluded halfline is a nullset in the plane, we get the general formula for a
positive or integrable Borel function f : R2→ R, using the theorem of Tonelli or Fubini,∫

R2
f dm2 =

∫
Y

f (x,y)dm2(x,y) =
∫

X
f (r cosθ ,r sinθ)r dm2(r,θ)

=
∫

∞

0

(∫ π

−π

f (r cosθ ,r sinθ)dθ

)
r dr.

(6.2.12)

As an example of this one has, on the one hand, that∫
R2

e−x2−y2
dm2(x,y) =

∫
∞

0

(∫ π

−π

e−r2
dθ

)
r dr = π

∫
∞

0
2re−r2

dr = π. (6.2.13)

On the other hand a direct application of Tonelli’s theorem yields∫
R2

e−x2−y2
dm2(x,y) =

∫
R
(
∫
R

e−x2−y2
dy)dx = (

∫
R

e−x2
dx)2. (6.2.14)
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By taking the square root of these identities, one arrives at the well-known fact that∫
R

e−x2
dx =

√
π. (6.2.15)

Let again (X ,E,µ) and (Y,F,ν) be two σ -finite measure spaces, and suppose there is
given a function

f : X×Y → C. (6.2.16)

When f is E⊗F-measurable, then the induced function f (x, ·) is F-measurable for every
x ∈ X . This was shown previously as a property of the product σ -algebra.

For the purposes of the Fubini theorem we derive that by integrating one variable out,
one obtains a measurable function on the set where this integration is well defined:

LEMMA 6.2.5. Let (X ,E,µ) and (Y,F,ν) be two σ -finite measure spaces, and let
f : X×Y → C be E⊗F-measurable. Then there is a measurable set A⊂ X given by

A =
{

x ∈ X
∣∣ f (x, ·) ∈L (Y,F,ν)

}
, (6.2.17)

and if A 6= /0 the function g : A→ C given by

g(x) =
∫

Y
f (x, ·)dν , x ∈ A, (6.2.18)

is E-measurable (as EA ⊂ E).

REMARK 6.2.6. For the function in Example 6.2.1 it is clear that A =]−∞,0[∪ ]0,∞[ .

PROOF. The statement is a straightforward consequence of the case in which f has
real values, which therefore is assumed. Tonelli’s theorem gives, when applied to f+, f− ∈
M+ , that there are two functions p,n in M+(X ,E) defined by the expressions

p(x) =
∫

Y
f+(x, ·)dν , n(x) =

∫
Y

f−(x, ·)dν . (6.2.19)

Moreover, since f±(x, ·) = f (x, ·)± , we get from the definition of Lebesgue integrability
of f (x, ·) that

A =
{

x ∈ X
∣∣ p(x)< ∞

}⋂{
x ∈ X

∣∣ n(x)< ∞
}
. (6.2.20)

To see that A ∈ E one can apply Example 2.4.4.
When A 6= /0, then there is a function g = p|A− n|A , which is EA -measurable by the

rules of calculus for measurable functions. �

The content of this lemma is of some independent interest. But it is mainly because of
its proof that it is useful below.

Indeed, by adding an assumption of integrability of f (x,y) one now arrives at the
famous Fubini’s Theorem:

THEOREM 6.2.7 (Fubini). Let (X ,E,µ) and (Y,F,ν) be two σ -finite measure spaces.
For every function f : X×Y → C in L (X×Y,E⊗F,µ⊗ν) one has:

(i) the set A =
{

x ∈ X
∣∣ f (x, ·) ∈L (Y,F,ν)

}
belongs to E and µ(X \A) = 0;

(ii) the function x 7→
∫

Y f (x, ·)dν is µ -integrable on A;
(iii) ∫

X×Y
f dµ⊗ν =

∫
A

(∫
Y

f (x,y)dν(y)
)

dµ(x). (6.2.21)

The analogous results are valid for the function y 7→
∫

X f (·,y)dµ .
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PROOF. There is only something to show if µ(X) > 0, ν(Y ) > 0; which therefore is
assumed.

Obviously the real-valued case will imply the complex valued statement without diffi-
culties. Continuing from the proof of the lemma, we note that Tonelli’s theorem in addition
to (6.2.19) gives that∫

X
pdµ =

∫
X×Y

f+ dµ⊗ν ,
∫

X
ndµ =

∫
X×Y

f− dµ⊗ν (6.2.22)

These integrals are both finite, since f ∈ L (µ ⊗ ν). Since p, n ∈M+ , cf. the proof
of Lemma 6.2.5, this yields µ(P) = 0 = µ(N) for the two sets P = {x ∈ X | p(x) = ∞}
and N = {x ∈ X | n(x) = ∞}. Now, P∪N is a measurable null-set with its complement
A = X \ (P∪N) equal to the set of x for which f (x, ·) is ν -integrable. That is, A ∈ E and
µ(X \A) = 0, as claimed.

From the assumption µ(X) > 0 it follows that A 6= /0. Therefore p|A and n|A are
well-defined functions, which belong to L (A,µ) in view of the above finiteness; and so is
g = p|A−n|A , cf. (ii). Using the definition of the Lebesgue integral one now finds∫

A
gdµ =

∫
X

pdµ−
∫

X
ndµ =

∫
X×Y

f dµ⊗ν , (6.2.23)

because of (6.2.22). Inserting the expression for g one arrives at (iii). �

It may seem disappointing that the integral over X×Y in (iii) only was identified with
the iterated integral

∫
A

(
. . .
)

dµ .
Post festum, however, one may change the outer integral over A to one over X , simply

by integrating 1A(x)
∫

Y f (x, ·)dν . Here the value 0 on the complement X \A is immaterial,
because this set is a null set in E according to (i); cf. (2.4.2). With this understanding it is
usually sufficient to abbreviate the result in Fubini’s theorem to the simpler formula:∫

X

(∫
Y

f (x, ·)dν
)

dµ =
∫

X×Y
f dµ⊗ν =

∫
Y

(∫
X

f (·,y)dµ
)

dν . (6.2.24)

However, in special circumstances one may need the full statement in Theorem 6.2.7.
Often the theorems of Tonelli and Fubini are applied in succession, as we now explain:

EXAMPLE 6.2.8. When f ∈L (X ,µ) and g ∈L (Y,ν) for σ -finite measures, then
f ⊗g ∈L (µ⊗ν) and ∫

X⊗Y
f ⊗gdµ⊗ν =

∫
X

f dµ

∫
Y

gdν . (6.2.25)

Indeed, f ⊗g and | f ⊗g| are E⊗F-measurable, so by Tonelli’s theorem,∫
X⊗Y
| f |⊗ |g|dµ⊗ν =

∫
X
| f |(

∫
Y
|g|dν)dµ =

∫
X
| f |dµ

∫
Y
|g|dν < ∞. (6.2.26)

This shows that f ⊗ g ∈ L (µ ⊗ ν). Hence Fubini’s theorem applies to f ⊗ g that once
again gives (6.2.26), only with | f |, |g| replaced by the functions f , g themselves; which
shows (6.2.25). Hereby also the remark in (6.2.24) is invoked.

EXAMPLE 6.2.9. Let A ⊂ Rd be a Borel set and f ,g : A→ R be to Borel functions
such that f ≤ g on A. The “sandwich set”

G =
{
(x,y) ∈ A×R

∣∣ f (x)≤ y≤ g(x)
}

(6.2.27)

is then Borel measurable, i.e. G ∈ Bd+1 and its Lebesgue measure is given by

md+1(G) =
∫

A
(g(x)− f (x))dx (6.2.28)

This may be shown via the auxiliary functions ϕ,ψ : Rd×R→ R,
ϕ(x,y) = 1A×R(x,y)(g(x)− y)−1({A)×R(x,y),

ψ(x,y) = 1A×R(x,y)(y− f (x))−1({A)×R(x,y).
(6.2.29)
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Obviously
G = ϕ

−1([0,∞[ )∩ψ
−1([0,∞[ ), (6.2.30)

so G ∈ Bd+1 follows if ϕ−1([0,∞[ ) and ψ−1([0,∞[ ) belong to Bd+1 . By the rules of
measurability this boils down, for ϕ , to the fact that g(x)− y is BA×R -measurable; which
may be seen for y by restricting the Bd+1 -measurable projection π2 to the Borel set A×R,
and by regarding g(x) as the composition of g and π1 , which is BA×R -BA -measurable.
Similarly one can show that ψ is measurable.

Exploiting the construction of the product measure md+1 = md⊗m, we now get∫
Rd

m(Gx)dmd(x) =
∫
Rd

1A(x)m([ f (x),g(x)])dmd(x), (6.2.31)

and we can identify the left- and right-hand sides with those in (6.2.28), respectively.
Moreover, when Φ : A→ R is an integrable or a positive Borel function, then the

section (1GΦ)x is given by

y 7→

{
1[ f (x),g(x)](y)Φ(x,y) for x ∈ A,
0 for x ∈ Rd \A.

(6.2.32)

so the theorems of Tonelli and Fubini give the well-known formula∫
G

Φdmd+1 =
∫

A

(∫ g(x)

f (x)
Φ(x,y)dy

)
dx. (6.2.33)





CHAPTER 7

Classical inequalities

In the following a measure space (X ,E,µ) is thought to be given such that X 6= /0.

7.1. Seminormed Lebesgue spaces

It is a classical task to quantify different degrees of integrability of functions f defined
on a measure space (X ,E,µ). This is done via the introduction of the Lebesgue space
Lp(µ) = Lp(X ,E,µ) consisting of the measurable functions f : X → C, which for some
given p ∈ ]0,∞[ satisfy ∫

| f |p dµ < ∞. (7.1.1)

The motivation for this is easy in case µ is a probability measure: then f ∈L1(µ) if and
only if the stochastic variable f has a mean value, whilst g ∈L2(µ) holds precisely when
the stochastic variable g has variance. In mathematical analysis (the variant) L2(µ) is a
main source of so-called Hilbert spaces, which are decisive in many investigations.

Obviously the case p = 1 just gives back the set L (µ) =L (X ,E,µ) of µ -integrable
functions on X ; i.e. L1(µ) = L (µ). In general Lp(µ) is said to consist of the functions
f that are p times integrable on X , though they are simply called quadratically integrable
on X for p = 2.

In case µ is the counting measure on an index set J , the above amounts to the set of p
times summable families (a j) j∈J , which are defined by the condition ∑ j∈J |a j|p < ∞. The
set of such families is denoted by `p(J), and for J = N this is abbreviated to `p .

It is elementary to see that the set Lp(µ) has the structure of a vector space:

LEMMA 7.1.1. The set Lp(X ,E,µ) is a vector space for 0 < p < ∞.

PROOF. Given functions f ,g∈Lp(µ) and a scalar c∈C, it is clear from the calculus
that c f and f +g are E-measurable; we have

∫
|c f |p dµ = |c|p

∫
| f |p dµ < ∞ and

| f +g|p ≤ (| f |+ |g|)p ≤ 2p(| f |∨ |g|)p ≤ 2p(| f |p∨|g|p)≤ 2p(| f |p + |g|p), (7.1.2)

which by integration of both sides yields that
∫
| f +g|p dµ < ∞. �

In order to focus on the simplest cases wee now specialise to the the cases in which
1≤ p < ∞.

It would then be desirable to show that the vector space Lp(µ) has a norm given by
the expression

‖ f‖p =
(∫
| f |p dµ

) 1
p
. (7.1.3)

This would be the case if, for all f ,g ∈Lp(µ) and c ∈ C,

(i) ‖ f‖p ≥ 0, with equality only for f = 0,

(ii) ‖c f‖p = |c|‖ f‖p,

(iii) ‖ f +g‖p ≤ ‖ f‖p +‖g‖p.

(7.1.4)

29
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However, ‖ · ‖p is in general only a seminorm on Lp(µ), which means that ‖ f‖p = 0
may hold for some f 6= 0; cf. (i). Indeed, although f ≡ 0 is the zero vector in Lp , we have

‖ f‖p = 0 ⇐⇒
∫
| f |p dµ = 0 ⇐⇒ | f |p = 0 µ -a.e. ⇐⇒ f = 0 µ -a.e. (7.1.5)

So it is only if /0 is the only null set that ‖ · ‖p is a norm. This includes the case of the
counting measure on X , so the above spaces `p(J) are normed by the expression

‖a j‖p =
(

∑
j∈J
|a j|p

) 1
p
. (7.1.6)

Of course the conditions (ii) and (iii) must also be rigorously verified. But (ii) fol-
lows easily since ‖c f‖p = (

∫
|c|p| f |p dµ)1/p = |c|(

∫
| f |p dµ)1/p for every scalar c ∈ C.

However, the trangle inequality in (iii) means that all f ,g ∈Lp(µ) should fulfill

(
∫
| f +g|p dµ)

1
p ≤ (

∫
| f |p dµ)

1
p +(

∫
|g|p dµ)

1
p . (7.1.7)

This is known as Minkowski’s inequality, and while it is trivial to obtain for p = 1, it is
rather more demanding for p > 1, in which case it is a main result in integration theory.

For the proof of Minkowski’s inequality we shall obtain two other inequalities, which
are of independent interest. They are both related to the notion of dual exponents. These
are numbers p, q in ]1,∞[ that satisfy the basic relation

1
p
+

1
q
= 1. (7.1.8)

This can be written in many equivalent ways, as e.g.

1
p
+

1
q
= 1 ⇐⇒ p+q = pq ⇐⇒ p = (p−1)q ⇐⇒ q =

p
p−1

. (7.1.9)

When p > 1 is fixed, then it is customary to designate the q > 1 fulfilling (7.1.8) as the
conjugate or dual exponent to p, and to denote it by p′ instead of q.

LEMMA 7.1.2 (Young’s inequality). When p > 1 and q > 1 are dual exponents, i.e.
1
p +

1
q = 1, then

uv≤ up

p
+

vq

q
for all u≥ 0, v≥ 0. (7.1.10)

Equality holds if and only if the numerators are equal, i.e. when up = vq .

