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Abstract: Spatio-temporal Cox point process models with a multiplicative structure for
the driving random intensity, incorporating covariate information into temporal and spatial
components, and with a residual term modelled by a shot-noise process, are considered. Such
models are flexible and tractable for statistical analysis, using spatio-temporal versions of
intensity and inhomogeneous K-functions, quick estimation procedures based on composite
likelihoods and minimum contrast estimation, and easy simulation techniques. These advan-
tages are demonstrated in connection to the analysis of a relatively large dataset consisting of
2796 days and 5834 spatial locations of fires. The model is compared with a spatio-temporal
log-Gaussian Cox point process model, and likelihood-based methods are discussed to some
extent.
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1 Introduction

Cox processes (Cox, 1955) are very useful for modelling aggregated point patterns, in par-
ticular in the spatial case where the two main classes of models are log-Gaussian Cox pro-
cesses and shot-noise Cox processes (Møller et al., 1998; Wolpert and Ickstadt, 1998; Brix,
1999; Møller, 2003; Diggle, 2003; Møller and Waagepetersen, 2004, 2007; Møller and Torrisi,
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2005, Hellmund et al., 2008). For spatio-temporal point pattern data, spatio-temporal log-
Gaussian Cox process models have recently found different applications (Brix and Møller,
2001; Brix and Diggle, 2001, 2003; Brix and Chadoeuf, 2002; Diggle et al., 2005). In this
paper, we study instead spatio-temporal shot-noise Cox point process models, and demon-
strate that such models are flexible and tractable for statistical inference, not least when
compared to spatio-temporal log-Gaussian Cox processes. As an application example, we
consider how to model forest fires, where details of the dataset are given in Section 2.3.
Forest fires represent a problem of considerable social importance, see e.g. Brillinger et al.
(2006) and Section 2.1.

Consider a spatio-temporal Cox process X = {Xt : t ∈ Z}, with discrete time t ∈ Z
(the set of integers) and Xt a planar point process. Underlying this is a stochastic process
Λ = {Λt : t ∈ Z}, where each Λt = {λ(u, t) : u ∈ R2} is a locally integrable non-negative
stochastic process, so that conditional on Λ, the Xt are mutually independent Poisson pro-
cesses with intensity functions Λt. Local integrability means that for any bounded B ⊂ R2

and t ∈ Z,
∫
B
λ(u, t) du < ∞, and hence Xt can be viewed as a locally bounded subset of

R2. We assume a multiplicative decomposition of the random intensity,

λ(u, t) = λ1(u)λ2(t)S(u, t), ES(u, t) = 1, (u, t) ∈ R2 × Z (1)

where λ1(u) and λ2(t) are non-negative deterministic functions, while S(u, t) is a spatio-
temporal process with unit mean. A spatio-temporal log-Gaussian Cox process is obtained
if S(u, t) is a log-Gaussian process. Diggle et al. (2005) refer to λ1(u)λ2(t) as the ‘normal
pattern’, and consider a non-parametric model for the ‘pattern of spatial variation (λ1)’, a
parametric model for the ‘pattern of temporal variation (λ2)’, and a parametric log-Gaussian
model for the ‘residual (S)’. Our model is different in that it incorporates important covari-
ate information into λ1(u) and λ2(t) (Section 5.1) so that the model becomes inhomogeneous
in both space and time, and it uses a shot-noise model for the residual process (see next
paragraph) which is considered to account for unobserved random effects (including unob-
served covariates). For the purpose of identifiability, λ1 is assumed to be a density over a
spatial observation window W , so that in our application example, λ2 becomes the mean
number of forest fires in W per day.

We consider the particular case where

S(u, t) = δ

∞∑
s=−∞

∑
y∈Φs

ϕ(u− y, t− s) (2)

where δ is a positive parameter, the second sum is over the points of a stationary Poisson
process Φs with intensity ω > 0 (not depending on s ∈ Z), and ϕ is a joint density on R2×Z
with respect to the product measure of Lebesgue measure on R2 and counting measure on
Z. Hence the bound ES(u, t) = 1 in (1) means that δ = 1/ω. Further, we assume that the
point processes Φt, t ∈ Z, are mutually independent. Note that the point processes Xt are
dependent, unless ϕ(u, t) = 0 whenever t 6= 0. Many formulae and calculations reduce when
the kernel ϕ is separable,

ϕ(u, t) = φ(u)χ(t), (u, t) ∈ R2 × Z (3)
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where φ is a density function on R2 and χ is a probability density function on Z.
For the forest fire dataset, we have daily data together with covariate information about

vegetation, elevation, slope, exposure, and temperature. We aim at fitting a relatively simple
parametric model providing a good descriptive fit to the data and accounting for the depen-
dence of covariates. Since we consider a rather large dataset consisting of 2796 days and
5834 spatial locations of fires, and the likelihood is intractable (Section 2.2), we focus on de-
veloping quick estimation procedures based on composite likelihoods and minimum contrast
estimation procedures, extending ideas used in the spatial case (Møller and Waagepetersen,
2004, 2007) to the spatio-temporal case. More complicated likelihood-based methods are
briefly discussed at the end of the paper. Much of the methodology presented apply as well
on other problems than forest fires, including spatial epidemiology, where e.g. it could be
interesting to apply our approach for the spatio-temporal incidence of non-specific gastroen-
teric symptoms considered in Diggle et al. (2003, 2005) and Diggle (2007).

The remainder of this paper is organized as follows. Section 2 introduces some notation,
presents the dataset, and discusses questions of scientific interests. Sections 3-4 study various
useful properties of the spatio-temporal shot-noise Cox process X relying only on the general
structure (1)-(2) or (1)-(3). This includes the interpretation and simulation of the process as
a Poisson cluster process, and how to define and estimate by non-parametric methods useful
summary statistics such as the intensity, pair correlation, and inhomogeneous K-functions.
Section 5 specifies our parametric model for λ1, λ2, and ϕ, under which further useful results
can be derived. Section 6 fits the model, using the intensity and inhomogeneous K-functions
in connection to estimation equations based on partial likelihoods and minimum contrast
estimation procedures, and we use various summary statistics and simulations to check the
fitted model. Section 7 concludes with a comparison to spatio-temporal log-Gaussian Cox
processes and a discussion on prediction and likelihood based analysis.

2 Preliminaries

2.1 Forest fires

Forest fires are considered dangerous natural hazards around the world (Agee, 1993). After
urban and agricultural activities, fire is the most ubiquitous terrestrial disturbance. It plays
an important role in the dynamics of many plant communities, accelerating the recycling time
of important minerals in the ashes, and allowing the germination of many dormant seeds in
the soil. Fire is also important for the biological and ecological interrelations between many
animal and plant species. It has the potential to change the species composition and hence
the landscape. In many regards, fire can be thought as a grazing animal that removes plant
material and debris, thereby giving many seeds that remained dormant in the forest soil a
chance to germinate.

The analysis of forest fire occurrences is a research area that has been active for many
years. Fire-history studies commenced in the early 20th century, mainly in the United States
and Australia. Such studies are used to analyze the extent of fires and the timing of their
occurrences. However, because the variables ignitions and lightning strikes do not correlate
well, fire history data do not necessarily reflect the actual fire pattern (McKenzie et al.,
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2000). Statistical modelling of forest fires appeared in the late 1970’s with the works of
Wilkins (1977) and Dayananda (1977). More recent statistical works include Peng et al.
(2005), Brillinger et al. (2006), and the references therein.

