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Data examples
Crimes in a part of Chicago



566 spines observed on one branch of the dendritic
tree of a rat neuron

Dendrites are branching filaments which extend from the main
body of a neuron (nerve cell) to propagate electrochemical
signals. Spines are small protrusions on the dendrites.



Linear network
L = ∪m

i=1Li is a linear network if
I m <∞,
I each Li ⊂ Rk is a closed line segment of length

li ∈ (0,∞),
I Li ∩ Lj is either empty or an endpoint of both Li and Lj

whenever i 6= j ,
I L is a path-connected set.

Natural measure is arc length measure dL: For (Borel) sets
A ⊆ L,

arc-length(A) =
∫

A
dL(u) =

m∑
i=1

length(A ∩ li).



Extension
This may be extended to the more abstract case of a
graph with Euclidean edges (Anderes, Møller & Rasmussen,
2020), i.e., graphs with edges viewed as curve segments and
allowing tunnels and bridges...

A graph with Euclidean edges (not a linear network):

We avoid this generalization for ease of presentation and since
statistical methods have (so far) only been developed for the
case of linear networks.



Briefly about point process models (more later)
There has been a particular focus on developing point process
models on L where the pair correlation function is isotropic with
respect a given metric d on L: g(x , y) = g0(d(u, v)), u, v ∈ L.

This is satisfied for a Poisson process (g = 1) but not for other
Gibbs point processes because of boundary effects.

The use of d(u, v) = ‖u − v‖ (Euclidean metric) is usually
unnatural.

Though it is often sensible to d = geodesic metric (Okabe &
Sugihara, 2012), then ‘point process models with an isotropic
pcf are rare’ (Baddeley, Nair, Rakshit & McSwiggan, 2017).

Later in this talk: construct various Cox process models s.t. g
becomes isotropic but d needs to be something else ...



Metrics
We have two cases of natural metrics in mind: d is
I the geodesic metric dG
I or the resistance metric dR (Anderes, Møller & Rasmussen,

2020): In brief, viewing L as an electrical network with
resistor li at edge Li , i = 1, . . . ,m, then dR(u, v) is the
effective resistance between u and v as obtained by
Kirkhoff’s laws. (???? Technical details follow !!!!)

As we shall see, dR has many advantages over dG when
I developing models for isotropic covariance

functions/Gaussian processes
I used for a number of point process models with g isotropic

w.r.t. dR (and also dG if L is a tree).



WARNING
The following 6 pages of slides provide the technical details on
how to define and calculate dR.

This is just to make the technical inclined audience happy – and
actually also to show that it is not difficult to make calculations.

Do not worry if you get lost – then just accept there is a
definition and a way of making calculations.

I’ll not spend time on it today!



Classic resistance metric dV on the vertex set

The linear network induces a graph G = (V ,E ).

The resistance metric on L (dR) is an extension of the classic
(effective) resistance metric dV on V : For every u, v ∈ V ,

dV(u, v) = Var(Z0(u)−Z0(v)) = Σ(u, u) + Σ(v , v)−2Σ(u, v)

where Z0 = {Z0(u) | u ∈ V } is Gaussian with mean zero and
covariance matrix Σ = ∆−1 with ∆ a ‘Laplacian matrix’ defined
as follows.



Classic resistance metric dV (cont.)
Let ∼ be the neighbour relation on V and u0 ∈ V an arbitrarily
chosen vertex (the ‘origin’) and define a ‘conductance function’
by

con(u, v) = 1/‖u − v‖ if u ∼ v , con(u, v) = 0 otherwise,

and the sum of the conductances associated to the edges
incident to vertex u,

c(u) =
∑

w∈V : w∼u
con(u,w),

and ∆ by

∆(u0, u0) = 1 + c(u0),
∆(u, u) = c(u) if u 6= u0,

∆(u, v) = −con(u, v) if u 6= v .



Resistance metric dR on L
Extend Z0 by linear interpolation to a mean zero Gaussian
process (GP) on L: If the edge Li has endpoints ai and bi ,

Z0(u) = ‖u − bi‖
li

Z0(ai) + ‖u − ai‖
li

Z0(bi) for u ∈ Li .