PROOF. The auxiliary function F(u,v) = up

p + vq

q − uv satisfies, for any fixed v ≥ 0,

that F(0,v)≥ 0 whilst F(u,v) = vq

q +u( up−1

p −v)→∞ for u→∞. Now ∂F
∂u = up−1−v has

the uniquely given zero u0 = v1/(p−1) , where up
0 = vq , so F attains its minimum at (u0,v)

with F(u0,v) = vq( 1
p +

1
q −1) = 0. Hence F(u,v)≥ 0 whenever u≥ 0, v≥ 0. �

A standard application of Young’s inequality gives the next result, which is Hölder’s
inquality. But first we take the opportunity to free the discussion from functions known a
priori to belong to Lp(µ). Indeed, the integral in (7.1.1) makes sense for every measurable
function f : X → C, and it is therefore customary to extend the definition of ‖ · ‖p as

‖ f‖p =

{
(
∫
| f |p dµ)

1
p for f ∈Lp(µ),

∞ for f 6∈Lp(µ).
(7.1.11)

The second line is of a consequence of the first with the common convention that ∞p = ∞

for any p > 0; which we adopt throughout.
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THEOREM 7.1.3 (Hölder’s inequality). When p > 1, q > 1 are dual exponents, that
is 1

p +
1
q = 1, and f ,g : X → C are E-measurable, then

‖ f g‖1 =
∫
| f g|dµ ≤ ‖ f‖p‖g‖q. (7.1.12)

Consequently, the product f g is µ -integrable when f ∈Lp(µ) and g ∈Lq(µ) .

PROOF. By the calculus f g is measurable, and there is nothing to show if ‖ f‖p = 0
or ‖g‖q = 0, for then f g = 0 µ -a.e. In the remaining cases we may derive from Young’s
inequality (7.1.10) that

| f |
‖ f‖p

|g|
‖g‖q

≤ 1
p
| f |p

‖ f‖p
p
+

1
q
|g|q

‖g‖q
q
. (7.1.13)

By integrating both sides we get 1
‖ f‖p‖g‖q

∫
| f g|dµ ≤ 1

p +
1
q = 1, whence (7.1.12) follows.

When moreover f ∈Lp(µ) and g ∈Lq(µ), then the right-hand side of (7.1.12) is finite,
so that f g ∈L1(µ). �

In case p = 2 = q, the above result is usually called Cauchy–Schwarz’ inequality. It
is often useful in the following form:

COROLLARY 7.1.4. When f ,g ∈L2(µ), then f g ∈L (µ) and

|
∫

f gdµ| ≤ ‖ f g‖1 =
∫
| f g|dµ ≤ ‖ f‖2‖g‖2. (7.1.14)

We are now ready to prove the inequality attributed to Minkowski:

THEOREM 7.1.5 (Minkowski’s inequality). If 1≤ p<∞, then all E-measurable func-
tions f ,g : X → C fulfill

‖ f +g‖p ≤ ‖ f‖p +‖g‖p. (7.1.15)

Consequently f 7→ ‖ f‖p is a seminorm on the functions f in Lp(µ) for such p.

PROOF. The problem is to show the inequality for p > 1 (as p = 1 is trivial), but it
suffices to cover the cases where 0 < ‖ f +g‖p < ∞, as for ‖ f +g‖p = 0 the inequality is
trivial, while for ‖ f +g‖p =∞ also the right-hand side of (7.1.15) is infinity (both functions
cannot be in Lp then, cf. Lemma 7.1.1).

A constructive use of the reduction to p > 1 is to make a splitting of the integrand:

‖ f +g‖p
p =

∫
| f +g|| f +g|p−1 dµ ≤

∫
| f || f +g|p−1 dµ +

∫
|g|| f +g|p−1 dµ. (7.1.16)

As | f + g|p−1 is E-measurable, we get for the (prospective) seminorm corresponding to
the dual exponent q from (7.1.9) that

‖| f +g|p−1‖q =
(∫
| f +g|p dµ)

1
q = ‖ f +g‖p/q

p = ‖ f +g‖p−1
p . (7.1.17)

Hölder’s inequality therefore gives∫
| f || f +g|p−1 dµ ≤ ‖ f‖p‖ f +g‖p−1

p . (7.1.18)

Since f and g are arbitrary measurable functions, they can switch roles; whence the same
inequality with | f | replaced by |g| is obtained. By insertion into (7.1.16) this gives

‖ f +g‖p
p ≤

(
‖ f‖p +‖g‖p

)
‖ f +g‖p−1

p , (7.1.19)

which yields Minkowski’s inequality (7.1.15) after multiplication by ‖ f + g‖1−p
p (using

that 0 < ‖ f +g‖p < ∞).
The last statement is seen from the considerations on ‖ · ‖p prior to the theorem, as

(7.1.15) yields that f + g is Lp(µ) when f , g are so; and then (7.1.15) is the triangle
inequality for Lp(µ). �
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As another application of Hölder’s inequality, one may obtain a hirarchy among the
Lp -seminorms when µ is a finite measure:

PROPOSITION 7.1.6. When µ(X)<∞ and r > p≥ 1, then any measurable f : X→C
fulfils

‖ f‖p ≤ µ(X)
1
p−

1
r ‖ f‖r. (7.1.20)

Especially when µ(X) = 1 it holds that ‖ f‖p ≤ ‖ f‖r .

PROOF. Since the numbers r
p > 1 and r

r−p > 1 are dual exponents, Hölder’s inequal-
ity applied to | f |p and the constant function 1 gives∫

| f |p dµ ≤
(∫
| f |p

r
p dµ

) p
r
(∫

1dµ
) r−p

r ≤ ‖ f‖r
p ·µ(X)1− p

r . (7.1.21)

By taking p’th roots on both sides, the claim follows at once. �

As a consequence of the above, there are embeddings among the Lp(µ) spaces:

µ(X)< ∞, r > p≥ 1 =⇒ Lr(µ) ↪→Lp(µ). (7.1.22)

Such results do not extend to cases with µ(X) =∞, since already for the Lebesgue measure
on the real line R is easy to provide examples of functions belonging to Lp \Lr , Lp∩Lr
and Lr \Lp for r > p≥ 1.

EXAMPLE 7.1.7. Given functions f ∈Lp(X ,E,µ) and g ∈Lp(Y,F,ν) for 1≤ p <
∞, whereby µ and ν are σ -finite measures on sets X 6= /0 and Y 6= /0, respectively, then the
tensor product f ⊗g belongs to Lp(µ⊗ν) and

‖ f ⊗g‖p = ‖ f‖p‖g‖p. (7.1.23)

Indeed, as f ⊗g is E⊗F-measurable, Tonelli’s theorem yields that∫
X×Y
| f ⊗g|p dµ⊗ν =

∫
X

(∫
Y
| f (x)|p|g(y)|p dν(y)

)
dµ(x)

= ‖g‖p
p

∫
| f (x)|p dµ(x) = ‖ f‖p

p‖g‖p
p. (7.1.24)

EXAMPLE 7.1.8 (Important cases). (a) Instead of Lp(Rd ,Bd ,md) we briefly write
Lp(Rd), and for any Borel set A ⊂ Rd we simplify Lp(A,md) to Lp(A). In both cases
the Lebesgue measure is tacitly understood.

(b) For J = N we have the sequence space `p = `p(N). In other words, it is given by

`p = {(a1,a2, . . .) | ∑∞
j=1 |a j|p < ∞} whilst ‖(a1,a2, . . .)‖p =

(
∑

∞
j=1 |a j|p

) 1
p

.

For this there is Hölder’s inequality, if 1
p +

1
q = 1,

∞

∑
j=1
|a jb j| ≤

( ∞

∑
j=1
|a j|p

) 1
p
( ∞

∑
j=1
|b j|q

) 1
q
. (7.1.25)

Minkowski’s inequality takes the form, for 1≤ p < ∞,( ∞

∑
j=1
|a j +b j|p

) 1
p ≤

( ∞

∑
j=1
|a j|p

) 1
p
+
( ∞

∑
j=1
|b j|p

) 1
p
. (7.1.26)

(c) The space `p({1,2, . . . ,d}) is just Cd endowed with the norm ‖(z1, . . . ,zd)‖p =(
∑

d
j=1 |z j|p

) 1
p

. In this case the inequalities of Hölder and Minkowski are analogous to the
above, only with summation for 1≤ j≤ d instead. These were the inequalities put forward
by Otto Hölder (1889) and Hermann Minkowski (1896).
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7.2. The generalised Hölder inequality*

First of all it is not difficult to see that Hölder’s inequality can be freed from the
restriction to dual exponents: it suffices to have 1

p +
1
q = 1

r . But even if p ≥ 1 and q ≥ 1
we may be forced to make do with r > 0:

COROLLARY 7.2.1. When p0 > 0, p1 > 0 and we introduce r > 0 so that 1
p0
+ 1

p1
= 1

r ,

then all E-measurable f0, f1 : X → C fulfil ‖ f0 f1‖r =
(∫
| f0 f1|r dµ

) 1
r ≤ ‖ f0‖p0‖ f1‖p1 .

This is immediately seen from the relations 1
p0/r +

1
p1/r = 1 and | f g|r =

∣∣| f |r|g|r∣∣.
Using the above corollary twice, there is also a straightforward proof by induction of

an extension to products of many functions:

THEOREM 7.2.2. When p0, p1, . . . , pn ∈ ]0,∞[ and we introduce r > 0 such that
1
p0

+
1
p1

+ · · ·+ 1
pn

=
1
r
, (7.2.1)

then all E-measurable f0, f1, . . . , fn : X → C fulfil

‖ f0 f1 . . . fn‖r =
(∫
| f0 f1 . . . fn|r dµ

) 1
r ≤ ‖ f0‖p0‖ f1‖p1 . . .‖ fn‖pn . (7.2.2)

Consequently f0 f1 . . . fn ∈ Lr(µ) for this r, whenever f j ∈Lp j(µ) for j ∈ {0,1, . . . ,n}.

The corollary also gives a result on intersections of Lebesgue spaces, where in addition
there is a basic case of interpolated norms:

PROPOSITION 7.2.3. If 0 < p0 < p1 there is an inclusion

Lp0(µ)∩Lp1(µ)⊂
⋂

p0≤q≤p1

Lq(µ), (7.2.3)

and for any E-measurable function f : X → C,

‖ f‖q ≤ ‖ f‖1−θ
p0
‖ f‖θ

p1
(7.2.4)

when θ ∈ [0,1] is chosen so that 1
q = 1−θ

p0
+ θ

p1
.

PROOF. Applying Corollary 7.2.1 to | f | = | f |1−θ | f |θ one arrives at the inequality;
thence the inclusion. �

7.3. Jensen’s inequality*

THEOREM 7.3.1 (Jensen’s inequality). Let (X ,E,µ) be a measure space for which
µ(X) = 1, that is, a probability space. Suppose φ : ]a,b[→ R is a convex function (a < b
in [−∞,∞]). When f ∈L (µ) is a real Borel function and a < f < b on X , then

φ
(∫

f dµ
)
≤
∫

φ ◦ f dµ. (7.3.1)

Then same inequality is valid if f ∈M+(X ,E) satisfies a < f < b on X and
∫

f dµ < ∞.

REMARK 7.3.2. The right-hand side of Jensen’s inequality may be ∞ in case the real
function φ ◦ f is integrable in the extended sense.

PROOF. When f ∈L (µ) we may set t =
∫

f dµ . As µ is a probability measure a <
t < b follows, since e.g. for a >−∞ one has that f (x)−a > 0 and that f −a as a member
of M+ can be approximated from below by a sequence sn of simple positive measurable
functions. (

∫
sn dµ ≥ 0 for all n, and necessarily with sharp inequality eventually as X is

not a null set.)
The convex function φ is subdifferentiable at t ∈ ]a,b[ , so for certain h ∈ R it holds

for a < s < b that
φ(s)≥ φ(t)+h(s− t). (7.3.2)
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Taking s = f (x) this becomes

φ( f (x))−φ(t)−h( f (x)− t)≥ 0, (7.3.3)

so that integration of this function in M+ gives

0≤
∫
(φ( f (x))−φ(t)−h( f (x)− t))dµ ≤ ∞. (7.3.4)

Now, as constant functions are µ -integrable, by adding the trivial identities
∫

φ(t)dµ =
φ(t) = φ(

∫
f dµ) and h

∫
( f − t)dµ = 0, we arrive at once at the inequality in the theorem.

If f ∈M+ satisfies the conditions in the theorem, f−1({∞}) is a nullset N ∈ E, so
f̃ = f 1X\N + c1N is µ -integrable with

∫
f̃ dµ = t , and for a < c < b it moreover satisfies∫

φ ◦ f̃ dµ =
∫

φ ◦ f dµ . Thus Jensen’s inequality is carried over from f̃ to f . �

Since exp: R→ R is convex, there is the obvious example that for f ∈L (X ,E,µ),

exp
(∫

X
f dµ

)
≤
∫

X
e f (x) dµ(x), (7.3.5)

or the equally non-trivial result that, when f ≥ 1,

exp
(∫

X
log f dµ

)
≤
∫

X
f (x)dµ(x). (7.3.6)

In case of the finite set X = {1,2, . . . ,n} and µ({i}) = 1
n for all i, then if we denote

f (i) = xi in R, the first of these inequalities becomes

e
1
n (x1+x1+···+xn) ≤ 1

n
(ex1 + ex2 + · · ·+ exn). (7.3.7)

But now a substitution of yi = exi yields the classical inequality between the so-called
geometric and aritmetic means:

n
√

y1y2 . . .yn ≤
1
n
(y1 + y2 + · · ·+ yn). (7.3.8)

More generally, given any numbers αi > 0 such that

α1 +α2 + · · ·+αn = 1, (7.3.9)

then µ({i}) =αi gives a probability measure µ on X = {1,2, . . . ,n}. For any convex func-
tion ϕ : ]a,b[→ R in Theorem 7.3.1, this leads to the original form of Jensen’s inequality

ϕ(
n

∑
i=1

αixi)≤
n

∑
i=1

αiϕ(xi). (7.3.10)

Taking again ϕ = exp, we get a general weighted version of the above inequality between
geometric and aritmetic means, for yi ≥ 0,

yα1
1 yα2

2 . . .yαn
n ≤ α1y1 +α2y2 + · · ·+αnyn. (7.3.11)

By setting pi =
1
αi

and ui = y1/pi
i , one finds for ui ≥ 0 and pi > 1 with 1

p1
+ · · ·+ 1

pn
= 1,

u1u2 . . .un ≤
up1

1
p1

+
up2

2
p2

+ · · ·+ upn
n

pn
. (7.3.12)

This is also known as Young’s inequality.
The above examples elucidate the scope of the abstract result on Jensens’s inequality

given in Theorem 7.3.1.