The forest fire dataset considered in Section 2.3 and further on in this paper is from
Northwestern America. In the forest ecosystems of Northwestern America, fire is the most
important disturbance in a wide range of geographic scales, and it is difficult to visualize the
existence of wide forest areas without the presence of an intense fire pattern. Yet however,
fire is considered a hazard to human life and property. In the first half of the past century,
this lead to a campaign to suppress fires from many American forests. Nowadays, ecologists
and government agencies have realized the damage that such suppression programs were
doing and now management strategies are different. Good management practices require
understanding the role that biological and physical factors play in the pattern of fire oc-
currences in space and in time, and to assess the potential risk posed by such fire pattern
to human property, it is necessary to develop statistical models. Thus, high quality infor-
mation about space-time dynamics of fire is needed for long term resource management of
forest ecosystems (De Long, 1998; McKenzie et al., 2000). In a forest stand, the risk of fire is
usually related to variables such as air temperature and humidity, vegetation type, elevation
and rainfall (Besie and Johnson, 1995). It is unlikely that proper conditions for fire ignition
be present at the same time in a broad area, so fire occurrence may be considered as a local
phenomena. The local random nature of fire ignitions as well as its dynamics in time permit
to idealize the occurrence of fires as a space-time point process. Part of the spatial variation
in fire occurrences is expected to be explained by covariate information available, but the rest
of the spatial variation remains unexplained and may be modelled by some spatial random
process. In this paper it will be the residual process S in (1) given by the shot-noise process
(2).

2.2 Notation and likelihood

At this place it is appropriate to introduce some further notation and briefly discuss the
likelihood function for the spatio-temporal shot-noise Cox process.

We consider a bounded spatial observation window W ⊂ R2 and a finite temporal obser-
vation window T ⊂ Z, so that for each time t ∈ T , a finite point pattern xt ⊂ W is observed.
Thus x = {xt : t ∈ T} specifies the data, apart from any covariate information (the specific
notation for the covariates are given in Section 2.3). We consider xt and x to be realizations
of Xt ∩W and XW×T = {Xt ∩W : t ∈ T}, respectively. The corresponding unobserved
random intensity is denoted ΛW×T = {Λt ∩W : t ∈ T}. Due to the multiplicative structure
(1), the ‘spatial margin’ xW = ∪t∈Txt, i.e. all observed points in W , and the ‘temporal
margin’ nT = {nt : t ∈ T}, where nt = n(xt) is the observed number of points at time t,
will naturally play a particular important role. The corresponding point processes to these
margins are denoted XW = X∪T ∩ W and NT = {Nt : t ∈ T}, where X∪T = ∪t∈TXt is
almost surely a disjoint union, and where Nt = n(Xt ∩W ).

Denote θ the collection of all unknown model parameters, i.e. regression parameters for
λ1(u) and λ2(t) together with parameters for the residual process S(u, t). These parameters
are specified in detail in Section 5. Until Section 5, for ease of presentation, we suppress in
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the notation that λ1(u), λ2(t), and S(u, t) depend on θ. The likelihood function l(θ; x) is
proportional to the density of the spatio-temporal Cox process XW×T with respect to the
distribution defined by i.i.d. unit rate Poisson processes on W and indexed by T . We have

l(θ; x) =

[ ∏
u∈xW

λ1(u)

][∏
t∈T

λ2(t)
nt

]

× Eθ

[
exp

(
−
∑
t∈T

∫
W

λ1(u)λ2(t)S(u, t) du

)∏
t∈T

∏
u∈xt

S(u, t)

]
(4)

where Eθ denotes expectation under the model with parameter θ, see e.g. Møller and
Waagepetersen (2007). In general the expectation in (4) has no closed form expression,
and the likelihood is intractable. In most of this paper, we avoid this problem and use sim-
ple and quick inference procedures, while Section 7 discusses ways of doing more complicated
likelihood-based inference.

2.3 Data

For our application example, W is the area known as the Blue Mountains, a 71,351 km2

large region included mainly in Eastern Oregon, US, see Figure 1. This area is characterized
by the perennial presence of smoldering fires. Due to the increased pressure from human
activities and to the suppression of fires since early 1930’s causing an accumulation of plant
material, there is a potential for the outburst of wild fires. The main ignition sources are
lightning strikes, camp fires, and machinery (Agee, 1993). We consider only lightning-caused
fires, which comprise over 90% of the total fires observed in the Blue Mountains.

East (Km)

N
o

rt
h

 (
K

m
)

0 500 1000 1500 2000

0
2

0
0

4
0

0
6

0
0

8
0

0
1

0
0

0
1

2
0

0

Blue
Mountains

Figure 1: Geographic location of the Blue Mountains.

The fires were reported on a daily basis from April 1, 1986 to November 25, 1993, where
the total number of fires in the Blue Mountains area was 5834. Accordingly, T = {1, . . . ,m}
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with m = 2796 days, and xt is the observed point pattern of forest fires on day t, with t = 1
corresponding to 4/1/1986 and t = m to 11/25/1993. Also spatial covariate information is
available (see Figure 2), where for each spatial location u ∈ W and time t ∈ T , V (u) denotes
the vegetation type classified into 9 categories (left panel), C(u) the slope-exposure type
classified into 16 categories (central panel), and E(u) the elevation (right panel) centered
around 1750 m, the average elevation in the study area. Here a subdivision consisting of
rectangular cells of size 3.51 km in the East-West direction and 2.54 km in the North-South
direction is used so that V (u), C(u), E(u) can be considered to be (approximately) constant
within each cell. Furthermore, temporal covariate information is provided by the average
temperature T (t) during each day t (see Figure 4). The average temperature is computed
from temperature records reported for three meteorological stations inside the study area.

Figure 2: Elevation map in meters above sea level (left panel), spatial distribution of the 9
vegetation categories (central panel) and the 15 slope-exposure categories (right panel) in
the Blue Mountains area.

Figure 3 shows the pattern xW of all fires within W together with a non-parametric
estimate of λ1 (Diggle, 1985). Clearly, fire presence is more intense in certain areas of the
Blue Mountains and seems related to the spatial covariates in Figure 2. For example, fires are
very rare at elevation below 1000 m above sea level, are common at elevations ranging from
1500 to 2200 m as well as for slope-exposure categories 3-6 (which correspond to moderate
slopes facing southwards), and frequently occur in areas covered by vegetation types 5 and 6
(which correspond to Ponderosa pine and Douglas Fir). Figure 4 shows the number of fires nt
at the different days, two estimates of λ2, a non-parametric estimate (Silverman, 1986) and a
parametric estimate, where the latter is discussed in Section 6.1, and the temperature T (t).
There is an apparent seasonal pattern of fires over time, with most of the fires occurring in
the period from late spring to early fall. Seemingly there is also some relationship between
the patterns of fires and temperatures. Figure 5 shows the spatial patterns of fire occurrences
in four consecutive weeks during the summer of 1987. These plots (and further similar plots
which are omitted here) illustrate that at a weekly time scale, fires tend to occur in small
clusters.

The space-time point pattern dataset considered in this paper was in Diaz-Avalos et
al. (2001) aggregated into a pixel-time array, considering for each pixel-time location a
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Figure 3: Spatial pattern of fire occurrences in the Blue Mountains from 04/01/1986 to
11/25/1993 (left panel) and non-parametric estimate of the spatial intensity function λ1(u)
(right panel).
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Figure 4: Upper panel: average daily temperature (Fahrenheit) in the Blue Mountains area.
Lower panel: square root of the daily number of fire occurrences in the Blue Mountains
(solid dots), a non-parametric estimate (solid line), and a parametric estimate (dashed line)
of the temporal intensity function λ2(t).

binary variable which is one if a least one fire occurred and zero otherwise, where the pixels
correspond to the rectangular cells of the subdivision described above. Diaz-Avalos et al.
(2001) fitted then a generalized linear mixed model in a Bayesian framework.
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Figure 5: Spatial patterns of fire occurrences in four consecutive weeks.