Let Z1, . . . ,Zm be independent mean zero GPs so that Zi = 0
outside Li , and Zi on Li is a Brownian bridge with

Cov(Zi(u),Zi(v)) = min{‖u−ai‖‖v−bi‖, ‖v−ai‖‖u−bi‖}/li .

Then, for every u, v ∈ L,

dR(u, v) = Var
( m∑

i=0
Zi(u)− Zi(v)

)
.



Calculation of dR

For any u ∈ Lj and v ∈ Li , let

s = ‖u − aj‖, t = ‖v − ai‖, Ai = dV(ai , bi)/l2i − 1/li ≤ 0

where Ai = 0 ⇔ Li is the only path connecting ai and bi .

(A) If i = j then

dR(u, v) = 1(t ≥ s)
[
Ai(t − s)2 + t − s

]
+ 1(t ≤ s)

[
Ai(t − s)2 + s − t

]
.

As a function of t: linear (Ai = 0) or quadratic (Ai < 0) on
[0, s] and [s, li ], continuous, differentiable except for t = s.



Calculation of dR (cont.)
(B) If i 6= j then

dR(u, v) = Ait2 + Bij(s)t + Cij(s)

where

Bij(s) = 1− 2
li

[Σ(ai , ai)− Σ(ai , bi)−
lj − s
lj

Σ(aj , ai)+

lj − s
lj

Σ(aj , bi)−
s
lj

Σ(bj , ai) + s
lj

Σ(bj , bi)]

and

Cij(s) =(lj − s)2

l2j
Σ(aj , aj) + s2

l2j
Σ(bj , bj) + 2s(lj − s)

l2j
Σ(aj , bj)+

Σ(ai , ai)− 2 lj − s
lj

Σ(aj , ai)− 2 slj
Σ(bj , ai) + s(lj − s)

lj
.



Some results
If all vertices are of order two, L is isomorphic to a circle, so we
say that L is a loop.

If there is no loop, we say that L is a tree.
Theorem

(A) The definition of dV does not on the choice of
origin u0 ∈ V , and dR(u, v) = dV(u, v) if
u, v ∈ V .

(B) Both dR and dG are metrics on L, and their
definitions are invariant to splitting a line segment
Li into two line segments.

(C) dG ≥ dR, with equality if and only if L is a tree.
(D) If G is a loop, then

dR(u, v) = dG(u, v)− dG(u, v)2/
∑m

i=1 li .



Gaussian processes on L

Let Y = {Y (u) | u ∈ L} be a (real) Gaussian process (GP).

It is determined by the mean function µ(u) = EY (u) and the
covariance function

c(u, v) = Cov(Y (u),Y (v)).

It is well-defined iff c is symmetric and positive definite, i.e.,
n∑

j,`=1
aja`c(uj , u`) ≥ 0 for all a1, . . . , an ∈ R, n = 1, 2, ...



Isotropic covariance functions

Want
c(u, v) = c0(d(u, v)) for all u, v ∈ L

since then we can construct isotropic GPs and hence – as we
shall see – point process models with isotropic pair correlation
functions.

We assume σ2 = c0(0) > 0 and consider the
correlation function

r0(t) = c0(t)/σ2

meaning that r0(d(u, v)) has to be strictly positive definite over
(u, v) ∈ L× L.



Examples of parametric models

r0(dR(u, v)) is strictly positive definite over (u, v) ∈ L× L in
the following cases (conditions on L are needed if instead
distance is measured by dG):

Model Correlation function r0(t) Range of parameters
Powered exponential exp (−tα/φ) 0 < α ≤ 1
Matérn 21−α

Γ(α)

(√
2α t

φ

)α
Kα
(√

2α t
φ

)
0 < α ≤ 1

2
Generalized Cauchy (1 + ( t

φ )α)−τ/α τ > 0, 0 < α ≤ 1
Dagum 1− (( t

φ )τ/(1 + ( t
φ )τ )) α

τ 0 < τ ≤ 1, 0 < α ≤ 1

Table 1: Here, Γ is the gamma function, Kν is the modified Bessel
function of the second kind, φ > 0 is a scale parameter, τ is a shape
parameter, α is a smoothness parameter, and the range of (τ, α)
depends on the model.