CHAPTER 8

Lebesgue spaces

To improve on the spaces Lp(µ), which in Section 7.1 were shown to be only semi-
normed, we here introduce their normed equivalents, the Lebegue spaces written Lp(µ).

8.1. The normed Lebesgue spaces Lp

The widely accepted remedy for the seminormed Lebesgue spaces Lp(µ) is to stop
the strict distinguishing of functions that only differ on a µ -nullset. This softening is
already present as such functions will have the same integral.

More precisely, this means that we call f , g : X → C equivalent, and write f ∼ g,
whenever f = g µ -a.e. It is obvious that ∼ is an equivalence relation, that is, f ∼ f ,
f ∼ g ⇐⇒ g ∼ f and f ∼ g∧g ∼ h =⇒ f ∼ h (the reflexive, symmetric and transitive
property, respectively).

Thereafter we transfer Lp(µ) to the set of equivalence classes, denoted by Lp(µ):

[ f ] = {g | g∼ f }, Lp(µ) = Lp(X ,E,µ) =
{
[ f ]
∣∣ f ∈Lp(X ,E,µ)

}
. (8.1.1)

Algebraically also Lp(µ) is a vector space with the compositions

[ f ]+ [g] = [ f +g], c[ f ] = [c f ]. (8.1.2)

Indeed, the classes on the right-hand sides are readily seen to be independent of the choice
of representatives made on the left. All 8 axioms for a vector space is easily seen to be ful-
filled, when [0] and [− f ] are used as the zero vector and the opposite vector, respectively.

For the norm on Lp(µ) the simple solution is just to let the seminorm of Lp act on a
representative: ∥∥[ f ]∥∥p = (

∫
| f |p dµ)

1
p = ‖ f‖p. (8.1.3)

Indeed, this is a map Lp(µ) → [0,∞[ , for even if g ∼ f for E-measurable functions
f ,g, then we have |g|p = | f |p µ -a.e., which because of Remark 4.16 gives

∫
|g|p dµ =∫

| f |p dµ , whence the value in (8.1.3) is independent of the choice of representative.
In practice [ f ] is often simply written as f , whereby it is tacitly understood that it is

the equivalence class determined by f that is considered. For example ‖[ f ]‖p is simplified
to ‖ f‖p , and 0 replaces [0].

The map ‖ · ‖p : Lp(µ)→ [0,∞[ is actually a norm whenever 1 ≤ p < ∞; cf. (7.1.4).
Indeed, the triangle inequality is a direct consequence of Minkowski’s inequality in (7.1.7)
or (7.1.15), where one can read the left- and right-hand sides as the values of ‖ · ‖p at
[ f + g], [ f ] og [g]; cf. (8.1.3). Similarly the positive homogeneity is inferred from the
observation in front of (7.1.7). Finally (7.1.5) gives the crucial property that

∥∥[ f ]∥∥p = 0
holds if and only if f ∼ 0, i.e. if and only if [ f ] = 0.

The vector space Lp(µ) therefore has a metric given by

d( f ,g) = ‖ f −g‖p =
(∫
| f −g|p dµ

) 1
p for 1≤ p < ∞. (8.1.4)

For (equivalence classes) f , f1, f2, . . . in Lp(µ), one says if d( fn, f ) = ‖ fn− f‖p→ 0 for
n→∞ that fn converges to f in Lp(µ), or in Lp -norm, or that fn converges to f in p-mean
(in quadratic mean for p = 2). One motivation for this could be that for convergence in

35
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1-norm, that is,
∫
| fn− f |dµ → 0 for n→ ∞, the integral can be thought of as the mean

deviation of fn from f .
As a very satisfying result, the metric spaces Lp(µ) are always complete. This is

known as Fischer’s Completeness Theorem, cf. Theorem 8.2.3, which is a cornerstone in
integration theory and its applications.

Complete normed vector spaces are referred to in the literature as Banach spaces after
Stefan Banach, who made extensive investigations of such spaces in the 1920’s.

DEFINITION 8.1.1. A Banach space is a pair (B,‖ · ‖) consisting of a vector space B
(over R or C) and a norm ‖ · ‖ on B, for which the induced metric d(v,w) = ‖v−w‖ is
complete in the sense that every Cauchy sequence converges in B.

If the norm on a Banach space B is induced by an inner product on B, then B is called
a Hilbert space (and is usually denoted by H ).

A main source of Banach spaces is the family Lp(X ,E,µ), with 1 ≤ p < ∞, for an
arbitrary measure space (X ,E,µ).

The case p = 2 is special, though, for the norm on L2(µ) is induced by an inner
product, which for arbitrary f ,g ∈ L2(µ) is given by

( f |g) =
∫

f (x)g(x)dµ(x). (8.1.5)

Even though it is formally clear that ( f | f ) =
∫
| f |2dµ = ‖ f‖2

2 , it is less obvious that the
integrand f g in the inner product ( f |g) is integrable for f ,g ∈ L2(µ). But this follows at
once from the Cauchy–Schwarz inequality, cf. Corollary 7.1.4. Thus the space L2(X ,E,µ)
is a main example of a Hilbert space (David Hilbert made fundamental investigations of
spectral theory of quadratic forms on complete inner product spaces around 1910).

EXAMPLE 8.1.2. To elucidate on the space Lp(Rd), we first give a straightforward
argument for the integrability of the continuous function fN(x) = (1+ |x|)−N when N > d :
by Tonelli’s theorem,∫

fN dmd ≤
∫
(1+ |x1|)−N/d . . .(1+ |xd |)−N/d dmd =

(∫
R
(1+ t)−N/d dt

)d

≤ 2d(1+ lim
k→∞

[
t1−N/d

1−N/d
]k1
)d

= 2d(1+
d

N−d
)d < ∞.

(8.1.6)

Conversely, the multinomial formula gives, with a sum over d = n0 +n1 + · · ·+nd ,

(1+ |x|)d ≤ (1+ |x1|+ · · ·+ |xd |)d

= ∑
d!

n0!n1! . . .nd!
|x1|n1 . . . |xd |nd ≤ d!(1+ |x1|) . . .(1+ |xd |).

(8.1.7)

From this it follows that∫
fd dmd ≥

(∫
R

1
1+ |t|

dt
)d
/d!≥

(∫ ∞

1

1
t

dt
)d
/d! = ∞. (8.1.8)

Thus neither fd nor fN with N < d belongs to L1(Rd).
Replacing N by N p, one obtains from the above that

(1+ |x|)−N ∈ Lp(Rd) ⇐⇒ N > d/p. (8.1.9)

8.2. Fischer’s completeness theorem

In the normed vector space Lp(µ), 1≤ p < ∞ there is a version of majorised conver-
gence, which one could conveniently refer to as the theorem on Lp -majorised convergence:

THEOREM 8.2.1. If a sequence ( fn) is given in Lp(µ) for some p ∈ [1,∞[ and the
function f : X → C is such that

f = lim
n→∞

fn µ -a.e., (8.2.1)
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then existence of a function g ∈M+(X ,E) such that (with ∞p = ∞)

∀n ∈ N : | fn| ≤ g µ -a.e.,
∫

gp dµ < ∞, (8.2.2)

implies that (the class determined by) f belongs to Lp(µ) with ‖ f‖p ≤ (
∫

gp dµ)
1
p and

‖ fn− f‖p −−−→
n→∞

0. (8.2.3)

PROOF. In the situation described in the statement, we may arrange that convergence
holds everywhere, by multiplying all functions by 1X\N for a suitable measurable nullset
N . Thus f can be assumed measurable. Moreover, N can be so chosen that | fn| ≤ g for all
n, whence

∫
| f |p dµ ≤

∫
gp dµ < ∞ and f ∈ Lp(µ) as stated.

Now, both | fn(x)− f (x)|p→ 0 and | fn− f |p ≤ 2pgp hold on X , so it follows that∫
| fn− f |p dµ −−−→

n→∞

∫
0dµ = 0, (8.2.4)

using the Majorised Convergence Theorem. �

Completeness of a normed vector space V can be rephrased in a way that is rather use-
ful for the study of Lp(µ). Indeed, a series ∑

∞
n=1 xn of vectors in V is said to be absolutely

convergent if it has a finite norm series, that is, if ∑
∞
n=1 ‖xn‖< ∞. This notion enters

LEMMA 8.2.2. A normed vector space V is complete if and only if every absolutely
convergent series ∑

∞
n=1 xn in V is converging to some vector x in V .

PROOF. Given a Cauchy series (xn) in V , there are indices n1 < n2 < .. . such that
‖xn− xm‖ ≤ 2−k whenever n,m≥ nk . In particular ‖xnk+1 − xnk‖ ≤ 2−k , whence

∞

∑
k=1
‖xnk+1 − xnk‖ ≤ 1. (8.2.5)

So when absolute convergence implies convergence, then xn1 + ∑
∞
k=1(xnk+1 − xnk) con-

verges to some x in V . As the series is telescopic, we see that x = limk→∞ xnk . Since

‖x− xn‖ ≤ ‖x− xnk‖+‖xnk − xn‖, (8.2.6)

it follows that the given sequence (xn) converges to x as well.
The converse conclusion is seen by applying the triangle inequality to a difference

sN+p− sN of two partial sums of any given absolutely convergent series ∑
∞
n=1 xn in V . �

Thus prepared, we proceed to state and prove the fundamental fact about the Lebesgue
spaces Lp(µ):

THEOREM 8.2.3 (Fischer’s Completeness Theorem). The normed space Lp(X ,E,µ)
is complete for any measure space (X ,E,µ) and 1 ≤ p < ∞. In other words, Lp(X ,E,µ)
is a Banach space.

PROOF. Invoking Lemma 8.2.2, we let a series ∑
∞
k=1 gk of functions gk ∈Lp(µ) be

given such that

S :=
∞

∑
k=1
‖gk‖p < ∞. (8.2.7)

We shall determine a function f ∈Lp(µ) such that ‖ f −∑
n
k=1 gk‖p→ 0 holds for n→∞.

(More precisely, this will show that [ f ] = limn→∞ ∑
n
k=1[gk] holds in Lp(µ), as desired.)

Actually it turns out that ∑
∞
k=1 gk(x) exists a.e., and that this works as the function f .

1◦ There is an auxiliary function h ∈M+(X ,E) given by the formula

h(x) =
∞

∑
k=1
|gk(x)|. (8.2.8)

Clearly h(x)< ∞ at x ∈ X if, and only, if ∑
∞
k=1 gk(x) converges (absolutely) in C.
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2◦ The function h is a possible Lp -majorant for the sequence given by fn =∑
n
k=1 gk(x),

for the convention ∞p = ∞ gives for n→ ∞ that

(
n

∑
k=1
|gk(x)|)p↗ h(x)p, (8.2.9)

so | fn| ≤ h holds on X for every n. Moreover, the Monotone Convergence Theorem entails

‖
n

∑
k=1
|gk|‖p

p =
∫
(

n

∑
k=1
|gk|)p dµ ↗

∫
hp dµ, (8.2.10)

where triangle inequality gives, for all n ∈ N,

0≤ ‖
n

∑
k=1
|gk|‖p ≤

n

∑
k=1
‖|gk|‖p ≤

∞

∑
k=1
‖gk‖p = S. (8.2.11)

This yields that
∫

hp dµ ∈ [0,Sp], hence we have
∫

hp dµ < ∞ by (8.2.7).
3◦ We now define a measurable function by f =∑

∞
k=1 gk1X\N , whereby N = h−1({∞})

is in E with µ(N) = 0 (the series converges pointwise in X \N , cf. 1◦ ). According to
Theorem 8.2.1 the function f (or rather [ f ]) belongs to Lp(µ) with the norm estimate
‖ f‖p ≤ S and ‖ f − fn‖p→ 0 for n→ ∞. �

The attentive reader will have noticed that the proof gave a bit more than stated:

COROLLARY 8.2.4. A series ∑
∞
k=1 gk of functions satisfying ∑

∞
k=1 ‖gk‖p < ∞ for some

p ∈ [1,∞[ converges both (absolutely) µ -a.e. on X as well as in p-mean to the same
function satisfying f ∈ Lp(µ) and

‖ f‖p ≤
∞

∑
k=1
‖gk‖p. (8.2.12)

In the situation of this corollary, f = ∑
∞
k=1 gk holds in Lp(µ), so it is tempting to insert

this in (8.2.12) to obtain a formal generalisation of Minkowski’s inequality:

‖
∞

∑
k=1

gk‖p ≤
∞

∑
k=1
‖gk‖p. (8.2.13)

This is a dangerous abuse of notation, since when the right-hand side diverges there may
be no limit function for the series ∑

∞
k=1 gk , so that the left-hand side makes no sense.

At this basic level, the best relation between pointwise convergence and convergence
in p-mean is the following:

COROLLARY 8.2.5. Every sequence f1 , f2 ,. . . in Lp(µ) that converges to f ∈ Lp(µ)
in p-mean has a subsequence fn1 , fn2 ,. . . converging pointwise to f µ -a.e. There is an
Lp -majorant for ( fnk), that is some g ∈M+ fulfilling | fnk | ≤ g for all k and

∫
gp dµ < ∞.

PROOF. This is a corollary to the proofs of Lemma 8.2.2 and Theorem 8.2.3. First
n1 < n2 < .. . are chosen so that

∞

∑
k=1
‖ fnk+1 − fnk‖p < ∞. (8.2.14)

The subsequence fn1 , fn2 ,. . . is the sequence of partial sums of fn1 +∑
∞
k=1( fnk+1 − fnk),

which by construction has a finite norm series, so Corollary 8.2.4 yields that it converges
both pointwise a.e. and in p-mean to some f̃ in Lp(µ). By hypothesis it also converges to
f in Lp(µ), and therefore f = f̃ in the normed space Lp(µ); so f is also an a.e. pointwise
limit of the subsequence ( fnk).

Going back to the proof given for Fischer’s theorem, the function h there is in the
present case given by

g(x) = | fn1(x)|+
∞

∑
k=1
| fnk+1(x)− fnk(x)|, (8.2.15)
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so this is a possible Lp -majorant here. �

COROLLARY 8.2.6. If a sequence f1 , f2 ,. . . in Lp(µ) converges in p-mean to some
ϕ ∈ Lp(µ) as well as pointwise to some function ψ : X → C, then ϕ = ψ holds µ -a.e.