3 General properties

This section discusses some useful general properties of the spatio-temporal shot-noise Cox
process with the structure (1)-(2) or (1)-(3).

3.1 Poisson cluster process interpretation

We can view the spatio-temporal shot-noise Cox process X as a spatio-temporal Poisson
cluster process constructed as follows. Let Φ = {Φt : t ∈ Z} be the spatio-temporal Poisson
process underlying (2). Considering all points y ∈ Φs for all times s ∈ Z, we have that

Xt conditional on Φ is distributed as the superposition ∪y,sX(y,s)
t of mutually independent

Poisson processes X
(y,s)
t on R2, where X

(y,s)
t has intensity function

λ
(y,s)
t (u) = λ1(u)λ2(t)δϕ(u− y, t− s), u ∈ R2.

Note that each ‘cluster’ X
(y,s)
t is finite, with the number of points (the ‘offspring’) being

Poisson distributed with mean

n
(y,s)
t = λ2(t)δ

∫
λ1(u)ϕ(u− y, t− s) du (5)

and the offspring density is proportional to λ1(u)ϕ(u− y, t− s) for u ∈ R2. We refer to y as
a ‘mother point’. This simplifies in the separable case (3) where

n
(y,s)
t = λ2(s)χ(t− s)δ

∫
λ1(u)φ(u− y) du

and the offspring density is proportional to λ1(u)φ(u− y). Furthermore, still conditional on

Φ, for all y ∈ Φs and all s, t ∈ Z, the clusters X
(y,s)
t are mutually independent.

The Poisson cluster process interpretation is due to (2), and it becomes useful when
simulating X and making predictions as discussed in Sections 3.2 and 7. On the other hand,
rather than interpreting the clustering as a mechanism causing forest fires, we consider (2)
as a flexible and tractable way of modelling a random intensity function.
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3.2 Simulation

In principle we can make a simulation of XW×T using a dominating spatio-temporal shot-
noise Cox process constructed as follows. Assume that λmax

1 = supu∈W λ1(u) is finite. Since
the distribution of XW×T does not depend on how λ1(u) is specified outside W , we can take
λ1(u) = λmax

1 for u 6∈ W . Suppose we have simulated Φ (of course this will be impossible

in practice, since Φ is infinite). Consider a ‘dominating’ cluster D
(y,s)
t , which is a Poisson

process with intensity function

λmax
1 λ2(t)δϕ(u− y, t− s) ≥ λ

(y,s)
t (u), u ∈ R2.

We assume that these dominating clusters are mutually independent for all y ∈ Φs and
s, t ∈ Z. Note that D

(y,s)
t is usually easy to generate, particularly in the separable case (3)

where the number of points in D
(y,s)
t is Poisson distributed with parameter λ2(t)δλ

max
1 χ(t−s),

and where the offspring density is φ(u − y), u ∈ R2. Then we obtain a simulation of each

Xt∩W by an independent thinning of D
(y,s)
t , i.e. each point u ∈ D

(y,s)
t is included in Xt∩W

with probability (λ1(u)/λmax
1 )1[u ∈ W ], where 1[·] is the indicator function, and whether

such points are included or not are mutually independent events.
In practice we suggest to make an approximate simulation, using a finite version of Φ,

where we evaluate the error done by the approximation as explained below. Alternatively,
perfect (or exact) simulation algorithms can be developed along similar lines as in Brix
and Kendall (2002) and Møller (2003), however, for our application example and probably
also most other applications, we find it much easier and sufficient to use the approximate
simulation algorithm.

The finite version of Φ is obtained by restricting it to a bounded region W̃ × T̃ ⊇ W ×T .
Let Φ̃t = Φt ∩ W̃ , which is simply a homogeneous Poisson process on W̃ with intensity ω,
and the processes Φ̃t, t ∈ T̃ , are mutually independent. We approximate the residual process
(2) by

S̃(u, t) = δ
∑
s∈T̃

∑
y∈Φ̃s

ϕ(u− y, t− s), (u, t) ∈ R2 × Z (6)

and consider a spatio-temporal shot-noise Cox process {X̃t : t ∈ Z} driven by the random
intensity

λ̃(u, t) = λ1(u)λ2(t)S̃(u, t), (u, t) ∈ R2 × Z. (7)

A realization of X̃W×T = {X̃t∩W : t ∈ T} is then an approximate simulation of XW×T , and
clearly, X̃W×T is almost surely a finite spatial-temporal Cox point process. The simulation
of X̃W×T may easily be done along similar lines as above. For example, in the separable
case (3), the steps are as follows, assuming λmax

1 = supu∈W λ1(u) < ∞ and letting ν(s) =∑
t∈T λ2(t)χ(t− s) for s ∈ T̃ .

• Generate the mother processes Φ̃s, s ∈ T̃ .

• For each s ∈ T̃ and y ∈ Φ̃s,

(i) generate a realization n(y, s) from a Poisson distribution with parameter λmax
1 ν(s)δ;
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(ii) generate n(y, s) i.i.d. points with density φ(u− y), u ∈ R2;

(iii) make an independent thinning, where we retain each point u from (ii) with prob-
ability (λ1(u)/λmax

1 )1[u ∈ W ];

(iv) to each retained point u from (iii) associate a time tu generated from the density
ps(t) = λ2(t)χ(t− s)/ν(s), t ∈ T .

• For each t ∈ T , return all retained points u with tu = t (no matter which s ∈ T̃ and
y ∈ Φ̃s are associated to u). These points constitute the approximate simulation of
Xt ∩W .

Since X̃W×T is a subprocess of XW×T some points may be missing, however, if W̃ × T̃
is chosen sufficiently large, we expect the two processes to be close. To evaluate this error,
consider the mean number of missing points

MT = E
∑
t∈T

(n(Xt ∩W )− n(X̃t ∩W )).

As in Møller (2003), by conditioning on Φ, using Campbell’s theorem (see e.g. Møller and
Waagepetersen, 2004) and the fact that δ = 1/ω, we obtain

MT =

∫
W

λ1(u)
∑
t∈T

λ2(t)

1−
∑
s∈T̃

∫
W̃

ϕ(u− y, t− s) dy

 du. (8)

This expression simplifies in the separable case as shown in Section 5.4.
For example, suppose that ϕ(u, t) = 0 whenever t < 0 or t > 1 − k, where k ≤ 1

is a fix integer. Then mother points born at time s can only create offspring at times
s, s+1, . . . , s+1−k, and so we naturally take T̃ = {k, . . . ,m}. As exemplified in Section 5.4,
the choice of W̃ then depends on how small we want MT .

3.3 Spatio-temporal margins

The spatio-temporal shot-noise Cox process possesses the appealing property that the su-
perposition X∪T = ∪t∈TXt is a spatial inhomogeneous shot-noise Cox process on R2, where
the process is driven by the random intensity

λ∪T (u) = δλ1(u)
∞∑

s=−∞

∑
t∈T

λ2(t)
∑
y∈Φs

ϕ(u− y, t− s), u ∈ R2. (9)

Similarly, N is a shot-noise Cox process on Z driven by

λR
W

(t) = δλ2(t)
∞∑

s=−∞

∑
y∈Φs

∫
W

λ1(u)ϕ(u− y, t− s) du, t ∈ Z. (10)

Thus techniques for analyzing and simulating spatial respective temporal shot-noise Cox
processes apply for the spatio-temporal margins.
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4 Summary statistics

The structures (1)-(2) or (1)-(3) imply simple moment expressions and second order intensity
reweighted stationarity (Section 4.1). Thereby it becomes possible to define inhomogeneous
K-functions (Sections 4.2-4.3), which are estimated by non-parametric methods and used
for exploratory analysis. Moreover, the results become useful in connection to estimation
and model checking for parametric models as discussed in Section 6.

