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Uniform pseudo-random number generators

Stochastic simulation methods rely on the possibility of producing (with a computer) a sup-
posedly endless flow of iid (i.e. independent and identically distributed) random variables
which are uniformly distributed on [0, 1]. The uniform random variables are produced by a
so-called random number generator, also called a pseudo-random number generator since
in reality anything produced by a computer is deterministic:

Definition A uniform pseudo-random number generator is an algorithm which, starting
from an initial value U0 ∈ [0, 1] and a transformation D, produces a sequence U0, U1, . . . ∈
[0, 1] with Ui+1 = D(Ui), i = 0, 1, . . . and such that for all n, (U1, . . . , Un) reproduces
the behaviour of an iid sample (V1, . . . , Vn) of uniform random variables when compared
through a usual set of tests.

The following exercises aim at giving an introduction to uniform random number gene-
ration; we shall later see how to use this for simulating random variables from standard
distributions as well as more complicated distributions. For further details, see e.g.

Ripley, B.D. (1987). Stochastic Simulation, Wiley.

Gentle, J.E. (1998). Random Number Generation and Monte Carlo Methods, Springer.

and the references therein.

Exercise 1 (Multiplicative congruential generators)

In many cases a multiplicative congruential generator with parameters a,m is used (more
precisely this is often just one ingredient of a more complicated generator) where a ≥ 1

1



and m ≥ 2 are integers. This produces a sequence of integers by the recursion

X0 ∈ {1, . . . ,m − 1} (1)

Xi+1 = aXi mod m. (2)

Here X0 is called the seed. The associated sequence of approximately iid uniform random
variables is given by Ui = Xi/m. Note that a and m most be chosen such that Xi �= 0 for
all i (otherwise it gets stuck as Xi = 0 for all sufficiently large i). The choice of a and m is
of course crucial for the quality of the generator.

1. Show that if a and m have no common prime factor, then Xi �= 0 for i = 0, 1, . . ..
Hint: Argue that if Xi+1 = 0, then aXi = km for some integer k > 0, and hence we
obtain a contradiction.

2. Show that any uniform pseudo-random number generator will repeat itself, i.e.

(Ui, Ui+1, Ui+2 . . .) = (Ui, . . . , Ui+p−1, Ui, . . . , Ui+p−1, . . .)

for some integers 0 ≤ i < p ≤ m; if p is the smallest such integer, it is called the
period.

3. Implement in R a multiplicative congruential generator where it is possible to use
different values of a,m and X0.
Hint: Make first a function (see the R manual) for modulus operation (here the R-
function floor may be helpful), and then a function which takes a,m,X0, and n as
input and returns a vector of length n containing (U1, . . . , Un).

4. Generate U1, . . . , U1000 and show a histogram of these 1000 values using the R fun-
ction hist, setting first a = 3,m = 31, X0 = 2 and next a = 65539,m = 213, X0 =
210, 25, 2.
Hint: The command par(mfrow = c(2,2)), which produces a 2x2 array of
graphs in a plot window, might be useful.

Exercise 2 (Evaluating a uniform pseudo-random number
generator)

There exist numerous more or less advanced tests and graphical methods for checking
whether a sequence U1, . . . , Un can be considered as effectively being iid uniform random
variables. In the sequel we just consider a few simple methods.
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1. In general it is hard to test if U1, . . . , Un are identically distributed, since we have only
one realisation of each random variable Ui. For instance, we can plot the sample path
(1, U1), . . . , (n, Un) and study if there appears to be any systematic fluctuation. Let
n = 1000 and produce such plots in R using the multiplicative congruential generator
with first a = 3,m = 31, X0 = 2 and next a = 65539,m = 213, X0 = 210, 25, 2.

2. Independence can be checked by plotting Xj+i against Xj for j = 1, . . . , n− i where
i is an integer such that 1 ≤ i < n (usually i is not too close to n); this is called a
lag-i plot, as it can be used for checking dependencies i time steps back. Make lag-1
and lag-2 plots for the sequences U1, . . . , Un considered in the previous question.
Hint: plot(U[1:(n-i)],U[(i+1):n])

3. To check if U1, . . . , Un are uniformly distributed, a histogram can be produced using
the hist-function in R. We tried this in Exercise 1.5 above—what do you expect it
should look like?

4. Another useful tool is a comparison of the theoretical distribution function with the
empirical distribution function by a so-called quantile-quantile (or Q-Q) plot as de-
fined below. Recall first that the a-quantile of a (generic) distribution function F is
defined by

Q(a) = inf{x|F (x) ≥ a}, 0 ≤ a ≤ 1,

that is the smallest real number x such that F (x) ≥ a.
a) Discuss what the a-quantile is for a continuous random varaibale and for a discrete
random variable.
b) Show that in the case of the uniform distribution,

Q(a) = a, 0 ≤ a ≤ 1. (3)

c) The empirical distribution function based on a sequence of identically distributed
random variables X1, . . . , Xn is defined by

F̂n(x) =
1

n

n∑
i=1

1{Xi≤x}

and the Q-Q plot is the graph

(Q(F̂n(Xi)), Xi)i=1,...,n.

Argue that because of (3) the points in a Q-Q plot are expected to be close to the
identity line if Xi is distributed in accordance with F .
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5. Implement in R a function qqunif, which produces a Q-Q plot based on uniform
random variables U1, . . . , Un on [0,1].
Hint: For simplicity assume all the Ui are different and use the R functions qunif
and sort.

6. Use qqunif(runif(1000)) (we study the function runif in more detail in
Exercise 3 below) a number of times to get an idea about what you expect the Q-Q
plot should look like when you consider 1000 iid uniformly distributed numbers on
the interval [0,1]. Compare with Q-Q plots obtained for the sequences U1, . . . , Un

considered above.
Hint: The command abline(0,1) superimposes the identity line.

7. What are the R-functions qqnorm and rnorm doing?

8. Try the command qqnorm(rnorm(100)) a number of times and discuss the re-
sults.

Exercise 3 (Uniform pseudo-random number generators in
R)

R uses as default a so-called twisted tausworth generator, which applies by the command
RNGkind(). This and other uniform pseudo-random number generators in R are descri-
bed by the help page for the function .Random.seed, where it is also described how the
value of the seed can be fixed so that realisations of uniform pseudo-random numbers can
be used more than once.

1. Discuss why it could be interesting to reuse uniform pseudo-random numbers.

2. Read the help page for runif. What simulates
a) runif(100) and
b) runif(100,min=1,max=3).

3. Test the generator runif by the methods in Exercise 2.
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