Indeed, according to Corollary 8.2.5 a suitable subsequence ( fnk) converges a.e. to ϕ ,
and of course also to ψ a.e.

8.3. Density of nice functions

In general, for an arbitrary measure space (X ,E,µ), the equivalence classes in spaces
like Lp(µ) may seem like rather weird objects. However, in some sense “most” of these
spaces consist of “nice” functions.

To explain this, it is recalled that in a metric space (M,d), a subset A is (everywhere)
dense in another subset B⊂M if to every point b ∈ B one can find points of A arbitrarily
close to b. That is, A is dense in B if every open ball B(b,δ ), for b∈ B and δ > 0, satisfies
A∩B(b,δ ) 6= /0. This can be phrased concisely by means of a reverse inclusion:

DEFINITION 8.3.1. For subsets A, B of M , A is dense in B if B⊂ A.

As examples, Q and R\Q are dense in one another (though Q⊂R\Q is less trivial);
notice that these sets are disjoint and that the definition actually allows this.

By abuse of language, a sequence (xn) in M is called dense if its range {xn | n ∈ N}
is dense in M . A metric space M is called separable if there is a dense sequence of points
xn ∈M .

In a normed vector space V , a subset S is said to be total in V if it spans a dense
subspace in V ; that is, if spanS = {λ1s1 + · · ·+λnsn | ∀ j ≤ n : λ j ∈C, s j ∈ S} is dense in
V . Or, in other words, S is total in V if V = spanS.

In general the indicator functions form a total set in the Lebesgue spaces:

LEMMA 8.3.2. For an arbitrary measure space (X ,E,µ) and 1 ≤ p < ∞ the simple
Lp -functions are everywhere dense in Lp(µ).

PROOF. First it is noted that for a simple E-measurable function g = ∑ j a j1A j , writ-
ten with its different non-zero values a1 ,. . . ,aN , one has

∫
|g|p dµ = ∑ j |a j|pµ(A j), so g

belongs to Lp(µ) if and only if each µ(A j)< ∞; i.e., if and only if µ({x | g(x) 6= 0})< ∞.
Given f ∈ Lp(µ) and ε > 0 we must show the existence of such a function g with

‖ f −g‖p < ε . We may assume that f ≥ 0, for else we may combine the triangle inequality
with the identity

f = (Re f+−Re f−)+ i(Im f+− Im f−). (8.3.1)
There is a sequence 0≤ g1 ≤ g2 ≤ . . . of simple E-measurable functions such that gn↗ f ,
but since gn ≤ f (so that f is an Lp majorant) we have gn ∈ Lp(µ) and ‖ f −gn‖p→ 0 for
n→ ∞. So it suffices to take g = gn for some suitably large n. �

In case of the Euclidean space Rd the above can be made a little more precise, be-
cause the measurable sets can be replaced by standard intervals. It is customary to refer to
functions of the form f = ∑

N
j=1 c j1I j , whereby each I j ∈ Id , as a step function.

Using the construction of the Lebesgue measure md one can prove

PROPOSITION 8.3.3. The step functions Rd→C are dense in Lp(Rd) for 1≤ p < ∞.
Phrased differently: The indicator functions for standard intervals are total in Lp(Rd).

PROOF. For f ∈ Lp(Rd) and ε > 0 it must be shown that there is some step function
g such that ‖ f − g‖p < ε . (Notice that every step function belongs to Lp .) Because of
Lemma 8.3.2 it suffices to prove this in case f is a simple function f = ∑b j1B j in Lp ;
hereby each B j is a Borel set of finite measure. Via the triangle inequality this gives a
further reduction to the case that f = 1B for some Borel set B with md(B)< ∞.
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From the construction of the Lebesgue measure, cf. (5.0.12), it is seen that there is a
sequence of standard intervals (In) in Id such that

B⊂
⋃

n∈N
In, ∑

n∈N
vd(In)< md(B)+(

ε

2
)p. (8.3.2)

(One may first arrange that the inclusion is strict.)
Now we set g = 1G where G =

⋃
n≤N In for N so large that ∑n>N vd(In)< ( ε

2 )
p . Here

‖g−1B‖p ≤ ‖1⋃n∈N In −1B‖p +‖g−1⋃n In‖p

≤ md(
⋃

n∈N
In \B)

1
p +md(

⋃
n>N

In)
1
p <

ε

2
+

ε

2
≤ ε. (8.3.3)

Finally, it is elementary to show that G is a finite union of some, possibly, smaller stan-
dard intervals E j , which one may write up in terms of all the endpoints of the In , in all
dimensions. Hence g = ∑ j 1E j is a step function. �

For a general standard interval I =]a1,b1]× ·· ·× ]ad ,bd ] it is clear that the volume
vd(I) is a continuous function of the 2d variables a1, . . . ,ad ,b1, . . . ,bd . The first part of
the next result is therefore obvious:

PROPOSITION 8.3.4. When I =]a1,b1]×·· ·× ]ad ,bd ] 6= /0 and ε > 0, then there are
standard intervals J =]c1,d1]×·· ·× ]cd ,dd ] satisfying c j < a j < b j < d j for all j and

md(J \ I)< ε. (8.3.4)

For each such standard interval J there is a function g ∈C∞(Rd) such that

g(x) = 1 for x ∈ I , g(x) = 0 for x ∈ Rd \ J◦ , (8.3.5)

whilst 0≤ g≤ 1 on Rd .

PROOF. To obtain the desired g ∈C∞(Rd) in case d = 1, we first note that there is a
C∞ -function defined by

f (x) =

{
e−1/x for x > 0,
0 for x≤ 0.

(8.3.6)

Indeed, it is C∞ on R \ {0} and seen inductively to fulfil f (k) = pk(1/x)e−1/x on R+ for
some polynomial pk ; so it follows that f (k+1)(0) = 0 if limx→0+(1/x)p(1/x)e−1/x = 0 for
every polynomial p; which in its turn follows from the fact that limx→∞ xne−x = 0.

Consequently the function x 7→ f (x) f (δ − x) is C∞ for each δ > 0; it is positive for
0 < x < δ , zero otherwise.

This gives rise to another function h in C∞(R) given by

h(x) =
∫ x

0
f (t) f (δ − t)dt

/∫
δ

0
f (t) f (δ − t)dt. (8.3.7)

This satisfies h = 0 for x≤ 0, while h(x) = 1 for x≥ δ ; and in general 0≤ h≤ 1.
Given c < a < b < d we may specify δ > 0 such that δ ≤ a− c and δ ≤ d− b and

form the product
g(x) = h(x− c)h(d− x). (8.3.8)

This is also in C∞(R) and fulfils 0≤ g≤ 1 as well as

g(x) = 1 for x ∈ [a,b], g(x) = 0 for x /∈ [c,d]. (8.3.9)

Finally, applying this construction in each dimension, we may for each i ∈ {1, . . . ,d}
pick a function gi ∈C∞(R) such that gi = 1 on [ai,bi] and g = 0 on { ]ci,di[ and set

g(x) = g1⊗·· ·⊗gd(x) = g1(x1) . . .gd(xd). (8.3.10)

This function has the stated properties. �
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The construction in the above proof is noteworthy also in a broader context. Indeed,
recalling that the support of a function f : Rd→C is defined as the closure of the set where
it is non-zero,

supp f = {x ∈ Rd | f (x) 6= 0}, (8.3.11)
it is customary to let C0(Rd) denote the space of continuous functions having compact
support in Rd . This is endowed with the sup-norm, that is, ‖ f‖= sup{| f (x)| | x ∈Rd } for
f ∈C0(Rd), and this space is complete.

Further one introduces the space of smooth functions with compact support,

C∞
0 (Rd) =C∞(Rd)

⋂
C0(Rd). (8.3.12)

This is of course normed as a subspace of C0(Rd), but it is not complete. In fact , it is not
possible to norm C∞

0 (Rd) such that the resulting metric space is complete—-this requires
a more general topology, but we abstain from discussing this here (it is a major subject
within the distribution theory of Laurent Schwarz [Sch66]).

Anyhow, it is of course crucial to know that the intersection (8.3.12) is not empty, and
here Proposition 8.3.4 and its proof shows that there is an abundance of such functions. To
emphasize the importance of the existence of such functions, let us depart from the above
construction of f (x) f (δ − x) and write up a more general explicit expression for such a
function:

ϕ(x) =

{
e

d−c
(x−c)(x−d) for c < x < d,

0 for x ∈ R\ ]c,d[ .
(8.3.13)

This is not as fine as the above g(x), though, for there is no plateau where g = 1. Neverthe-
less, such C∞

0 -functions are useful for cut-off techniques in modern mathematical analysis.
The above considerations also add up to the following cornerstone in the theory of the

Lebesgue spaces on Euclidean space:

THEOREM 8.3.5. The space C∞
0 (Rd) of continuous functions with compact support is

dense in Lp(Rd) whenever 1≤ p < ∞.

PROOF. For f ∈ Lp(Rd) and ε > 0 it must be shown that there is some g ∈C∞
0 (Rd)

such that ‖ f −g‖p < ε . Since indicator functions for standard intervals form a total set in
Lp(Rd), cf. Proposition 8.3.3, it suffices to treat the case f = 1I for

I =]a1,b1]×·· ·× ]ad ,bd ]. (8.3.14)

According to Proposition 8.3.4 there is some J ∈ Id such that md(J \ I)< ε p and a function
g ∈C∞

0 (Rd) such that 0≤ g≤ 1 with suppg = J and g = 1 on I . Since

|1I−g| ≤ 1J\I , (8.3.15)

clearly

‖1I−g‖p
p ≤

∫
1J\I dmd = md(J \ I)< ε

p. (8.3.16)

This shows the claimed density. �

The theorem has an extension to arbitrary Radon measures on Rd , but this has been
omitted for the sake of simplicity. However, there is no chance to extend the result to
p=∞, as for example indicator functions cannot be uniformly approximated by continuous
functions.





CHAPTER 9

Convolution

As a new operation on functions, the convolution f ∗g of two functions is studied here.
It appears as a useful tool when one needs to replace a rough function f by a function with
a smooth graph; or more fundamentally as the probability distribution of the sum X +Y of
two stochastic variables X , Y having distributions f , g respectively.

9.1. Convolution of Borel functions

The convolution of two Borel functions f ,g : Rd → C is defined (tentatively) by the
formula

f ∗g(x) =
∫
Rd

f (x− y)g(y)dy. (9.1.1)

Once and for all one may here observe that f (x− y)g(y) is a Borel function on R2d , since
it is composed of f ⊗g and the continuous map (x,y) 7→ (x− y,y). Hence the integrand is
Borel measurable for each fixed x ∈ Rd .

However, for the above formula to make sense, it is also necessary that the integrand
is integrable, which may depend on the considered x. Therefore the domain of definition
of f ∗g is formally defined as follows:

D( f ∗g) =
{

x ∈ Rd ∣∣ f (x−·)g(·) ∈L (Rd)
}

=
{

x ∈ Rd ∣∣ ∫
Rd
| f (x− y)g(y)|dy < ∞

}
.

(9.1.2)

Here it is instructive to use the definition to show the following peculiar property of the
convolution f ∗g:

f ≡ 0 in {A

g≡ 0 in {B

}
=⇒ f ∗g≡ 0 in {(A+B)⊂ D( f ∗g). (9.1.3)

Indeed, for the integrand in (9.1.1) it is clear that f (x− y)g(y) 6= 0 implies that x− y ∈ A
and y∈ B, whence x∈ y+A⊂ B+A. So for x /∈ A+B the integrand is identically 0, hence
integrable with f ∗g(x) = 0 for such x; so {(A+B)⊂D( f ∗g) with f ∗g≡ 0 in {(A+B).

One obvious interpretation of (9.1.3), and of its proof, is that the problem with the
convolution f ∗g lies at the points x ∈ Rd where f ∗g(x) has a chance of being non-zero;
cf. the above A+B. This theme is met repeatedly in the theory.

Among the general properties of f ∗ g, one has the strongest possible form of the
commutativity:

D( f ∗g) = D(g∗ f ), and for x herein f ∗g(x) = g∗ f (x). (9.1.4)

In fact, md is for each x ∈ Rd invariant under the isometry ϕ(y) = x− y, whence∫
| f (x−·)g|dmd =

∫
| f (x− y)g(y)|dϕ(md)(y)

=
∫
| f (x−ϕ(y))g(ϕ(y))|dmd(y) =

∫
|g(x−·) f |dmd .

(9.1.5)

Here either both or none of the two sides are finite, so consequently D( f ∗g) = D(g∗ f ).
For x in this common domain, the above argument without | · | yields f ∗g(x) = g∗ f (x).

43
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9.2. The Banach algebra L1(Rd)

It is a classical fact that convolution ( f ,g) 7→ f ∗g of two integrable functions yields
another integrable function, at least almost everywhere:

THEOREM 9.2.1. For f ,g ∈ L1(Rd) the convolution f ∗ g(x) is defined for almost
every x ∈ Rd and induces an element—also denoted by f ∗g—in L1(Rd) for which

‖ f ∗g‖1 ≤ ‖ f‖1‖g‖1. (9.2.1)

PROOF. Since the Borel function (x,y) 7→ | f (x−y)g(y)| is positive, we may combine
Tonelli’s theorem with the translation invariance of the Lebesgue measure to obtain∫

R2d
| f (x− y)g(y)|d(x,y) =

∫
|g(y)|

∫
| f (x− y)|dxdy

=
∫
|g(y)|

∫
| f (x)|dxdy = ‖ f‖1‖g‖1 < ∞.

(9.2.2)

Fubini’s theorem now yields that y 7→ f (x− y)g(y) is integrable with respect to y for x
outside a measurable nullset, and moreover that the almost everywhere defined function
x 7→

∫
f (x− y)g(y)dy, which is f ∗g(x), induces an element of L1(Rd).