4.1 Intensity and pair correlation functions

For t, t1, t2 ∈ Z with t1 6= t2, let ρ(·, t) denote the intensity function of the spatial point
process Xt, g((·, t), (·, t)) the pair correlation function of Xt, and g((·, t1), (·, t2)) the cross
pair correlation function of Xt1 and Xt2 , see e.g. Møller and Waagepetersen (2004). Since
X is a spatio-temporal Cox process, for any t, t1, t2 ∈ Z and u, u1, u2 ∈ R2,

ρ(u, t) = Eλ(u, t), g((u1, t1), (u2, t2)) = E[λ(u1, t1)λ(u2, t2)]/[ρ(u1, t1)ρ(u2, t2)]

and we refer to ρ(·, ·) and g(·, ·, ·, ·) as the intensity and pair correlation functions of X. Note
that g describes the ‘normalized’ second order moment properties, where g((·, t), (·, t)) = 1
if Xt is a Poisson process, and g((·, t1), (·, t2)) = 1 if Xt1 and Xt2 are independent.

For our multiplicative model (1),

ρ(u, t) = λ1(u)λ2(t) (11)

and ρ does not depend on the specification of the residual process, i.e. whether we consider
a spatio-temporal shot-noise or log-Gaussian or another kind of Cox process. Further,

g((u1, t1), (u2, t2)) = E[S(u1, t1)S(u2, t2)] (12)

specifies the second order moment properties of the residual process. Combining (2) and
(12) with the Slivnyak-Mecke theorem (Mecke, 1967; Møller and Waagepetersen, 2004), we
obtain

g((u1, t1), (u2, t2)) = 1 + δϕ ∗ ϕ̃(u1 − u2, t1 − t2) (13)

where ∗ denotes convolution, and ϕ̃(u, t) = ϕ(−u,−t). Thus g ≥ 1, reflecting the fact
that X exhibits aggregation in both space and time as made clear by the Poisson cluster
interpretation (Section 3.1).

By (13), g is space-time stationary, i.e. g((u1, t1), (u2, t2)) = g(u, t) depends only on
u1, u2 ∈ R2 and t1, t2 ∈ Z through the spatial difference u = u1 − u2 and the numerical
time difference t = |t1− t2|. Consequently, the point processes Xt are second order intensity
reweighted stationary (Baddeley et al., 2000) with identical pair correlation functions g(u, 0),
and pairs of point processes (Xt1 ,Xt2) with the same value of |t1 − t2| > 0 are cross second
order intensity reweighted stationary (Møller and Waagepetersen, 2004) with identical cross
pair correlation function g(u, |t1 − t2|).

11



4.2 Inhomogeneous K-functions

Henceforth we assume that g is isotropic, i.e. for all u1, u2 ∈ R2 and all t1, t2 ∈ Z, we have
that

g((u1, t1), (u2, t2)) = g(r, t)

depends only on the spatial distance r = ‖u1 − u2‖ and the numerical time difference
t = |t1−t2|. This assumption will be satisfied for the parametric model of X introduced later,
it simplifies the exposition in the sequel, and it is convenient for non-parametric estimation
of the pair correlation function based on kernel estimation (Stoyan and Stoyan, 2000; Diggle
et al., 2005). However, the various expressions of K-functions and their estimates below can
easily be modified along similar lines as in Møller and Waagepetersen (2004) to cover the
general case of (13).

The inhomogeneous spatio-temporal K-function at times t1, t2 ∈ Z is defined by

K(r, t1, t2) = K(r, t) = 2π

∫ r

0

sg(s, t) ds, r ≥ 0, t = |t1 − t2|. (14)

This is an extension of the definition of the spatio-temporal K-function for the stationary
case considered in Diggle et al. (1995), where K(·, 0) is the usual inhomogeneous K-function
of each spatial point process Xt (Baddeley et al., 2000), while if t1 6= t2, K(·, t1, t2) is the
inhomogeneous cross-K-function of Xt1 and Xt2 (Møller and Waagepetersen, 2004). Clearly,
since g is isotropic, there is a one-to-one correspondence between g and K.

For u1, u2 ∈ R2, let wu1,u2 denote Ripley’s edge correction factor given by 2π‖u1 − u2‖
divided by the length of arcs obtained by the intersection of W with the circle with center
u1 and radius ‖u1 − u2‖ (Ripley, 1976). The non-parametric estimate

K̂(r, t1, t2) =
∑

u1∈xt1 , u2∈xt2 :u1 6=u2

1[‖u1 − u2‖ ≤ r]wu1,u2

ρ(u1, t1)ρ(u2, t2)
(15)

is unbiased and in contrast to non-parametric estimation of g avoids kernel estimation.
Consequently, for t = 0, 1, . . . ,m− 1, the average

K̂(r, t) =
1

m− t

m−t∑
t′=1

K̂(r, t′, t′ + t), (16)

is an unbiased non-parametric estimate of K(r, t). The unbiased property may be less
important in practice, since the intensity function ρ is usually unknown, and we have to
plug in an estimate of ρ in (15), where we use the non-parametric estimates of λ1 and λ2

given in Figures 3-4.
We have K(r, 0) = πr2 in the special case of a Poisson process Xt, and K(r, t1−t2) = πr2

in the special case where Xt1 and Xt2 are independent, cf. Proposition 4.4 in Møller and
Waagepetersen (2004). We consider L-functions given by L =

√
K/π, whereby L(r, 0) − r

is zero if Xt is a Poisson process, and L(r, t1− t2)− r is zero if Xt1 and Xt2 are independent.
For the spatio-temporal shot-noise Cox process, (13) and (14) imply that L(r, t) − r ≥

0, with in general a strict inequality (unless the kernel ϕ(u, t) is zero whenever t 6= 0).
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Since the variation of K̂(r, t1, t2) can be huge when nt1 or nt2 is small, for integers c ≥ 0,
define a truncated version by K̂c(r, t1, t2) = K̂(r, t1, t2) if both nt1 ≥ c and nt2 ≥ c, and
K̂c(r, t1, t2) = 0 otherwise. Denote K̂c(r, t) the average of such K̂c(r, t1, t2)-functions, and
L̂c(r, t) the corresponding L-function. For example, if t = 0, Figure 6 shows clearly how
the variation of L̂c(r, 0)-functions is reduced as c increases, and the functions L̂15(r, 0) and
L̂20(r, 0) look very similar. Plots of L̂c(r, t)-functions with c = 15 and simulated 95%-
inter-quantile envelopes obtained under a fitted spatio-temporal Poisson model, using an
intensity function λ1(u)λ2(t) given by either the non-parametric estimates in Figures 3-4 or
the parametric estimates obtained later in Section 6.1, and assuming independence between
the Xt-processes, show clearly the poor fit of such Poisson models. For instance, Figure 7
shows such plots when c = 15, t = 0, 1, 2, and λ1(u)λ2(t) is the parametric estimate. For
details on how the 95%-inter-quantile envelopes are obtained, see Møller and Waagepetersen
(2004).
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Figure 6: Non-parametric estimates L̂c(r, 0)− r with c = 0, 2, 5, 15, 20 (from top to bottom).