Isotropic and completely monotone covariance
functions

In all examples, r0 will be a completely monotone function, i.e.,

r0 ≥ 0 and is continuous on [0,∞)

and for j = 1, 2, . . . and all u > 0

the j-th derivative r (j)
0 (u) exists and (−1)jr (j)

0 (u) ≥ 0.

Bernstein’s theorem: r0 is completely monotone if and only if it
is the Laplace transform of a non-negative random variable S:
for every t ≥ 0,

r0(t) = E exp(−tS) where S ≥ 0.



Examples...
... of completely monotone correlation functions r0 and
corresponding S:

For 1)-2) τ > 0, φ > 0 and 3) ψ > 0, χ > 0, λ ∈ R:

1) r0(t) = (1 + t/φ)−τ , S ∼ Γ(τ, φ) (inverse scale parameter φ).

2) r0(t) = 2φτ
Γ(τ)(t/φ)τ/2Kτ (2

√
tφ), S ∼ Γ−1(τ, φ).

3) r0(t) = (1 + 2t/ψ)−λ/2Kλ(
√

(2t + ψ)χ)
Kλ(
√
ψχ)

and S ∼ generalized inverse Gaussian distribution with pdf

(ψ/χ)λ/2

2Kλ(
√
ψχ)

sλ−1 exp(−sψ/2− χ/(2s)), s ≥ 0.



1-sums of linear networks
L is a 1-sum of L1 = L1 ∪ . . . ∪ Lj and L2 = Lj+1 ∪ . . . ∪ Lm if
L1 and L2 are linear networks with

L1 ∩ L2 = {u0} (a single point)
d(u, v) = d(u, u0) + d(v , u0) whenever u ∈ L1 and v ∈ L2

(impossible if d is usual Euclidean distance).

● ● ●

Induction: L = L1 ∪ . . . ∪ Ln is a 1-sum of L1, . . . ,Ln if L is a
1-sum of L1 ∪ . . . ∪ Ln−1 and Ln.



Some main results

(Anderes, Møller & Rasmussen, 2022, Theorems 1 and 2)

Theorem
Let r0 : [0,∞) 7→ R be completely monotone and r0 6= 1: We
have
I r0(dR(u, v)) is strictly positive definite over (u, v) ∈ L× L,
I if L is a 1-sum of trees and loops, then r0(dG(u, v)) is

strictly positive definite over (u, v) ∈ L× L,
I if there are three distinct paths between two points on L,

then there is some φ > 0 so that exp(−dG(u, v)/φ) is not
positive definite over (u, v) ∈ L× L.



Exercise

Construct an example of a linear network which is forbidden for
dG (in the sense of the last statement in the theorem above).



Simulation of GPs on linear networks

Let Y = {Y (u) | u ∈ L} be a mean zero GP on L.

A straightforward algorithm:
I select finite subsets Dj ⊂ Lj , j = 1, . . . ,m

I simulate Y restricted to D = V ∪ D1 . . . ∪ Dm (e.g. using
Choleski decomposition)

I for u 6∈ D, approximate Y (u) by the average of those
Y (v) where v ∈ D is closest to u (‘closest’ with respect to
the given metric d or perhaps better dG).

Disadvantage: the dimension of Y can be large and hence
Choleski decomposition (as well as other methods) can be slow.



A faster simulation algorithm for GPs on trees

First, we need some terminology: Let L be a tree, pick an
arbitrary origin u0 ∈ V , and set G0(u0) = {u0}.
I Call G1(u0) = {v ∈ V : u0 ∼ v} the first generation to u0.
I Succeed for j = 2, 3, . . . to obtain the second, third, ...

generations G2(u0),G3(u0), ... to u0.
I For the GP Y = {Y (w) |w ∈ L} constructed in the

following theorem, if u ∈ Gj−1(u0), v ∈ Gj(u0), and u ∼ v ,
define

Y (u, v) = {Y (w) : w ∈ (u, v ]}

where (u,w ] is the half-open line segment with endpoints
u and v so that u is excluded and v is included.