Now, for x ∈ D( f ∗g) one has the estimate

| f ∗g(x)| ≤
∫
| f (x− y)g(y)|dy, (9.2.3)

and integration of both sides gives

‖ f ∗g‖1 ≤
∫ ∫

| f (x− y)g(y)|dydx = ‖ f‖1‖g‖1, (9.2.4)

by using Tonelli’s theorem and invoking (9.2.2). �

As an addendum to the theorem, it is straightforward to see that for f ,g,h∈ L1(Rd) the
distributive laws hold almost everywhere, hence as elements in L1(Rd), namely (c f )∗g =
c f ∗g = f ∗ (cg) for c ∈ C and

f ∗ (g+h) = f ∗g+ f ∗h, ( f +g)∗h = f ∗h+g∗h. (9.2.5)

Moreover there is associativity in L1(R),

f ∗ (g∗h)(x) = ( f ∗g)∗h(x). (9.2.6)

Indeed, it is clear from Theorem 9.2.1 that both sides make sense; they may be shown to be
equal by an extension of the argument for the commutativity. Details are left as an exercise.

A famous interpretation of the above is that the Banach space L1(Rd) forms a commu-
tative algebra, when the convolution f ∗ g is used as the multiplication (whereas L1(Rd)
is not stable under convolution; cf. Theorem 9.2.1). Moreover, because of the inequality
(9.2.1), the convolution is a continuous map

L1(Rd)×L1(Rd)→ L1(Rd), (9.2.7)

because whenever fn→ f and gn→ g in L1(Rd) it follows that also fn ∗gn→ f ∗g, since

‖ fn ∗gn− f ∗g‖1 = ‖( fn− f )∗ (gn−g)+ f ∗ (gn−g)+( fn− f )∗g‖1

≤ ‖ fn− f‖1‖gn−g‖1 +‖ f‖1‖gn−g‖1 +‖ fn− f‖1‖g‖1.
(9.2.8)

These properties are summed up by referring to L1(Rd) as a commutative Banach algebra.
Lebesgue spaces Lp(Rd) with 1 < p < ∞ are not convolution algebras. But the fact

that they are invariant under convolution by an integrable function is a consequence of the
next result.

In its proof below it is instructive to note that the basic Theorem 9.2.1 is applied via a
remarkable pointwise estimate:

| f ∗g(x)|p ≤ c| f |p ∗ |g|(x). (9.2.9)
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In itself it is surprising that the convolution, with its definition, should satisfy a pointwise
estimate at all (but note that (9.2.3) yields (9.2.9) for p = 1). However, this is obviously
useful because both | f |p , |g| are integrable according to the assumptions in

THEOREM 9.2.2. When f ∈Lp(Rd) for 1 ≤ p < ∞ and g ∈L1(Rd), then f ∗ g is
defined almost everywhere in Rd . The induced equivalence class is also denoted by f ∗g,
it belongs to Lp(Rd) and fulfils

‖ f ∗g‖p ≤ ‖ f‖p‖g‖1. (9.2.10)

PROOF. As the case p = 1 was covered in Theorem 9.2.1, we assume 1 < p < ∞ and
determine the dual exponent from p+q = pq. With integrals over Rd , Hölder’s inequality
gives ∫

| f (x− y)g(y)|dy =
∫
| f (x− y)||g(y)|

1
p |g(y)|

1
q dy

≤ (
∫
| f (x− y)|p|g(y)|dy)

1
p (
∫
|g(y)|dy)

1
q .

(9.2.11)

For each x ∈ D(| f |p ∗ |g|) the last expression and consequently also the first integral is
finite, so such x belong to D( f ∗g). Hence we have

D(| f |p ∗ |g|)⊂ D( f ∗g). (9.2.12)

The former set fills Rd except for a nullset, as | f |p, |g| ∈L ; hence f ∗g is defined a.e.
Now, the above inequality straightforwardly implies the pointwise estimate

| f ∗g(x)|p ≤ | f |p ∗ |g|(x)‖g‖p−1
1 for x ∈ D(| f |p ∗ |g|). (9.2.13)

By integrating this, and using that L1(Rd) is a Banach algebra, we obtain∫
| f ∗g(x)|p dx≤ ‖g‖p−1

1

∫
| f |p ∗ |g|dx≤ ‖g‖p−1

1

∥∥| f |p∥∥1

∥∥|g|∥∥1 = ‖ f‖p
p‖g‖

p
1 . (9.2.14)

This yields the stated inequality at once. �

While this result is true as stated also for p = ∞, there is a better result in this case,
which is derived in the next section after a preparation of independent interest.

9.3. Strong convergence of translation

As a convenient notation for a function f defined on D( f ) ⊂ Rd , we shall for some
fixed a ∈ Rd denote the translated function by τa f ,

τa f (x) = f (x−a). (9.3.1)

Here τa f is defined on the subset a+D( f ), in general. This is redundant of course if
D( f ) = Rd . In particular this is so when f ∈ Lp(Rd), and for such f also τa f ∈ Lp(Rd),
for because of the translation invariance of the Lebesgue measure we may note once and
for all that

‖τa f‖p = (
∫
Rd
| f (x−a)|p dx)1/p = ‖ f‖p. (9.3.2)

In many cases it is a useful result that τa f → f for a→ 0 in Lp(Rd), when f ∈ Lp(Rd)
is fixed. The basic result in this direction is

PROPOSITION 9.3.1. When f : Rd → C belongs to Lp(Rd) for 1≤ p < ∞, then

‖τa f − f‖p = (
∫
Rd
| f (x−a)− f (x)|p dx)

1
p → 0 for a→ 0. (9.3.3)
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PROOF. Given ε > 0 there exists by the density of C0(Rd) in Lp(Rd) a function
g ∈C0 such that ‖ f −g‖p ≤ ε/3; cf. Theorem 8.3.5. Because of the translation invariance
of the Lebesgue measure this gives via the triangle inequality

‖τa f − f‖p ≤ ‖τa( f −g)‖p +‖τag−g‖p +‖g− f‖p ≤
2ε

3
+‖τag−g‖p. (9.3.4)

The function g ∈C0 is uniformly continuous on Rd since g≡ 0 outside a ball B(0,R) con-

taining suppg. In fact, to ε ′ = ε/3md(B(0,R+1))
1
p there exists by its uniform continuity

on B̄(0,R+1) some δ ∈ ]0,1[ such that

|g(x−a)−g(x)| ≤ ε
′1B(0,R+1)(x) for |a|< δ , x ∈ Rd . (9.3.5)

From this we obtain
‖τag−g‖p ≤ ε

′md(B(0,R+1))
1
p =

ε

3
. (9.3.6)

Consequently ‖τa f − f‖p ≤ ε holds for |a|< δ . �

The above result is known as strong convergence of translation τa to the identity I ,
which is written τa→ I strongly for a→ 0. (Strong convergence of operators is a subject
within functional analysis.)

It is noteworthy from the proof how the density of the continuous functions with com-
pact support, i.e. of C0 , gave a reduction to such functions. And that the property was
relatively straightforward to obtain for the elements in the dense subset.

It is easy to see that the strong convergence τa→ I does not hold in (the norm of) the
space L∞(Rd).

As an application of the strong convergence τa→ I , this property is now exploited in
a proof of uniform continuity of convolutions involving dual exponents:

THEOREM 9.3.2. When f ∈ Lp(Rd), g∈ Lq(Rd) for p,q∈ [1,∞] satisfying 1
p +

1
q = 1,

then f ∗g belongs to Cb(Rd), it is uniformly continuous and

‖ f ∗g‖∞ ≤ ‖ f‖p‖g‖q. (9.3.7)

PROOF. Since also y 7→ f (x− y) belongs to Lp(Rd) for each x ∈ Rd , it follows from
Hölder’s inequality that f (x−·)g(·) is integrable and that

∀x ∈ Rd : | f ∗g(x)| ≤
∫
| f (x− y)g(y)|dy≤ ‖ f‖p‖g‖q. (9.3.8)

This yields the desired estimate. For the uniform continuity we first assume 1 ≤ p < ∞.
Then the above inequality yields

| f ∗g(x− z)− f ∗g(x)| ≤
∫
|(τz f (x− y)− f (x− y))g(y)|dy≤ ‖τz f − f‖p‖g‖q, (9.3.9)

where the right-hand side, regardless of x, goes to 0 for |z| → 0 according to Proposi-
tion 9.3.1. For p = ∞ one may exchange the roles of f and g in the argument. �

Theorem 9.3.2 reveals one of the fundamental properties of convolution: f ∗ g is al-
ways more regular than the two factors f and g. Indeed, even when both f and g in the
theorem are discontinuous, their convolution is nonetheless continuous, and uniformly so.

9.4. Approximative units in the Lebesgue spaces

The next result describes a sequence of functions hn which seemingly approaches a
unit, i.e. a neutral element of the convolution in the Banach algebra L1(Rd). That would
be a Borel function u(x) such that u∗ f = f would hold for all f ∈ L1(Rd). But it may be
seen in various ways, however, that no such unit u exists.

The following is therefore a substitute.

THEOREM 9.4.1. When (hn)n∈N is a sequence in L (Rd) such that
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(i) ∀n ∈ N : hn ≥ 0,
(ii) ∀n ∈ N :

∫
hn dmd = 1,

(iii) ∀δ > 0:
∫
|x|>δ

hn(x)dx→ 0 for n→ ∞,

then it holds true for every f ∈L (R) that

‖ f ∗hn− f‖1 =
∫
Rd
| f ∗hn(x)− f (x)|dx→ 0 for n→ ∞. (9.4.1)

That is, such a sequence (hn) is an approximative unit for the Banach algebra L1(Rd).

PROOF. Since (ii) gives f (x) = f (x)
∫

hn(y)dy, we obtain for every x ∈ D( f ∗ kn),
hence almost everywhere,

| f ∗hn(x)− f (x)| ≤
∫
| f (x− y)− f (x)|hn(y)dy. (9.4.2)

Here (x,y) 7→ | f (x−y)− f (x)|hn(y) is a Borel function on R2d , so from Tonelli’s theorem
we obtain

‖ f ∗hn− f‖1 ≤
∫
Rd

∫
Rd
| f (x− y)− f (x)|hn(y)dydx

=
∫
Rd

∫
Rd
| f (x− y)− f (x)|hn(y)dxdy =

∫
Rd
‖τy f − f‖1hn(y)dy.

(9.4.3)

Now we may to any given ε > 0 fix δ > 0 so that ‖τy f − f‖1 ≤ ε/2 for |y| ≤ δ , and since
‖τy f − f‖1 ≤ 2‖ f‖1 by the translation invariance, we obtain∫

|y|≤δ

‖τy f − f‖1hn(y)dy≤
∫
|y|<δ

ε

2
hn(y)dy≤ ε

2
, (9.4.4)∫

|y|>δ

‖τy f − f‖1hn(y)dy≤ 2‖ f‖1

∫
|y|≥δ

hn(y)dy. (9.4.5)

According to (iii) there is some N such the last term is less than ε/2 for n > N , so it
follows that ‖ f ∗hn− f‖1 ≤ ε for such n. �

The attentive reader may have noticed that the existence of an approximative unit still
remains to be shown. But any integrable Borel function h ≥ 0 for which

∫
Rd hdmd = 1

induces a sequence fulfilling (i), (ii) and (iii) via the formula

hn(x) = ndh(nx), n ∈ N. (9.4.6)

Indeed, the integral in (iii) may for z= 1
n x be written

∫
Rd 1|z|>nδ (z)h(z)dz, which obviously

goes to 0 by the Majorised Convergence Theorem. For δ = 0 this also shows (ii).
As a simple example there is h = 1[0,1]d . To give an example with a function in C∞ for

d = 1 one may consider h(x) = 1
π

1
1+x2 , so that

hn(x) =
1
π

n
1+n2x2 . (9.4.7)

Obviously the peak at x = 0 becomes increasingly more pronounced as n→ ∞.
The content of the theorem extends readily to the analogous situation of a family

(ht)t>0 in L , which also fulfils (i)–(iii). In fact, such a family may be obtained as above
by letting ht(x) = tdh(tx). But for simplicity we shall just consider approximative units
that are sequences.

For the Lebesgue spaces Lp(Rd) with 1 < p < ∞ the situation is different, since these
are not convolution algebras. Nevertheless there are similar, important results that we now
describe.

First of all approximative units are members of L1 , hence have well-defined convo-
lutions f ∗ hn with functions f ∈ Lp for 1 ≤ p < ∞ according to Theorem 9.2.2. Thus
prepared we turn to approximation of functions in Lp by convolutions:
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THEOREM 9.4.2. When (hn)n∈N is an approximative unit in L (Rd) and f ∈Lp(Rd)
for some p ∈ [1,∞[ , then

‖ f ∗hn− f‖p→ 0 for n→ ∞. (9.4.8)

PROOF. The case p = 1 was covered in Theorem 9.4.1, so we may assume 1 < p < ∞

and determine its dual exponent q from p+q = pq.
The functions f ∗hn(x) and | f |p ∗hn(x) are both defined outside a certain nullset, and

for such x we get from Hölder’s inequality, as
∫

hn dy = 1,

| f ∗hh(x)− f (x)| ≤
∫
| f (x− y)− f (x)|hn(y)

1
p hn(y)

1
q dy

≤ (
∫
| f (x− y)− f (x)|phn(y)dy)

1
p .

(9.4.9)

This implies, by raising to the power p, integrating and applying Tonelli’s theorem,

‖ f ∗hn− f‖p
p ≤

∫ ∫
| f (x− y)− f (x)|phn(y)dxdy =

∫
‖τy f − f‖p

phn(y)dy. (9.4.10)

From this inequality, the proof can be completed analogously to the proof of Theorem 9.4.1,
using that τy→ I strongly on Lp for y→ 0 and that (iii) holds for the hn . �

This theorem cannot be extended to the case p = ∞, for since f ∈ L∞ and hn ∈ L1 ,
Theorem 9.3.2 yields that f ∗hn is in Cb(Rd)—so if it were true that ‖ f − f ∗hn‖∞→ 0 for
n→ ∞, it would follow that ( f ∗ hn) is a Cauchy sequence in the uniform norm, whence
also f ∈C(Rd); a contradiction of the fact that C(Rd) is a proper subspace of L∞(Rd).

But as a positive result in this direction one has:

PROPOSITION 9.4.3. Let f ∈ Cb(Rd) and suppose (hn)n∈N is is an approximative
unit. Then there is pointwise convergence for all x ∈ Rd ,

f ∗hn(x)→ f (x) for n→ ∞. (9.4.11)

The convergence is uniform if f is bounded and uniformly continuous.

The proof is left as an exercise.