4.3 Summaries for the spatio-temporal margins

The spatial shot-noise Cox process X∪T has intensity function

ρ∪T (u) = λ1(u)
∑
t∈T

λ2(t), u ∈ R2 (17)
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Figure 7: Non-parametric estimates L̂c(0, r) − r (left panel), L̂c(1, r) − r (central panel)
and L̂c(2, r)− r (right panel), together with 95%-inter-quantile envelopes obtained from 39
simulations of either the fitted spatio-temporal Poisson process (dot-dashed lines; λ1(u)λ2(t)
is given by the parametric estimates obtained in Section 6.1) or the fitted spatio-temporal
shot-noise Cox process (dotted line; the model is fitted in Section 6). Here c = 15.

and pair correlation function

g∪T (u1, u2) = 1 + δ

∑
t1,t2∈T λ2(t1)λ2(t2)ϕ ∗ ϕ̃(u1 − u2, t1 − t2)∑

t1,t2∈T λ2(t1)λ2(t2)
, u1, u2 ∈ R2. (18)

Equations (17) and (18) follow straightforwardly from (11) and (13), or alternatively by
using (9) and the Slivnyak-Mecke Theorem. Note that g∪T (u1, u2) = g∪T (u1 − u2), mean-
ing that X∪T is second order intensity reweighted stationary. Since g is assumed to be
isotropic, it follows that also g∪T (u1, u2) = g∪T (‖u1 − u2‖) is isotropic. Consequently, X∪T
has inhomogeneous K-function

K∪T (r) = 2π

∫ r

0

sg∪T (s) ds, r ≥ 0. (19)

Its corresponding L-function is denoted L∪T , and

K̂∪T (r) =
∑

u1∈x, u2∈x:u1 6=u2

1[‖u1 − u2‖ ≤ r]wu1,u2

ρ∪T (u1)ρ∪T (u2)
(20)

is an unbiased non-parametric estimate. As ρ∪T (u) is unknown, we estimate it in (20) by
using (17) and the non-parametric estimates of λ1(u) and λ2(t) from Figures 3-4. Figure 8
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shows L̂∪T (r) − r together with 95%-inter-quantile envelopes obtained from 39 simulations
of an inhomogeneous Poisson process on W with the intensity function given by the non-
parametric estimate of ρ∪T (u). Figure 8 clearly shows that the pattern of forest fires is more
aggregated than the fitted inhomogeneous Poisson process.

Figure 8: Non-parametric estimate of L̂∪T (r)−r (solid line) and 95%-inter-quantile envelopes
obtained from 39 simulations of the fitted inhomogeneous Poisson process on W (dashed
lines) or the spatio-temporal shot-noise Cox process in Section 6 (dotted lines).

The temporal point process N has intensity function λ2(t), t ∈ Z, since we have imposed
the identifiability condition that λ1 integrates to one over W , cf. Section 1. For t1, t2 ∈ Z,
the covariance function Cov(t1, t2) = Cov(Nt1 , Nt2) is given by

Cov(t1, t2) = δλ2(t1)λ2(t2)

∫
W

∫
W

λ1(u1)λ1(u2)ϕ ∗ ϕ̃(u1 − u2, t1 − t2) du1 du2. (21)

This follows from (11) and (13) or alternatively from the Slivnyak-Mecke Theorem in com-
bination with (10). Equation (21) implies that the corresponding correlation function is
stationary, i.e. Corr(t1, t2) = Corr(|t1 − t2|), where

Corr(t) =

∫
W

∫
W
λ1(u1)λ1(u2)ϕ ∗ ϕ̃(u1 − u2, t) du1 du2∫

W

∫
W
λ1(u1)λ1(u2)ϕ ∗ ϕ̃(u1 − u2, 0) du1 du2

, t = 0, 1, . . . . (22)

As expected, Corr(t) ≥ 0.
As exemplified in Section 5.3, (18)-(22) simplify when ϕ is a separable kernel as in (3).

In particular, we then see that Nt/λ2(t) is a second-order stationary time series, with mean
one and correlation function

Corr(t) =
χ ∗ χ̃(t)

χ ∗ χ̃(0)
, t = 0, 1, . . . . (23)
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Hence, when t � m, the usual non-parametric estimate of the correlation function (e.g.
Priestley, 1983) is given by

Ĉorr(t) =

∑m−t
s=1 [(nsns+t)/(λ2(s)λ2(s+ t))− 1]∑m

s=1 [(ns/λ2(s))2 − 1]
. (24)

Figure 9 shows Ĉorr(t) for t = 1, . . . , 19, where λ2 in (24) is replaced by the non-parametric

estimate from Figure 4. For t ≥ 20, Ĉorr(t) is effectively zero.
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Figure 9: Correlations at lags 1, . . . , 19: the non-parametric estimate Ĉorr(t) (open dots)
and a parametric estimate (pluses) derived in Section 6.2.

5 Parametric model

Sections 5.1-(5.2) specify our parametric model for λ1, λ2, and ϕ. Thereby closed form
expressions for theoretical correlation and K-functions can be derived (Section 5.3) and the
error of the approximate simulation algorithm of the spatio-temporal shot-noise Cox process
can be evaluated (Section 5.4).

5.1 Modelling the normal pattern

For the forest fire data, we assume that

log λ1(u) = c(βV,C,E) +
9∑
i=1

βVi 1[V (u) = i] +
16∑
j=1

βCj 1[C(u) = j]+

βE1 E(u) + βE2 E(u)2 (25)
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and

log λ2(t) = β0 + βS1 cos(ηtt) + βS2 sin(ηtt) + βS3 cos(2ηtt) + βS4 sin(2ηtt)+

βT1 T (t) + βT2 T (t)2 + βT3 T (t)3 + βT4 T (t)4 + βT5 T (t)5 (26)

where the notation means the following. The β’s are real regression parameters, where for
the purpose of identifiability we impose the bounds that

∑9
i=1 β

V
i = 0 and

∑16
i=1 β

C
i = 0.

Further, ηt = 2π/365 is the frequency for years with 365 days, and ηt = 2π/366 for leap
years. Furthermore, c(βV,C,E) is a normalizing constant depending on

βV,C,E = (βV1 , . . . , β
V
9 , β

C
1 , . . . , β

C
16, β

E
1 , β

E
2 )

so that λ1 becomes a density over the spatial region W .
In (25), a log-linear form with respect to βVi and βCj is assumed for convenience, since we

have no specific information on how to model the functional dependence of the covariates V
and C. Furthermore, we consider a quadratic dependence of E(u). Since a plot of the number
of fires versus elevation showed a bell shaped form that resembles a normal distribution,
with mean value about 1750 m (corresponding to E(u) = 0), βE2 is expected to be negative
and controlling how spread fire occurrences are around −βE1 /(2βE2 ), which is expected to
be close to zero. Indeed this is confirmed by the parameter estimates β̂E2 = −0.604 and
−β̂E1 /(2β̂E2 ) = −0.0243 obtained by the method in Section 6.1.

In (26), β0 is the general intercept, time-of-year effects are modelled by a sine-cosine
wave plus its first harmonics, and the effect of the temperature is modelled by a fifth order
polynomial. We have also investigated results based on including sixth and seven order
terms which seemed unnecessarily, while including less terms provided a less good fit when
we compared parametric estimates of λ2 with the data nt, t ∈ T .