A faster simulation algorithm (cont.)
Theorem
Suppose that L is a tree, and that s > 0 and σ > 0. Then
Y = {Y (u) | u ∈ L} constructed as follows is a mean-zero GP
with exponential covariance function
c(u, v) = σ2 exp(−sd(u, v)) where d = dG = dR.
I For w = u0, generate Y (w) ∼ N(0, σ2).
I For j = 1, 2, . . ., conditioned on all the Y (w) so far

generated, generate independent GPs Y (u, v) for all
u ∈ Gj−1(u0) and v ∈ Gj(u0) with u ∼ v, where Y (u, v)
depends only on Y (u) and for every w ,w1,w2 ∈ (u, v ] we
have

E[Y (w) |Y (u)] = e−‖w−u‖sY (u)
Cov[Y (w1,w2) |Y (u)] = σ2

(
e−‖w1−w2‖s − e−‖w1−u‖s−‖w2−u‖s

)
.



Simulation of CPs if c is not the exponential
Theorem
Suppose d is a metric on L so that (u, v) 7→ exp(−sd(u, v)) for
(u, v) ∈ L2 is a well-defined correlation function for all s > 0,
and let Y be a mean-zero GP on L with covariance function

c(u, v) = σ2E exp(−d(u, v)S)

where σ > 0 and S ≥ 0 is a random variable. For an integer
n > 0 and i = 1, . . . , n, generate a copy Si of S and a
mean-zero GPs Yi on L with covariance function
σ2 exp(−Sid(u, v)) so that (S1,Y1), . . . , (Sn,Yn) are
independent. Calculate Ȳn = ∑n

i=1 Yi/n. Then
√
nȲn is a

mean-zero stochastic process on L with covariance function c.
As n→∞,

√
nȲn approximates Y in the sense that any finite

dimensional distribution of
√
nȲn converges in distribution

towards the corresponding finite dimensional distribution of Y .



Remarks

The theorem allows simulation of any GP with a covariance
function of that form, provided a simulation algorithm for S is
available and the metric d satisfies the condition in the theorem.

For the case of a tree and d = dG = dR, this gives a fast
simulation algorithm when combined with the algorithm in the
previous theorem.

For other cases it may be faster simply to use the straight
forward algorithm, provided of course that d satisfies the
condition in the theorem (so it may work for d = dR but not
for d = dG).
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Figure 1: Simulation of zero mean GPs on the street network.



Details

Well-defined covariance functions c(u, v) = r0(dR(u, v)) since
the resistance metric has been used!

Top row: When r0(t) = exp(−st) with parameter s = 0.1 or
s = 0.01.

Middle row: When r0 is a mixture of exponential correlation
functions with s following a gamma distribution or inverse
gamma distribution, where in both cases the mean of s is 0.01.

Bottom row: For plots 2–4, the corresponding pdf for S and
correlation functions, where the curves in black, red, and green
correspond to plots 2–4, respectively. NB: The side length of a
square surrounding the network ≈ 1000 feet, but
max dR ≈ 675 feet.



Point processes on L

In brief, a point process on L is a random finite subset X ⊂ L.

X is Poisson process with intensity function ρ : L 7→ [0,∞) if
I #X ∼ Poisson(

∫
ρ(u) dL(u))

I the locations of the points in X do not depend on #X and
they are i.i.d., each point having a density ∝ ρ (w.r.t. dL).



Reduced Palm distribution
For u ∈ L, let Xu ∼ the reduced Palm distribution of X at u:
Intuitively, Xu follows the distribution of X \ {u} conditioned on
that u ∈ X . (Formally:

E
∑
u∈X

h(X \ {u}, u) =
∫
ρ(u)Eh(Xu, u) dL(u)

for any non-negative (measurable) function h.)

If X has density f w.r.t. the unit rate Poisson process and
ρ(u) > 0, then Xu has density

fu({u1, . . . , un}) = f ({u, u1, . . . , un})/ρ(u).

If X is Poisson process with intensity function ρ, then X and Xu
are identically distributed (whenever ρ(u) > 0).