9.5. Approximation by smooth functions with compact support

For a special purpose we shall return to the function g introduced in the proof of
Proposition 8.3.4. In fact, for a = 1/2 =−b and c = 1 =−d in (8.3.9) we may write up a
nice rotationally symmetric function χ ∈C∞

0 (Rd),

χ(x) = g(|x|). (9.5.1)

Because the singularity of | · | at x = 0 is mapped to the interior of a region where g is
constant, this function χ is smooth as claimed. Moreover,

supp χ = B̄(0,1), χ(x) = 1 for x ∈ B̄(0,1/2). (9.5.2)

In view of this, it is clear that an appoximative unit (hn)n∈N via (9.4.6) can be chosen
(in many ways) so that it satisfies

hn(x) = ndh(nx), h ∈C∞
0 (Rd),

∫
Rd

hdx = 1, (9.5.3)

hn(x) = 0 for |x|> 1
n
, 0≤ h≤ 1, hn(x) = 1 for |x|< 1

2n
. (9.5.4)

An elegant way of stating the last line could be that

1B(0,1/2n) ≤ h≤ 1B(0,1/n). (9.5.5)

Such a choice of (hn) is understood in the following.
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Thus prepared, one may obtain the next result, which describes during the course of
the proof, how any function f ∈ Lp(Rd) can be approximated by a convenient sequence of
C∞

0 -functions, chosen by truncation and smoothing:

THEOREM 9.5.1. When f ∈ Lp(Rd) for 1 ≤ p < ∞ there is a sequence of functions
gm ∈C∞

0 (Rd) such that
‖ f −gm‖p→ 0 for m→ ∞. (9.5.6)

In case f ∈ Lp(Rd)
⋂

Lq(Rd) for p,q ∈ [1,∞[ the above sequence (gm)m∈N can be so
chosen that

‖ f −gm‖q→ 0 for m→ ∞ (9.5.7)
also holds.

PROOF. For f given as in the theorem, the gn are chosen from the family

( f 1B(0,N))∗hn(x) =
∫
|y|<N

f (y)hn(x− y)dy, N,n ∈ N. (9.5.8)

Indeed, each of these functions is in C∞ , since the differential operator ∂ α can be applied
under the integral sign, using 1B(0,R)| f |nd+|α| sup |∂ α h| as the majorant on Rd . The support
of the convolution is compact, in fact by (9.1.3) it is contained in

B̄(0,N)+ B̄(0,1) = B̄(0,N +1). (9.5.9)

So altogether ( f 1B(0,N))∗hn belongs to C∞
0 .

For each ε = 2−m , m ∈ N, we observe the inequality

‖ f − ( f 1B(0,N))∗hn‖p ≤ ‖ f − f 1B(0,N)‖p +‖ f 1B(0,N)− ( f 1B(0,N))∗hn‖p. (9.5.10)

The first term on the right-hand side is less than ε/2 for some Nm , as can be seen from
the Majorised Convergence Theorem. The second term is with N = Nm also less than
ε/2 when the index is chosen as some suitable nm ; as f 1B(0,Nm) belongs to Lp this is a
consequence of Theorem 9.4.2. Hence gm = ( f 1B(0,Nm))∗hnm achieves that gm ∈C∞

0 and

‖ f −gm‖p ≤ 2−m. (9.5.11)

If f ∈ Lq holds too, one can arrange that also ‖ f − f 1B(0,N)‖q ≤ ε/2 by taking Nm
suitably larger (if necessary). Then ‖ f 1B(0,Nm)− ( f 1B(0,Nm)) ∗ hnm‖ ≤ ε/2 holds both in
Lp and in Lq for some sufficiently large nm . Thus ‖ f − gm‖ < ε holds in both spaces.
(Obviously one can even arrange that n1 < n2 < .. . and N1 < N2 < .. . , when useful.) �

9.6. Young’s convolution inequality*

As a general result on convolution of functions in the Lebesgue spaces one has the
next extension of Theorem 9.2.1 and Theorem 9.2.2. Like in the proof of the latter, the
result follows by deducing a useful pointwise estimate of f ∗g.

THEOREM 9.6.1. When f ∈Lp(Rd) and g ∈Lq(Rd) for p,q ∈ [1,∞] satisfying that
1
p +

1
q = 1+ 1

r for some r ∈ [1,∞], then f ∗g is defined almost everywhere in Rd , and the
induced equivalence class belongs to Lr(Rd) and fulfils

‖ f ∗g‖r ≤ ‖ f‖p‖g‖q. (9.6.1)

Such a number r fulfils r ≥max(p,q), with equality if and only if min(p,q) = 1.

PROOF. The last claim is clear. In view of the previous results, it remains to treat
1 < p < ∞ and 1 < q < ∞. As Theorem 9.3.2 applies for r = ∞, we may consider r < ∞.

We aim at obtaining a pointwise estimate of | f ∗ g|r in terms of | f |p ∗ |g|q . To do so
we apply Hölder’s inequality for three functions, using that

1 =
1
p
+

1
q
− 1

r
= (

1
p
− 1

r
)+(

1
q
− 1

r
)+

1
r

(9.6.2)
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where the terms are positive since r > p and r > q. Indeed, in the manner described we
get for x ∈ D( f ∗g),∣∣∫ f (x−·)gdy

∣∣≤ ∫ | f (x− y)|1+
p
r −

p
r |g(y)|1+

q
r−

q
r dy

=
∫
(| f (x− y)|p|g(y)|q)

1
r | f (x− y)|

r−p
r |g(y)|

r−q
r dy

≤
(∫
| f (x−·)|p|g|q dy

) 1
r
(∫
| f (x−·)|p dy

) r−p
rp
(∫
|g|q dy

) r−q
rq .

(9.6.3)

For one thing this yields the pointwise estimate, for x ∈ D( f ∗g),

| f ∗g(x)|r ≤ | f |p ∗ |g|q(x)‖ f‖r−p
p ‖g‖r−q

q . (9.6.4)

Secondly, for x ∈D(| f |p ∗ |g|q) the last and consequently also the second term in (9.6.3) is
finite, so such x belong to D( f ∗g). Hence D(| f |p ∗ |g|q)⊂D( f ∗g), where the former set
fills Rd except for a nullset since | f |p, |g|q ∈L , and so f ∗g is defined a.e.

By integrating (9.6.4), after extension by 0 to all x ∈ Rd , and using that L1(Rd) is a
Banach algebra, we obtain∫

| f ∗g(x)|r dx≤ ‖ f‖r−p
p ‖g‖r−q

q

∫
| f |p ∗ |g|q dx

≤ ‖ f‖r−p
p ‖g‖r−q

q
∥∥| f |p∥∥1

∥∥|g|q∥∥1 = ‖ f‖r
p‖g‖r

q.
(9.6.5)

This yields the stated inequality at once. �

Note that there is not complete freedom: the existence of the number r is part of the
assumption in Theorem 9.6.1. This condition on p, q is attributable to the fact that the two
factors f , g combined must deliver the integrability that makes f ∗g defined.

To describe an interesting addendum to Young’s inequality (9.6.3), one should note
that it states that if 1

p +
1
q = 1+ 1

r for some r ∈ [1,∞], then there exists a constant Cp,q with
the following property,

‖ f ∗g‖r ≤Cp,q‖ f‖p‖g‖q for all f ∈ Lp(Rd), g ∈ Lq(Rd). (9.6.6)

Moreover, this constant may by Theorem 9.6.1 be taken as Cp,q = 1.
But (9.6.6) turns out to be true even for certain constants Cp,q < 1. Indeed, in 1975

the best constant was found explicitly by Beckner. His result was the following:

THEOREM 9.6.2. When p,q,r ∈ ]1,∞[ with 1
p +

1
q = 1+ 1

r , then the smallest constant
Cp,q for which (9.6.6) holds true is given by

Cp,q =

(
CpCq

Cr

) d
2
, (9.6.7)

whereby the generic constant Cp is given by the expressions

Cp =
p1/p

p′1/p′ = p
1
p (1− 1

p
)1− 1

p (9.6.8)

in terms of the dual exponent p′ = 1/(1−1/p).

A straightforward calculation shows that the best constant is given by the formula

Cp,q =

 (1− 1
p )

1− 1
p

( 1
p )

1
p

(1− 1
q )

1− 1
q

( 1
q )

1
q

( 1
p +

1
q −1)

1
p+

1
q−1

(2− 1
p −

1
q )

2− 1
p−

1
q
.

 d
2

, (9.6.9)

It is by no means obvious, of course, that Cp,q < 1 is valid under the given conditions on
p, q, that is, when 1 < 1

p +
1
q < 2.
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Geometrically the inequality C2/d
p,q < 1 is attributable to the fact that f (x) = xx on [0,1]

has its graph lying in a certain asymmetric way around the line x = 1/2. Analytically one
may introduce the auxiliary function

g(x) =
(1− x)1−x

xx =
e(1−x) log(1−x)

ex logx (9.6.10)

and observe that for x = 1
p and y = 1

q the inequality C2/d
p,q < 1 is equivalent to

g(x)g(y)< g(x+ y−1) when 1 < x+ y < 2. (9.6.11)

Which for h(x) = logg(x) = (1− x) log(1− x)− x logx also is equivalent to

F(x,y) := h(x+ y−1)−h(x)−h(y)> 0. (9.6.12)

Here one may first observe that h(x)→ 0± for x→ 0+ and x→ 1− , respectively, so that
F(x,y)→ 0 both for x→ 1 and y→ 1. Moreover, writing out the full expression for
F(x,y), it is seen from a cancellation of terms that F→ 0 also for x+y→ 1+ . This means
that F extends to a continuous function, which is defined on the compact triangle T given
by 1≤ x+ y≤ 2, x≤ 1, y≤ 1, and that this F vanishes at the boundary of T .

Insertion shows that F( 3
4 ,

3
4 ) = 4log2+ 3

2 log3 > 0, so the inequality F > 0 holds on
the open triangle T ◦ if the equation ∇F(x,y) = (0,0) only has a single solution in T ◦ . But
since ∇F = (h′(x+y−1)−h′(x),h′(x+y−1)−h′(y)), whereby h′(x) =−2− log(x−x2),
the critical points solve the equations

x− x2 = x+ y−1 = y− y2. (9.6.13)

These imply that |x− 1
2 | = |y−

1
2 |, so any solution must satisfy x = y. But for x = y one

arrives at x2+x−1 = 0, having the single solution x = (
√

5−1)/2 in [0,1]. Consequently
(9.6.12) has been verified.

Altogether this substantiates the startling fact that the best constant in Young’s in-
equality satisfies Cp,q < 1 for 1 < 1

p +
1
q < 2.

To elucidate the nature of the constant Cp,q , one can simply verify that (9.6.6) is an
identity in case of the two Gaussian functions, adapted to p and q,

f (x) = exp(−p′|x|2), g(x) = exp(−q′|x|2). (9.6.14)

Setting E =
∫
Rd e−|x|

2
dx for brevity (the value is unimportant), a substitution yields

‖ f‖p = (
∫

e−|y|
2

dy)
1
p (pp′)−

d
2p = E

1
p

(
p′1/p′

p1/p

1
p′

)d/2

= E
1
p
(

p′Cp
)−d/2

. (9.6.15)

Similarly one has ‖g‖q = E
1
q (q′Cq)

−d/2 .
The convolution is elementary to compute, and since p′+q′

p′q′ = 1
q′ +

1
p′ =

1
r′ , one arrives

via completion of a square and translation invariance of Lebesgue measure at

f ∗g(x) = e−p′(1− p′
p′+q′ )|x|

2
∫

exp(−(p′+q′)
∣∣y− p′

p′+q′
x
∣∣2)dy

= e−
p′q′

p′+q′ |x|
2
∫

exp(−(p′+q′)|y|2)dy

= e−r′|x|2(p′+q′)−d/2E.

(9.6.16)

Since this function also is Gaussian, we get using (9.6.15) once more,

‖ f ∗g‖r = (p′+q′)−d/2E1+ 1
r
(
r′Cr

)−d/2
. (9.6.17)
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Therefore, when inserting the norms into (9.6.6), then all powers of E cancel since 1+ 1
r =

1
p +

1
q , and thus we are left with the inequality, cf. (9.6.8),(

p′q′

p′+q′
1
r′

)d/2

(Cr)
−d/2 ≤Cp,q (Cp)

−d/2 (Cq)
−d/2 . (9.6.18)

In view of the above formula for r′ , we may simplify to

(Cr)
−d/2 (CpCq)

d/2 ≤Cp,q. (9.6.19)

This is obviously an identity if we insert the expression for Cp,q given in Theorem 9.6.2.
Another way of expressing this is, of course, that the optimal constant Cp,q cannot be
smaller than the one given in the theorem.

For the fact that Cp,q does satisfy (9.6.6), the reader is referred to Beckner’s article.

REMARK 9.6.3. The relation 1
p +

1
q = 1+ 1

r might seem mysterious at first glance, but
it is instructive to note that in terms of the dual exponents it is equivalent to 1

p′ +
1
q′ =

1
r′ ;

which shows that ‖vw‖r′ ≤‖v‖p′‖w‖q′ holds because of Hölder’s inequality. Indeed, under
the additional assumption that r ≥ 2, or rather that r′ ≤ 2, Young’s convolution inequality
(9.6.6) can be proved easily by combining this case of Hölder’s inequality with the bound-
edness of the Fourier transformation F : Lp→ Lp′ (the Hausdorff–Young theorem)—and

the best constant Cp,q is obtained in this way, as Cd/2
p (2π)−d/p′ is the operator norm of

F : Lp→ Lp′ . This profound fact was observed already by Beckner.



CHAPTER 10

The Fourier–Plancherel transformation

As a major application of the Lebesgue integral, and of the corresponding Lebesgue
spaces Lp(Rd), we shall now study the Fourier transformation, which has fundamental ap-
plications in physics, chemistry and statistics as well as a tool for solving partial differential
equations.

As usual x ·ξ = x1ξ1 + ·+ xdξd denotes the scalar produkt on Rd , and |x|=
√

x · x is
the induced norm.

DEFINITION 10.0.4. When f : Rd → C belongs to L1(Rd), then the Fourier trans-

formed function
∧
f : Rd → C is defined for ξ ∈ Rd by the integral

∧
f (ξ ) =

∫
Rd

e− ix·ξ f (x)dx. (10.0.20)

The map f 7→
∧
f is denoted by F and is called the Fourier transformation.