5.2 Modelling the kernel

For the forest fire data, we also assume a separable kernel

ϕ(u, t) = φ
(2)

σ2 (u)χζ(t), (u, t) ∈ R2 × Z. (27)

Further,

φ
(2)

σ2 (u) =
1

2πσ2
exp

(
−‖u‖

2

2σ2

)
is the density of a radially symmetric bivariate normal distribution with standard deviation
σ > 0 (the spatial band-width). Furthermore, as suggested by Figure 9, χζ(t) is concentrated
on 0, . . . , t∗ − 1 with t∗ = 20, and

χζ(t) = ζ(t∗ − t), t = 1, . . . , t∗ − 1, (28)

is a decreasing linear function so that χζ becomes a probability density function. Thus
χζ(0) = 1− ζt∗(t∗− 1)/2 and 0 ≤ ζ ≤ 2/[t∗(t∗− 1)]. The parameters σ and ζ are correlation
parameters, where the positive association between points (u1, t1) and (u2, t2) of X increases
as σ or ζ increases.
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5.3 Second order properties

Our parametric model assumptions imply the following closed form expressions for the second
order characteristics.

From (27) we obtain the joint density

ϕ ∗ ϕ̃(u, t) = φ
(2)

2σ2(u)χζ ∗ χ̃ζ(t). (29)

Note that χζ ∗ χ̃ζ is a symmetric probability density on 1 − t∗, . . . , 0, . . . , t∗ − 1, which for
t = 1, . . . , t∗ − 1 is given by

χζ ∗ χ̃ζ(t) = ζ(t∗ − t)(1− ζt∗(t∗ − 1)/2) + ζ2/6× (30)

[(t∗ − 1)t∗(2t∗ − 1)− t(t+ 1)(2t+ 1)− 3t∗(t∗ + t+ 1)(t∗ − t− 1)(t+ 1)] .

Combining (13) and (29), we obtain the pair correlation function of X, which is seen to be
isotropic, where g((u1, t1), (u2, t2)) = g(r, t) is a decreasing function of both r = ‖u1−u2‖ and
t = |t1−t2|. It also follows that the positive association between points (u1, t1) and (u2, t2) of
X increases as σ or ζ increases. Note that g(r, 0) is of the same form as the pair correlation
function of an inhomogeneous modified Thomas process (Møller and Waagepetersen, 2007).
Combining (13)-(14) and (29), we obtain the inhomogeneous K-function of X,

K(r, t) = πr2 + δ
[
1− exp

(
−r2/(4σ2)

)]
χζ ∗ χ̃ζ(t). (31)

By (18)-(19) and (27), the inhomogeneous K-function of X∪T becomes

K∪T (r) =πr2 + δ
[
1− exp

(
−r2/(4σ2)

)]
×∑

t1,t2∈T λ2(t1)λ2(t2)χζ ∗ χ̃ζ(|t1 − t2|)∑
t1,t2∈T λ2(t1)λ2(t2)

. (32)

Finally, the correlation function of N is obtained by combining (23) and (30).

5.4 The error of the approximate simulation algorithm

For the approximate simulation algorithm in Section 3.2, we obtain the following details
under our parametric model assumptions. The mean cluster size given by (5) becomes

n
(y,s)
t = λ1(y)λ2(s)δχζ(t − s), and the offspring distribution is simply a bivariate normal

distribution with mean y and independent coordinates with variance σ2. Since we have
observations at times t = 1, . . . ,m, and the clusters of offspring X

(y,s)
t are empty whenever

t− s ≥ t∗, we let T̃ = {2− t∗, . . . ,m}. Hence, in terms of (8) the error of the approximate
simulation algorithm becomes

MT =

∫
W

λ1(u)
∑
t∈T

λ2(t) [1− ωe(u;σ)] du (33)

where

e(u;σ) =

∫
W̃

φ
(2)

σ2 (u− y) dy.
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We let the extended spatial window be a rectangle W̃ = [a1, a2]× [b1, b2] so that the smallest
distance from its boundary to W is 3σ. Then for u = (v, w) ∈ W̃ ,

e(u;σ) = [F ((b1 − v)/σ)− F ((a1 − v)/σ)][F ((b2 − w)/σ)− F ((a2 − w)/σ)]

with F denoting the cumulative standard normal distribution function. When σ is equal to
its estimate obtained in Section 6.2, we obtain MT = 0.008, indicating that effectively no
points will be missing in a simulation.

6 Quick non-likelihood estimation methods

In general the likelihood function for θ is intractable, cf. (4). Møller and Waagepetersen
(2007) provide a general discussion of quick non-likelihood estimation procedures based on
the intensity and pair correlation functions of a parametric spatial point process model.
These procedures divide into estimation equations motivated heuristically as limits of com-
posite likelihood functions and estimation equations obtained by minimum contrast methods.
This section adapts such estimation equations to the parametric spatio-temporal shot-noise
Cox process considered in this paper. We let θ1 specify the unknown parameters of the
normal pattern and θ2 the unknown parameters of the residual process, where θ1 and θ2 are
variation independent, cf. Section 5. Sections 6.1-6.2 consider the estimation of θ1 and θ2,
respectively.

6.1 Estimation of the regression parameters

The composite likelihood (Lindsay, 1988) based on the intensity function can be obtained
in various ways. See Møller and Waagepetersen (2007) for the case of a single spatial point
process, which easily extend to our spatio-temporal case. Asymptotic properties of maximum
composite likelihood estimates are studied in Schoenberg (2004) and Waagepetersen (2007).

One way of obtaining a composite likelihood is to consider the limit of composite like-
lihood functions for Bernoulli trials concerning absence or presence of points of the point
processes Xt ∩W , t ∈ T , within infinitesimally small cells partitioning the spatial observa-
tion window W . Due to the multiplicative form of the intensity function (11), we consider
a simpler procedure, where we separate into composite likelihoods for respective the spa-
tial margin xW and the temporal margin nT . Let θ1 = (θ1,1, θ1,2), θ1,1 = (α, βV,C,E), and
θ1,2 = (β0, β

S
1 . . . , β

S
4 , β

T
1 , . . . , β

T
5 ), where α = c(βV,C,E) + log

∑
t∈T λ2(t; θ1,2). By (17) and

(25)-(26),

log ρ∪T (u; θ1) =

α +
9∑
i=1

βVi 1[V (u) = i] +
16∑
j=1

βCj 1[C(u) = j] + βE1 E(u) + βE2 E(u)2

is the log intensity function of XW , and λ2(t; θ1,2) is the intensity function of NT . The log
composite likelihoods become

LW (θ1; xW ) =
∑
u∈xW

log ρ∪T (u; θ1)−
∫
W

ρ∪T (u; θ1) du (34)
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corresponding to the log likelihood for a Poisson process with intensity function ρ∪T (u; θ1),
and

LT (θ1,2; nT ) =
∑
t∈T

nt log λ2(t; θ1,2)−
∑
t∈T

λ2(t; θ1,2) (35)

corresponding to the log likelihood for a Poisson model with mean λ2(t; θ1,2). Note that
(34)-(35) do not depend on the specification of the residual process, i.e. whether we consider
a spatio-temporal shot-noise or log-Gaussian or another kind of Cox process.

The maximum composite likelihood estimate θ̂1,2 based on (35) is easily found using e.g.
the software package R. The corresponding parametric estimate of λ2 is shown in Figure 4,
and it shows some discrepancies to the non-parametric estimate of λ2, though overall they
both follow the general pattern of the daily number of fires. The parametric estimate tends
to be higher, particularly during the winter months, since (26) considers the trend in the
number of fires and not the ‘local’ number of fires, while the non-parametric kernel estimate
and the scarce number of fires occurring during the winter months cause low values of the
non-parametric estimate at the ‘local’ level.