Moment and invariance properties
X has n-th order intensity function ρ(u1, . . . , un) if

E [N(A1) · · ·N(An)] =
∫

A1
· · ·

∫
An
ρ(u1, . . . , un) dL(u1) · · · dL(un)

is finite for any pairwise disjoint bounded A1, . . . ,An ⊂ L, so
ρ(u) is the usual intensity function and

g(u, v) = ρ(u, v)
ρ(u)ρ(v)

is the pair correlation function (pcf).

We talk about stationary point processes on Euclidean spaces
and isotropic point processes on spheres. In contrast, on a
linear network there is no natural (transitive) group action.

One pays attention to isotropic pair correlation functions

g(u, v) = g0(d(u, v)).



Properties of the pcf

For a Poisson process, ρ(u1, . . . , un) = ρ(u1) · · · ρ(un), so
g = g0 = 1.

One often interprets
I g(u, v) ≤ 1 as repulsion/inhibition/regularity
I g(u, v) ≥ 1 as attraction/clustering/aggregation,

though care should be taken if u and v are ‘distant apart’.



Non-parametric estimation

Non-parametric estimation of ρ and g0: See Baddeley, Rubak &
Turner (2015), Rakshit, Nair & Baddeley (2017) and Rakshit,
Davies, Moradi, McSwiggan, Nair, Mateu & Baddeley (2019).

Re. the estimation of g0, kernel methods are used but they may
be sensible to the choice of bandwidth. Popular alternatives are
given by estimators of the K -function below, however, since K
is an accumulated versions of g0, it may be harder to interpret.

For the specific parametric models in this presentation, we have
simple expressions for g0 but not for K . (Therefore, if time
does not allow, the following 6 pages about K may be skipped!)



K -function (following Rakshit, Nair & Baddeley,
2017)

Suppose X is δ-correlated, i.e., g(u, v) = g0(δ(u, v)) is isotropic
(we switch from d to δ since we consider derivatives below).

Let R = infu∈L supv∈L δ(u, v), then

K (t) =
∫ t

0
g0(r) dr , 0 ≤ t ≤ R .

So K depends only on g0, but g depends on both g0 and δ.

If X is a Poisson process, then K (t) = t.



K -function (cont.)
In terms of Palm probabilities, for dL-almost all u ∈ L with
ρ(u) > 0,

K (t) = 1
|L|E

∑
v∈Xu

1(δ(u, v) ≤ t)wδ(u, δ(u, v))
ρ(v) ,

where |L| = ∑m
i=1 li and wδ is a weight:

I wδ is defined on the next slide,
I it accounts for the geometry of the linear network (when

shifting from arc length measure on L to Lebesgue
measure on the positive half-line, cf. Rakshit et al., 2017,
Propositions 1 and 2),

I it makes it hard to interpret K .



Definition of the weight

Suppose δ is regular: for every u ∈ L, δ(u, v) is a continuous
function of v ∈ L and there is a finite set N ⊂ L such that for
i = 1, . . . ,m and all v ∈ Li \ N , the Jacobian

Jδ(u, v) = |(d/dt)δ(u, v)|

exists and is non-zero where t = ‖v − ai‖.

Def.: For u ∈ L and 0 ≤ t ≤ R ,

1/wδ(u, t) =
∑

v∈L: δ(u,v)=t
1/Jδ(u, v).



Non-parametric estimation of K

Is carefully studied in Rakshit, Nair & Baddeley (2017)
(still assuming δ is regular): for A ⊆ L of positive arc length
measure,

K (t) = 1∫
A dL(u)E

∑
u∈XA

∑
v∈X\{u}

1(δ(u, v) ≤ t)wδ(u, δ(u, v))
ρ(u)ρ(v)

I Non-parametric estimators are based on omitting the
expectation symbol and elaborating on the right hand side
in order to realize how correction factors can be included
in order to adjust for edge effects...

I Need to calculate wδ!



The weight when δ = dG
Disc w.r.t. dG at radius t = 300 feet:

 

For δ = dG: since JdG = 1,

wG(u, t) = 1/#{v ∈ L | δ(u, v) = t}.