REMARK 10.0.5. The importance of the Fourier transformed function
∧
f was illus-

trated already by Fourier, who claimed for “every” function f (x) that
∧
f (ξ ) should be

understood as the amplitude of the pure harmonic oscillation eix·ξ in a synthesis of f (x)
itself, namely, it holds true that

f (x) =
1

(2π)d

∫
Rd

eix·ξ ∧f (ξ )dξ . (10.0.21)

This is Fourier’s inversion formula. However, the statement was too general to be entirely
justifiable (and made in the era before the notion of a function was settled), but it is a virtue
of the Lebesgue integral that nowadays one can completely clarify its validity.

First we note that
∧
f (ξ ) is well defined whenever f ∈ L1(Rd), for the integrand is

Borel measurable for each fixed ξ and x 7→ e− ix·ξ f (x) has the integrable majorant | f |.
However, this observation also implies that

∧
f (ξ ) is a continuous function of ξ ∈ Rd , and

we moreover have for all ξ ∈ Rd∣∣∧f (ξ )∣∣≤ ∫ |e− ix·ξ f (x)|dx = ‖ f‖1. (10.0.22)

This clearly shows that
∧
f : Rd → C also is a bounded function, so

∧
f ∈Cb(Rd). Hence the

Fourier transformation is a linear map F : L1(Rd)→ Cb(Rd), and the above shows that

sup
ξ∈Rd
|
∧
f (ξ )| ≤ ‖ f‖1. (10.0.23)

Now, it is clear that the value of
∧
f (ξ ) remains unchanged even if f is changed on a nullset,

so
∧
f only depends on the equivalence class [ f ]. Consequently there is induced a map

L1(Rd)→Cb(Rd), also called the Fourier transformation, by the formula

F ([ f ]) =
∧
f . (10.0.24)

This shows the main parts of

53
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PROPOSITION 10.0.6. The Fourier transformation is a linear map

F : L1(Rd)→Cb(Rd), (10.0.25)

which is bounded in the sense that

sup
Rd
|F f | ≤ ‖ f‖1. (10.0.26)

Moreover,
∧
f = F f is uniformly continuous on Rd .

PROOF. For the uniform continuity we may assume that ‖ f‖1 > 0 and observe that

|
∧
f (ξ +η)−

∧
f (ξ )|= |

∫
(e− ix·η −1)e− ix·ξ f (x)dx| ≤

∫
supp f

|e− ix·η −1|| f (x)|dx.

(10.0.27)
The last integral is independent of ξ , so uniform continuity seems plausible at least.

If f ∈ C0(Rd) there is some R > 0 such that supp f ⊂ B(0,R), due to the compact
support; and by continuity there is to a given ε > 0 some δ > 0 such that |ez−1| ≤ ε/‖ f‖1

for |z|< δ . Then the above implies that |
∧
f (ξ +η)−

∧
f (ξ )| ≤ ε for |η |< δ/R, any ξ ∈Rd .

For general f ∈ L1(Rd) there exists by Theorem 8.3.5 some function g ∈ C0(Rd)
satisfying ‖ f −g‖1 ≤ ε . For this we have

|
∧
f (ξ +η)−

∧
f (ξ )| ≤ 2ε + |∧g(ξ +η)− ∧g(ξ )|, (10.0.28)

where the last term as above can be shown to be less than ε for |η | sufficiently small. �

REMARK 10.0.7. F : L1(Rd)→Cb(Rd) is actually a continuous map between these
normed vector spaces, because it is bounded as stated in (10.0.26): if fn→ f in L1 , then

0≤ sup |
∧
f n−

∧
f |= sup |F ( fn− f )| ≤ ‖ fn− f‖1→ 0, (10.0.29)

so
∧
f n→

∧
f in Cb for n→∞. Continuity ought to be stated in Proposition 10.0.6, of course,

but this transition from boundedness to continuity is just an elementary fact for linear maps.

Among the basic properties there is the addendum that
∧
f vanishes at infinity:

LEMMA 10.0.8 (Riemann–Lebesgue). When f ∈ L1(Rd) then
∧
f (ξ )→ 0 for |ξ | →∞.

We postpone the proof of this until later, when a trivial argument will be available.
Instead we proceed to show a fundamental fact about F , namely that it intertwines

differentiation and multiplication. For simplicity details are given in the 1-dimensional
case. But first we need a small lemma, which is of interest in itself.

LEMMA 10.0.9. When f : R→C is differentiable with both f , f ′ belonging to L1(R),
then limx→±∞ f (x) = 0.

PROOF. If a = limx→∞ f (x) exists, then a = 0 follows because, for some N ∈ R,
the inequality | f (x)| ≥ |a|2 1 ]N,∞[ (x) will hold; which is impossible for a 6= 0 as it would
contradict the integrability of f . Similarly the limit limx→−∞ f (x) must equal 0 if it exists.

Since f ′ ∈ L1(R) it is seen by majorised convergence that
∫
|x|>n | f ′|dx→ 0 for n→∞.

That is, for every ε > 0 there is some N ∈ N such that
∫
|x|≥N | f ′|dx ≤ ε ; whence it holds

for x′ < x′′ <−N and for N < x′ < x′′ that

| f (x′′)− f (x′)|=
∣∣∣∫ x′′

x′
f ′(x)dx

∣∣∣≤ ∫
|x|>N

| f ′(x)|dx≤ ε. (10.0.30)

Whenever xn→ ∞ for n→ ∞ this implies (by substituting xn , xm for x′ , x′′ ) that ( f (xn))
is a Cauchy sequence; hence a = limn→∞ f (xn) exists. For any other sequence yn → ∞
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the same argument shows that b = limn→∞ f (yn) exists; but a = b since both a and b are
cluster points of the Cauchy sequence one arrives at (again via (10.0.30)) by interlacing,

f (x1), f (y1), f (x2), f (y2), . . . , f (xn), f (yn), . . . . (10.0.31)

Since the sequences are arbitrary, it follows that limx→∞ f (x) exists. Analogously it is
shown that also limx→−∞ f (x) exists. �

Now we are ready to prove the fundamental

THEOREM 10.0.10. Let f ∈ L1(R) be given.

(i) If x 7→ x f (x) also belongs to L1(R), then
∧
f ∈C1(R) and

F (x f (x))(ξ ) = i
d
∧
f

dξ
(ξ ). (10.0.32)

(ii) If f ∈C1(R) and f ′ ∈ L1(R), then

F (
d f
dx

)(ξ ) = iξ
∧
f (ξ ). (10.0.33)

PROOF. In (i) the integrability of x f (x) allows us to calculate its Fourier transformed
function, and we get

− iF (x f (x))(ξ ) =
∫
− ixe− ix·ξ f (x)dx =

∫
∂

∂ξ
(e− ix·ξ f (x))dx =

d
∧
f

dξ
(ξ ). (10.0.34)

Indeed, the differentiation with respect to ξ can be taken outside the integral because the
functions

x 7→ − ixe− ix·ξ f (x), ξ ∈ Rd , (10.0.35)

have |x f (x)| as an integrable majorant. Recycling this majorisation, the expression for
∧
f ′

is also seen to be a continuous function of ξ .
For part (ii) we note that a partial integration for each natural number gives∫ n

−n
e− ix·ξ f ′(x)dx = e− inξ f (n)− einξ f (−n)+ iξ

∫ n

−n
e− ix·ξ f (x)dx. (10.0.36)

Here f (n), f (−n) tend to 0 for n→∞, as by assumption f , f ′ ∈ L1(R); cf. Lemma 10.0.9.
Using the Majorised Convergence Theorem we find, again since f , f ′ ∈ L1(R),

F ( f ′)(ξ ) = iξF f (ξ ) (10.0.37)

by a comparison of the limits on the left- and right-hand side. �

As a final fact for the Fourier transformation of integrable functions, it is mentioned
that it plays well together with the convolution studied in Chapter 9:

PROPOSITION 10.0.11. For functions f ,g ∈ L1(Rd) one has that

F ( f ∗g) = F f ·Fg. (10.0.38)

PROOF. As the integrability of f (x− y)g(y) remains unchanged after multiplication
by the function e− ix·ξ in L∞ , it follows from Fubini’s theorem that

F ( f ∗g) =
∫
Rd×Rd

e− ix·ξ f (x− y)g(y)d(x,y)

=
∫
Rd

g(y)
(∫

Rd
e− ix·ξ f (x− y)dx

)
dy

=
∫
Rd

g(y)
(∫

Rd
e− i(x+y)·ξ f (x)dx

)
dy

=
∫
Rd

g(y)e− iy·ξ
(∫

Rd
e− ix·ξ f (x)dx

)
dy = F f (ξ ) ·Fg(ξ ).

(10.0.39)

Indeed, the translation invariance of the Lebesgue measure yields the third expression. �
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Now, given three functions f , g, h in the Banach algebra L1(Rd) both f ∗ (g∗h) and
( f ∗ g) ∗ h are well defined convolution products in L1(Rd), and it is seen from Proposi-
tion 10.0.11 that their Fourier transformed functions fulfil

F ( f ∗ (g∗h)) =
∧
f · ∧g ·

∧
h = F (( f ∗g)∗h). (10.0.40)

It is therefore a compelling argument that we must have associativity, as claimed in (9.2.6),
of the convolution in the Banach algebra L1(Rd),

f ∗ (g∗h) = ( f ∗g)∗h. (10.0.41)

This is true, in fact, but the argument requires that injectivity of F : L1(Rd)→Cb(Rd) has
been rigorously proved. This we address in the next section, where the property comes
well within reach of these notes.

REMARK 10.0.12. Non-surjectivity of F : L1(Rd)→Cb(Rd) requires a much more
profound knowledge of the Fourier transformation. Indeed, one of the known proofs in-
volves a consideration of the almost step-like function g ∈C0(R) given in terms of a pa-
rameter a > 0 by the following, where ϕ is so chosen that g is C∞ for ξ > 0,

g(ξ ) =


1

(− logξ )a for 0 < ξ < 1/2,

ϕ(ξ ) for 1/2≤ ξ < 1,
0 for ξ /∈ ]0,1[ .

(10.0.42)

This turns out to be the Fourier transformation, in some generalised sense, of a function
f (x) that behaves modulo some unimportant lower order terms as 1

2π ix(logx)a for x→ ∞;
this does not belong to L1(R) for 0 < a ≤ 1. But to conclude that g /∈F (L1) one still
needs to know that even the generalised Fourier transform is injective. These non-trivial
considerations are outside the scope of the present notes (the reader may consult Exercise
7.1.13 in [Hör85]).

10.1. The Schwartz space of rapidly decreasing functions

PROOF OF RIEMANN–LEBESGUE’S LEMMA. Since S is dense in L1 , there is to any
given f ∈ L1 and ε > 0 some g∈S such that ‖ f −g‖1 ≤ ε

2 . Since F : L1(Rd)→Cb(Rd)
is bounded, we obtain for all ξ ,

|
∧
f (ξ )| ≤ |F ( f −g)(ξ )|+ |∧g(ξ )| ≤ ε

2
+ |∧g(ξ )|. (10.1.1)

Here |∧g(ξ )| ≤ ε

2 holds for all |ξ | ≥ R for a suitable R> 0; this follows since
∧
g as a member

of S is rapidly decreasing. �

The density of the Schwartz space S (Rd) in L1(Rd) is also useful e.g. for extending
the Placherel formula to other settings, such as when f ∈ L1(Rd) and g ∈S :∫ ∧

f (ξ )
∧
g(ξ )dξ = (2π)d

∫
f (x)g(x)dx. (10.1.2)

Indeed, when ϕn ∈ S are chosen so that ϕn → f in L1 , as we may, then Plancherel’s

formula gives
∫ ∧

ϕn(ξ )
∧
ψ(ξ )dξ = (2π)d ∫ ϕn(x)ψ(x)dx. In the limit for n→ ∞ the above

identity results, using majorised convergence on the left-hand side where
∧
ϕn(ξ )→

∧
f (ξ )

holds uniformly by the continuity of F (cf. Remark 10.0.7) whilst 2‖ f‖1|
∧
g(ξ )| is an inte-

grable majorant for all sufficiently large n, since sup |
∧
ϕn| ≤ ‖ϕn‖1 ≤ 2‖ f‖1 holds eventu-

ally in view of the continuity of ‖ · ‖1—and Hölder’s inequality for the dual pair (1,∞) on
the right-hand side yields that |

∫
( f −ϕn)gdx| ≤ ‖ f −ϕn‖1‖g‖∞→ 0 for n→ ∞.

Thus prepared one may give a simple proof of the following basic result:

PROPOSITION 10.1.1. F : L1(Rd)→Cb(Rd) is injective.
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PROOF. Assume that F f = 0 in Cb . Then (10.1.2) gives for g = hn(y− x), where
hn ∈C∞

0 is the special approximative unit in (9.5.3) and y ∈ Rd is fixed but arbitrary,

0 = (2π)−d
∫ ∧

f ·Fhn(y−·)dξ =
∫

f (x)hn(y− x)dx = f ∗hn(y). (10.1.3)

Since the last expression is zero for every y, and yet converges to f in L1 by Theorem 9.4.1,
we conclude from Corollary 8.2.6 that f = 0 in L1 , as desired. �

10.2. Parseval–Plancherel’s theorem

Because of the obvious inclusion C∞
0 (Rd) ⊂S (Rd), it is clear from Theorem 9.5.1

that the Schwartz space S is dense in Lp(Rd) for each p ∈ [1,∞[ .
This density may now be used to extend the Fourier transformation F on S (Rd) and

its bijectiveness to the setting of L2(Rd).
To define F on any given f ∈ L2(Rd) it suffices to take, as we may, a sequence ( fn)

in S such that fn→ f in L2 for n→∞ and then define the extended Fourier tranformation
F2 on f to be

F2 f = lim
n→∞

F fn. (10.2.1)

Indeed, it is first of all clear that this limit exists in L2 , for Parseval’s formula for Schwartz
functions shows at once that (F fn) is a Cauchy sequence in L2 ,

‖F fn−F fm‖2 = ‖F ( fn− fm)‖2 = (2π)d‖ fn− fm‖2. (10.2.2)

Secondly limn→∞ F fn does not depend on the particular choice of the Schwartz functions
fn , for if also ‖ f −gn‖2→ 0 for gn ∈S , then the interlaced sequence

f1,g1, f2,g2, . . . , fn,gn, . . . (10.2.3)

is another Cauchy sequence, which F by (10.2.2) sends to a Cauchy sequence in L2—but
since a Cauchy sequence cannot have more than one cluster point, the two obvious cluster
points limn→∞ F fn and limn→∞ Fgn are equal. Hence F2 is a well-defined map

F2 : L2(Rd)→ L2(Rd) (10.2.4)

Thirdly, F2ψ = Fψ for every ψ ∈S , for then fn = ψ for every n will do. Hence F2
coincides with F in the dense subset S .