Suppose we plug in the estimate θ̂1,2 into (34). Maximization of (34) with respect to
θ1,2 is complicated by the fact that α depends on the normalizing constant c(βV,C,E). For
computational convenience, we ignore this dependence and treat first α as a real parameter
which is variation independent of βV,C,E. We propose then to obtain the estimate θ̂1,1 which
maximizes (34) with respect to θ1,1. This corresponds to the maximum composite likelihood
estimate based on the intensity function of XW which is proportional to λ1, when λ1 is
unnormalized. This estimate is easily found using the software package spatstat (Baddeley
and Turner, 2005, 2006). Second we normalize λ1(u; θ̂1,1) so that it becomes a density
function. Note that the estimate of βV,C,E is unaffected by this normalization.

The left panel in Figure 10 shows this normalized estimate λ1(u; θ̂1,1), which recognizes
the presence of areas with low intensity of fires, mainly in the North-East part of W . Such
areas correspond mostly to agricultural land. Although fires are not impossible in such
regions, the absence of a good amount of dry debris in the ground makes a lightning-caused
ignition a rare event. However, λ(u, θ̂1,1) overestimates the intensity in the area between
750−800 Km East and 750−820 Km North, as well as in the two southern tips of W . Since
the actual values of the estimates θ̂1,1 and θ̂1,2 may perhaps appear to be less interesting for
the reader, we omit them here (the estimated values of βE1 and βE2 were given in Section 5.1).
We just notice here that, as expected, positive large values β̂Vi correspond to regions with
more fires, negative and small values β̂Vi correspond to regions with few (or none) fires,
positive and large values β̂Cj correspond to regions with exposure slopes facing South or with

modest or low slopes, and negative and small values β̂Cj correspond to regions with exposure
slopes facing North or with steep slopes.

The right panel in Figure 10 shows the residuals obtained by subtracting the non-
parametric estimate of λ1 in Figure 3 (normalized so that it integrates to one) from λ1(u; θ̂1,1).
The residual image shows zero values in the areas where the presence of fires is scarce. In
such areas both the parametric and non-parametric estimates of λ1 agree. For the areas
where fire presence was more intense, the residual image does not show a systematic pattern
of positive and negative values. This indicates that both estimators follow with an acceptable
degree of approximation the fire pattern observed in W .

20



Figure 10: Left panel: parametric estimate of λ1. Right panel: corresponding residuals when
the non-parametric estimate in Figure 3 is subtracted.

6.2 Estimation of the residual process parameters

Let θ2 = (σ, δ, ζ), where σ > 0, δ > 0, ζ ∈ (0, 1) are variation independent. As in Section 6.1,
one possibility is to separate into composite likelihoods for respective xW and nT , but now
using the second order product density

ρ(2)((u1, t1), (u2, t2)) = ρ(u1, t1)ρ(u1, t1)g((u1, t1), (u2, t2)).

However, as in Møller and Waagepetersen (2007) we find the numerical computation of
the corresponding score functions and their derivatives to be quite time consuming, and
suggest instead minimizing a ‘contrast’ between the theoretical expressions of the second
order characteristics K∪T (u) and Corr(t) and their non-parametric estimates. Asymptotic
properties of minimum contrast estimates are studied in the stationary case of spatial point
processes in Heinrich (1992) and Guan and Sherman (2007).

The theoretical expression of the correlation function of N,

Corr(t; ζ) = χζ ∗ χ̃ζ(t)/χζ ∗ χ̃ζ(0)

is given by (30), and it depends only on the parameter ζ. The minimum contrast estimate
ζ̂ is the least square estimate obtained by minimizing

t∗−1∑
t=1

[
Corr(t; ζ)− Ĉorr(t)

]2
where Ĉorr(t) is given by (24) when λ2 is replaced by its parametric estimate from Section 6.1.
We obtain ζ̂ = 0.00316. The estimated function Corr(t; ζ̂) is shown in Figure 9, and it is of

a similar form as Ĉorr(t).
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The theoretical expression (32) of the inhomogeneous K-function of X∪T when we replace
ζ by ζ̂ and λ2(t) by its parametric estimate λ2(t; θ̂1,2) is

K∪T (r;σ, δ) = πr2 + δ′
[
1− exp

(
−r2/(4σ2)

)]
where

δ′ = δ ×
∑

t1,t2∈T λ2(t1; θ̂1,2)λ2(t2; θ̂1,2)χζ̂ ∗ χ̃ζ̂(|t1 − t2|)∑
t1,t2∈T λ2(t1; θ̂1,2)λ2(t2; θ̂1,2)

.

Since δ and δ′ are proportional, σ > 0 and δ′ > 0 are variation independent. The minimum
contrast estimate (δ̂′, σ̂) is obtained by minimizing∫ a

0

(
K∪T (r;σ, δ)b − K̂∪T (r)b

)2

dr (36)

where K̂∪T (r) is given by (17) and (20) when λ1 and λ2 are replaced by their parametric
estimates from Section 6.1. Further, a and b are user-specified parameter. Partly following
the recommendations in Diggle (2003), taking a = 25 and b = 1/4, we obtain σ̂ = 6.363 and
δ̂ = 2672.725, corresponding to an intensity ω̂ = 1/δ̂ = 0.000374 for each mother Poisson
process Φs. For larger values a ≥ 25, approximately the same estimates are obtained.

As a model check, Figures 7-8 shows the 95%-inter-quantile envelopes obtained from 39
simulations of the fitted space-time shot-noise Cox process. Figure 7 does not indicate any
misfit, and both figures show a much better fit than for the Poisson model. In Figure 8,
for distances beyond 2.5 Km, the fitted Cox model seems to capture well the second order
characteristics for the point pattern of all fires. Given the size of W , and the size 3.51×2.54
Km of regions over which we have information about the spatial covariates (Section 2.3),
the misfit at distances shorter than 2.5 Km is not surprising. This misfit is also not too
important, since modelling (and prediction) of fire risk at local scale in most cases is of less
interest.

7 Concluding remarks

Forest fires have an important influence on the environment, human health (often leading
to fatalities) and property. As human population grows, it is becoming more important to
design fire management plans. Overall our fitted spatio-temporal shot-noise Cox process
describes well the daily fire patterns in the Blue Mountains from 04/01/1986 to 11/25/1993
by accounting for spatial and temporal covariates as well as for unobserved random effects
(including unobserved covariates). It provides fire ecologists with a useful tool for fire man-
agement plans.

We have demonstrated how various summary statistics, particularly different kinds of in-
homogeneous K-functions, can be constructed and used for exploratory analysis and model
checking. Composite likelihoods and summary statistics have furthermore been used for
obtaining fast estimation procedures. In fact the methodology in the previous sections
may apply easily if the spatial-temporal shot-noise residual term S is replaced by a spatial-
temporal log-Gaussian process, since first and second order moment expressions and simu-
lation of spatial-temporal log-Gaussian processes are well-known. In the sequel we briefly
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discuss how one could further proceed with a (much more time consuming) simulation based
likelihood analysis, including how to make predictions. This will clarify some computational
advantages of using the spatio-temporal shot-noise Cox process over the spatio-temporal
log-Gaussian Cox process.

7.1 Prediction

For a specified (or estimated) spatial-temporal shot-noise Cox process X, it may be of interest
first to predict the unobserved random intensity function Λ given the data XW×T = x, and
second to make daily predictions. Since the relevant conditional distributions are compli-
cated, both predictions will be based on Markov chain Monte Carlos (MCMC) simulations,
which also will be an important ingredient in connection to MCMC based likelihood inference
in Section 7.2.

7.1.1 Predicting the random intensity

For our parametric model, the conditional distribution of XW×T given Λ is specified by the
distribution of XW×T given the mother points {Φt : t ∈ T̃}, where T̃ = {k, . . . ,m} and
k = −18, cf. Section 5. Since this involves infinite many mother points, we consider the
approximation Φ̃W̃×T̃ from Section 3.2. Φ̃W̃×T̃ = {Φ̃t : t ∈ T̃} consists of i.i.d. homogeneous

Poisson processes Φ̃t on W̃ , with intensity ω, and for (u, t) ∈ W × T , we approximate
λ(u, t) by λ̃(u, t) given in (7). Let yt ⊂ W̃ denote a finite point pattern (corresponding to
a realization of Φ̃t), and set y = {yt : t ∈ T̃}. Conditional on the data x, with respect to
the distribution defined by i.i.d. unit rate Poisson processes on W̃ and indexed by T̃ , the
conditional density of Φ̃W̃×T̃ is given by

p(y|x) ∝

[∏
t∈T

exp

(
−
∫
W

λ̃(u, t) du

) ∏
u∈xt

λ̃(u, t)

]∏
t∈T̃

ωn(yt)

 (37)

where λ̃(u, t) is obtained by replacing each Φ̃s in (6) by ys. The predictive distribution of the
unobserved intensity function ΛW×T given the data is then approximated by (37). Note that
in (37), for at least one t ∈ T̃ , yt has to be non-empty (yt 6= ∅), unless we had the unusual
situation that the data x was empty. Note also that for each t ∈ T̃ , the ‘full conditional’
of (37), i.e. the conditional distribution of Φ̃t given both all Φ̃s = ys with s ∈ T \ {t} and
XW×T = x, has density

p(yt|ys, s 6= t, x) ∝ ωn(yt)
∏
t′∈T

exp

(
−
∫
W

λ̃(u, t′) du

) ∏
u∈xt′

λ̃(u, t′). (38)

To simulate from (37), we may extend the Metropolis-Hastings algorithm for spatial shot-
noise Cox processes studied in Møller (2003) to spatio-temporal shot-noise Cox processes.
The extension is a Metropolis-within-Gibbs algorithm, using e.g. a systematic updating
scheme by running through t ∈ T and updating from each full conditional (38) using a
birth-death Metropolis-Hastings algorithm (Geyer and Møller, 1994; Geyer, 1999; Møller
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and Waagepetersen, 2003). For example, we may let a birth proposal happen with proba-
bility 0.5, where the new born mother point in W̃ has a density f(y) which is proportional
to an extension of λ1(y) to W̃ , while a death proposal consists of omitting a uniformly
selected point from the existing mother points. The acceptance probability of the pro-
posal is then given as in the above-mentioned references. It can easily be calculated, since
we can easily calculate the conditional density 37, as we can easily successively calculate
λ̃(u′, t′) = λ1(u

′)λ2(t
′)S̃(u′, t′) because

S̃(u′, t′) = δ
∑
s∈T̃

∑
y∈ys

φ
(2)

σ2 (u′ − y)χζ(t
′ − s) (39)

is a sum. For instance, in case of a birth proposal y′t = yt ∪ {u}, we update λ̃ by

λ̃new(u′, t′) = λ̃old(u′, t′) + λ1(u
′)λ2(t

′)δφ
(2)

σ2 (u′ − u)χζ(t
′ − t).

Stability properties of the Metropolis-within-Gibbs algorithm (irreducibility, aperiodicity,
and various convergence properties) follow by similar arguments as in Møller (2003). Com-
pared to the case of a spatio-temporal log-Gaussian Cox process, where a spatio-temporal
extension of the Langevin-Hastings (or Metropolis adjusted Langevin) algorithm from Møller
et al. (1998) has been used in Brix and Møller (2001), Brix and Diggle (2001, 2003), and
Diggle et al. (2005), the Metropolis-within-Gibbs algorithm for the spatio-temporal shot-
noise Cox process is much simpler and, as previous experience for the spatial case (Møller
and Waagepetersen, 2004, 2007) indicates, it may be expected to be much faster.

7.1.2 Predicting the future

Assume that ϕ(u, t) = 0 whenever t < 0. This is satisfied for our parametric spatial-temporal
shot-noise Cox process.

Consider first the case of making a prediction for ‘tomorrow’ (i.e. at time m+1) given the
data x. Assume that Φ̃W̃×T̃ has already been predicted, cf. Section 7.1.1. First we simulate a

realization of Φ̃m+1. Since Φ̃m+1 is a Poisson process which is independent of (Φ̃W̃×T̃ ,XW×T ),
this simulation step is very much easier than for a spatio-temporal log-Gaussian Cox process
model which involves the Metropolis-Langevin algorithm. Second, conditional on realizations
of both (Φ̃W̃×T̃ ,XW×T ) and Φ̃m+1, we can easily simulate Xm+1∩W , since it is approximately

a Poisson process with intensity function λ̃(u,m+ 1), u ∈ W . If Mm+1 is the mean number
of missing points of this approximation, then Mm+1 is given by (8) or (33) when we replace
T in these equations by m+ 1.

Similarly, at time m+2, when we have predicted (Φ̃W̃×T̃ , Φ̃m+1,Xm+1∩W ), we can easily

make predictions of first Φ̃m+2 and second Xm+2 ∩W . And so on at times m+ 3,m+ 4, . . .,
where of course the error done by the approximations accumulates.

7.2 Simulation based likelihood inference

For a spatio-temporal log-Gaussian Cox process, Diggle et al. (2005) and Diggle (2007) briefly
discuss approximate maximum likelihood estimation based on MCMC procedures as treated
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in Møller and Waagepetersen (2004). A missing data approach is used, where ΛW×T is the
missing data, and so MCMC simulations are based on the Langevin-Hastings algorithm for
the conditional distribution of ΛW×T given XW×T = x. For our spatio-temporal shot-noise
Cox process, the missing data would instead be the mother points which may generate off-
spring equal to the data x, or in practice we consider instead Φ̃W̃×T̃ as an approximation
of these mother points. Then MCMC simulations are expected to be easier and faster, cf.
Section 7.1.1. However, for both types of Cox models, due to the very complicated likeli-
hood, it may not be straightforward to find the approximate maximum likelihood estimate,
which may involve a combination of Newton-Raphson and estimation procedures for ratios
of unknown normalizing constants, such as importance, bridge and path sampling, cf. Møller
and Waagepetersen (2004).

As pointed out in Møller and Waagepetersen (2007), at least from a computational view
point, Bayesian MCMC inference for Cox processes, and particularly shot-noise Cox pro-
cesses, is often easier than maximum likelihood inference. For our spatio-temporal shot-noise
Cox process, we would then need to impose a prior on the unknown parameter θ consist-
ing of regression parameters and the parameters of the shot-noise residual process. The
missing data is incorporated into the posterior distribution, which will then be the given
by the conditional distribution of jointly θ and W̃ × T̃ given the data x. We suggest to
use a Metropolis-within-Gibbs algorithm where we alternate between updating Φ̃W̃×T̃ |(θ,x)

and θ|(Φ̃W̃×T̃ ,x). The first type of update is again as described in Section 7.1.1, while we
imagine that the second type of update would be a kind of Metropolis random walk update.

7.3 Summary statistics and residuals

Since our spatial-temporal shot-noise Cox process is inhomogeneous in both time and space,
we have considered various inhomogeneous K-functions, cf. Section 4, and used these for
model fitting and checking, cf. Section 6. Other kind of summary statistics, e.g. summary
statistics based on inter-point distances such as F , G, and J-functions, have only been
defined in the homogeneous case, and it seems not possible to extend them in a natural way
to the inhomogeneous case, see Møller and Waagepetersen (2004) and the references therein.
Alternatively, residuals may be used, as exemplified in Figure 10 and further discussed in
Baddeley et al. (2005), Waagepetersen (2005), and Møller (2008).
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