Finally it follows from the calculus of limits that F2 : L2(Rd)→ L2(Rd) is a linear
map. For when z,w ∈ C and f ,g ∈ L2 , we may take sequences ϕn,ψn ∈ S such that
‖ f −ϕn‖2→ 0 and ‖g−ψn‖2→ 0 for n→ ∞, and then

zF2 f +wF2g = z lim
n

Fϕn +w lim
n

Fψn (10.2.5)

= lim
n
(zFϕn +wFψn) = lim

n
F (zϕn +wψn) = F2(z f +wg). (10.2.6)

Altogether this means that F2 : L2(Rd)→ L2(Rd) is a well-defined linear map by (10.2.1).
It is a fundamental result that the Fourier transformation F2 on L2 actually is an

isometry when using the trick of invoking a suitably weighted Lebesgue measure on Rd .
This is a well-known interpretation of the general Parseval–Plancherel formula:

THEOREM 10.2.1. The Fourier transformation F : S (Rd)→ S (Rd) extends in a
unique way to a continuous, linear, bijective isometry

F2 : L2(md)→ L2((2π)−dmd). (10.2.7)

In particular it holds for all f ,g ∈ L2(Rd) that∫
Rd
| f (x)|2 dx =

1
(2π)d

∫
Rd
|F2 f (ξ )|2 dξ , (10.2.8)∫

Rd
f (x)g(x)dx =

1
(2π)d

∫
Rd

F2 f (ξ )F2g(ξ )dξ . (10.2.9)
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Analogously the Fourier co-transformation F on S (Rd) has an extension F 2 with the
same properties as a map F 2 : L2(Rd ,md)→ L2(Rd ,(2π)−dmd), and

F−1
2 = (2π)−dF 2. (10.2.10)

(Fourier’s inversion formula for F2 .)

PROOF. Injectivity of F2 is immediate from the isometric property ‖F2 f‖ = ‖ f‖,
which holds for the norms in (10.2.7) because of (10.2.8), which in its turn follows by
taking g = f in (10.2.9).

The formula (10.2.9) is easily carried over from the corresponding fact for F on
Schwartz functions, for with the ϕn,ψn ∈S used prior to the theorem we may first infer
that the inner product on the Hilbert space L2(md) is continuous in the two entries jointly:
we have

(ϕn | ψn)− ( f | g) = (ϕn− f | ψn−g)+( f | ψn−g)+(ϕn− f | g), (10.2.11)

which via the triangle inequality implies that (ϕn | ψn)→ ( f | g) for n→ ∞. Similarly the
inner product ((· | ·)) on L2((2π)−dmd) is jointly continuous. Using this we have∫

Rd
f (x)g(x)dx = ( f | g) = lim

n
(ϕn | ψn)

= lim
n
((Fϕn |Fψn)) = ((lim

n
Fϕn | lim

n
Fψn))

=
1

(2π)d

∫
Rd

F2 f (ξ )F2g(ξ )dξ .

(10.2.12)

Moreover, it is easy to see from (10.2.8) that F2 is continuous (cf. (10.2.2)).
To show that F2 also is surjective, note that its range F2(L2) contains the dense subset

F (S ) =S . In addition its range is closed in L2 as F2 is an isometry, for if F2 fn→ h in
L2 , then (F2 fn) is a Cauchy sequence in L2((2π)−dmd), and hence ( fn) is so in L2(md);
that is fn→ g in L2 , so that h = limn F2 fn = F2g by the continuity of F2 . Altogether

F2(L2) = F2(L2)⊃S = L2, (10.2.13)

and since the converse inclusion is trivial, F2 is surjective. The results so far carry over to
the Fourier co-transformation by (temporarily) setting F 2g = F2g.

The uniqueness of F2 follows from its continuity, for if F̃2 is any extension of F
having the properties shown for F2 , then for every g ∈ L2 we have

F̃2g = lim
n

Fψn = F2g. (10.2.14)

Likewise the continuity of F 2 implies its uniqueness; so an application of the limit proce-
dure prior to the theorem to F would have given the same map F 2 .

Finally, Fourier’s inversion formula on S gives the identities

(2π)−dF 2F2ψn = ψn = F2(2π)−dF 2ψn (10.2.15)

so by passing to the limit the continuity of F2 and F 2 gives

(2π)−dF 2F2g = g = F2(2π)−dF 2g. (10.2.16)

As g ∈ L2(Rd) is arbitrary here, this proves the inversion formula for F2 . �

The map F2 is sometimes called the Fourier–Plancherel transformation.
In order to drop the tedious distinction between F , as defined on L1(Rd), and the

map F2 defined on L2(Rd) in the complicated way above, it is convenient to show that
they give the same result on the functions f on which they are both defined.

Indeed, to this end we may apply the fine result in the second part of Theorem 9.5.1.
This states that there exists a sequence ψn ∈C∞

0 ⊂S converging to f in both L1 and L2 ,
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and because of the continuity of F : L1→Cb and F2 : L2→ L2 we see that the sequence
F2ψn = Fψn for n→ ∞ fulfils

‖F2 f −Fψn‖2→ 0, sup
ξ∈Rd
|F f (ξ )−Fψn(ξ )| → 0 (10.2.17)

However, when a sequence such as Fψn converges both pointwise and in quadratic mean,
then the two limit functions coincide a.e.; cf. Corollary 8.2.6. Therefore F2 f (ξ ) =F f (ξ )
for md -almost every ξ ∈Rd , so these considerations may be celebrated with the following
diagram:

F2ψn(ξ ) == Fψn(ξ )y y
F2 f (ξ ) ==

∫
e− ix·ξ f (x)dx

(10.2.18)

Summing up we have shown:

PROPOSITION 10.2.2. F2 f = F f for every f ∈ L1(Rd)
⋂

L2(Rd), so for such f we
have

F2 f (ξ ) =
∫
Rd

e− ix·ξ f (x)dx. (10.2.19)

Because of the above result, it is now safe to simplify the notation from F2 to F .
By doing so, the Fourier transformation is easily seen to give a surjective linear isometry
between the ordinary Lebesgue spaces:

(2π)−d/2F : L2(Rd)→ L2(Rd). (10.2.20)

Here the inverse is (2π)−d/2F .

REMARK 10.2.3. The above discussion may be completed by the following classical
fact on how the Fourier transformed function F f can be computed for any f ∈ L2(Rd).
In fact, for any such f it is clear that f 1B(0,N) belongs to the intersection L1∩L2 because
the ball B(0,N) has finite measure. So according to Proposition 10.2.2 we have

F ( f 1B(0,N))(ξ ) =
∫
|x|<N

e− ix·ξ f (x)dx. (10.2.21)

Here the function on the right-hand side can be seen as a truncated Fourier integral, but
it belongs in fact to Cb(Rd) as f 1B(0,N) is in L1 . Since we have f 1B(0,N) → f in L2 ,
these continuous functions converge in L2(Rd) for N→ ∞ to the function F f ; whence a
subsequence converges pointwise (a.e. to a representative of) ξ 7→F f (ξ ).

REMARK 10.2.4. Further applications of the Schwartz space S (Rd), which was in-
troduced ca. 1950 by L. Schwartz, can be found in his fundamental book [Sch66].





Epilogue

In 1872, K. Weierstrass presented his famous example of a nowhere differentiable, yet
continuous function W on the real line R. In terms of two real parameters b≥ a > 1, this
may be written as

W (t) =
∞

∑
j=0

cos(b jt)
a j , t ∈ R. (0.0.22)

With elementary considerations, Weierstrass proved that W is continuous at every t0 ∈ R,
but not differentiable at any t0 ∈ R in case

b
a
> 1+

3π

2
, b is an odd integer. (0.0.23)

Subsequently several mathematicians attempted to relax the unnatural condition (0.0.23),
but with limited luck. And much later G. H. Hardy [Har16] was able to remove it by
proving the following result:

THEOREM 0.0.5 (Hardy 1916). For every real number b≥ a > 1 the functions

W (t) =
∞

∑
j=0

a− j cos(b jt), S(t) =
∞

∑
j=0

a− j sin(b jt), (0.0.24)

are bounded and continuous on R, but have no points of differentiability.

Here the assumption b ≥ a is optimal for every a > 1, for W is in C1(R) whenever
b
a < 1, due to uniform convergence of the derivatives. (Strangely, this was not observed
in [Har16, Sect. 1.2], where Hardy tried to justify the sufficient condition b ≥ a as being
more natural than e.g. (0.0.23).) Hardy also proved that S′(0) = +∞ for

1 < a≤ b < 2a−1, (0.0.25)

so then the graph of S(t) is not rough at t = 0 (similarly W ′(π/2) = +∞ if b ∈ 4N+1).
However, Hardy’s treatment is not entirely elementary and yet it fills ca. 15 pages. It

is perhaps partly for this reason that several attempts have been made over the years to find
other examples. These have often involved a replacement of the sine and cosine above by
a function with a zig-zag graph; the first one was due to T. Takagi [Tak03] who considered
t 7→ ∑

∞
j=0 2− j dist(2 jt,Z).

But as a drawback, the partial sums are not C1 for such series of zig-zag functions.
And due to the dilations by 2 j , every t ∈ R is a limit t = limrN where each rN ∈ Q is a
point at which the Nth partial sum has no derivatives; whence nowhere-differentiability of
the sum function is less startling in this case. Even so, a fine example of this sort was given
in just 13 lines by J. McCarthy [McC53].

However, there is an equally short proof of nowhere-differentiability, using a few ba-
sics of integration theory. This is well within reach in these lecture notes.

REMARK 0.0.6. By a well-known heuristic reasoning, W (t) is nowhere-differentiable
since the jth term cannot cancel the oscillations of the previous ones: it is out of phase
with the previous terms as b > 1 and the amplitudes moreover decay exponentially since
1
a < 1. As b≥ a > 1 the combined effect is large enough (vindicated by the optimality of
b≥ a noted after Theorem 0.0.5).

61
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To present the ideas in a clearer way we consider the following function fθ , which
may serve as a typical nowhere differentiable function,

fθ (t) =
∞

∑
j=0

2− jθ ei2 jt , 0 < θ ≤ 1. (0.0.26)

It is convenient to choose an auxiliary function χ : R→ C thus: the Fourier transformed
function F χ(τ) =

∧
χ(τ) =

∫
R e− i tτ χ(t)dt is chosen as a C∞ -function fulfilling

∧
χ(1) = 1,

∧
χ(τ) = 0 for τ /∈ ] 1

2 ,2[ ; (0.0.27)

for example, cf. (8.3.13), by setting
∧
χ(τ) = 1 ] 1

2 ,2[
(τ) · exp

(
2− 1

(2− τ)(τ−1/2)

)
. (0.0.28)

Since
∧
χ ∈ C∞

0 (R) ⊂ S (R), the fact that F maps S (R) bijectively to itself yields that

also χ belongs to the Schwartz space S (R). And clearly
∫

χ dt =
∧
χ(0) = 0.

With this preparation, the function fθ is particularly simple to treat, using only com-
mon exercises in integration theory: First one may introduce the convolution

2k
χ(2k·)∗ fθ (t0) =

∫
R

2k
χ(2kt) fθ (t0− t)dt, (0.0.29)

which is in L∞(R) according to Theorem 9.3.2, since fθ ∈L∞(R) and χ ∈L1(R). Secondly
this will be analysed in two different ways in the proof of

PROPOSITION 0.0.7. For 0 < θ ≤ 1 the function fθ (t) = ∑
∞
j=0 2− jθ ei2 jt is a continu-

ous 2π -periodic, hence bounded function fθ : R→ C without points of differentiability.

PROOF. By uniform convergence, fθ is a continuous 2π -periodic and bounded func-
tion for each θ > 0. This follows from Weierstrass’s majorant criterion as ∑2− jθ < ∞.

Inserting the series defining fθ into (0.0.29), the Majorised Convergence Theorem
allows the sum and integral to be interchanged (e.g. with 2k

1−2−θ
|χ(2kt)| as a majorant),

2k
χ(2k·)∗ fθ (t0) = lim

N→∞

N

∑
j=0

2− jθ
∫
R

2k
χ(2kt)ei2 j(t0−t) dt

=
∞

∑
j=0

2− jθ ei2 jt0
∫
R

e− iz2 j−k
χ(z)dz

= 2−kθ ei2kt0 ∧χ(1) = 2−kθ ei2kt0 .

(0.0.30)

Here it was tacitly used that
∧
χ(2 j−k) = 1 for j = k, and that it equals 0 for j 6= k.

Moreover, since fθ (t0)
∫
R χ dz = 0 (cf. the note prior to the proposition) this gives

2−kθ ei2kt0 = 2k
χ(2k·)∗ fθ (t0) =

∫
R

χ(z)( fθ (t0−2−kz)− fθ (t0))dz. (0.0.31)

So in case fθ were differentiable at t0 , F(h) := 1
h ( fθ (t0 + h)− fθ (t0)) would define a

function in Cb(R) for which F(0) = f ′(t0), and the Majorised Convergence Theorem,
with |zχ(z)|supR |F | as the majorant, would imply that

2(1−θ)kei2kt0 =
∫
(−z)F(−2−kz)χ(z)dz−−−→

k→∞
− f ′(t0)

∫
R

zχ(z)dz

=− f ′(t0) i
d
∧
χ

dτ
(0)

= 0.

(0.0.32)

Hence 1−θ < 0 would hold; and this would contradict the assumption that θ ≤ 1. �

By now this argument is of course of a classical nature, as the Majorised Convergence
Theorem is from 1908, cf. [Leb08].
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[Hör85] L. Hörmander, The analysis of linear partial differential operators, Grundlehren der mathematischen
Wissenschaften, Springer Verlag, Berlin, 1983, 1985.
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