The weight when δ = dR

For all u ∈ Lj and v ∈ Li with u 6= v , wdR(u, v) is quickly
calculated from its definition and our previous expression of
dR(u, v):

If s = ‖u − bj‖ and t = ‖v − ai‖ then d
dtdR(u, v) is given by

2Ai(t − s) + 1 if i = j , t > s,
2Ai(t − s)− 1 if i = j , t < s,
2Ait + Bij(s) if i 6= j .



Cox and Gaussian processes

In the following we construct Cox point processes generated by
underlying GPs s.t. g is isotropic:

Let X be a Cox process driven by

Λ(u) = ρ(u)Λ0(u), u ∈ L,

where
I the intensity ρ(u) may depend on covariate information
I the residual process Λ0 accounts for unobserved covariates

(Møller & Waagepetersen, 2007) and is specified by a
transformation of one or more GPs s.t. EΛ0(u) = 1, u ∈ L.



Cox and Gaussian processes (cont.)

In general the likelihood is intractable but moment properties
will be known:

ρ(u1, . . . , un) = ρ(u1) · · · ρ(un)E [Λ0(u1) · · ·Λ0(un)] .

The models are typically attractive, i.e., g ≥ 1.

Usually, we have even more:
For any pairwise disjoint bounded (Borel) sets
A1,A2, . . . ,An ⊂ L,

E [N(A1) · · ·N(An)] ≥ E [N(A1) · · ·N(Ai)]E [N(Ai+1) · · ·N(An)]

(the counts are positively correlated at all orders).



Exercise

Verify the formulas on the previous slide and perhaps some of
those for LGCPs, ICPs, and PPPs as given on the next slides.



Log Gaussian Cox process (LGCP)

Let Y = {Y (u) | u ∈ L} be a GP with mean function µ and
covariance function c .

X is a LGCP (Møller, Syversveen & Waagepetersen, 1998) if

Λ0(u) = exp(Y (u))

and µ(u) = −c(u, u)/2 for all u ∈ L (thus EΛ0(u) = 1).

I D(X ) is determined by ρ and c or equivalently g = exp(c).
I g is isotropic iff c is isotropic.
I Xu is a LGCP with int. fct. ρ(v |u) = ρ(v) exp(c(u, v)) and

pcf g(v ,w |u) = g(v ,w) = exp(c(v ,w)) for v ,w ∈ L
(Coeurjolly, Møller & Waagepetersen, 2017).



Interrupted Cox process (ICP)
Let Y1, . . . ,Yh be i.i.d. zero mean GPs and
Π(u) = exp(−∑h

i=1 Yi(u)2).

X is an ICP (Stoyan, 1979; Lavancier & Møller, 2016) if

Λ0(u) = Π(u)(1 + 2c(u, u))h/2

for all u ∈ L, i.e., EΛ0(u) = 1 and X |Π is an independent
Π-thinning of a Poisson process on L with intensity function
u 7→ ρ(u) (1 + c(u, u))h/2.

I D(X ) is determined by (ρ, c , h).
I g is isotropic iff c is isotropic, in which case

g0(t) =
(

(1 + σ2)2

(1 + σ2)2 − σ4r0(t)2

)h/2

.

I As h increases, the degree of clustering decreases.



Permanental point process (PPP)
Let Y1, . . . ,Yh be i.i.d. zero mean unit variance GPs.

X is a PPP (Macchi, 1975; McCullagh & Møller, 2006) if

Λ0(u) = 1
h

h∑
i=1

Yi(u)2

(more precisely X is a PPP with parameters α = h/2 and
C(u, v) =

√
ρ(u)ρ(v)c(u, v)/α, and a Boson process if α = 1).

I D(X ) is determined by (ρ, c , h), and the degree of
clustering is a decreasing function of α.

I
g(u, v) = 1 + c(u, v)2/α ≤ 1 + 1/α ≤ 3,

showing the limitation of modelling clustering by a PPP.



Permanental point process (cont.)

I For n = 1, 2, . . . and u1, . . . , un ∈ S,

ρ(u1, . . . , un) = ρ(u1) · · · ρ(un)perα[c](u1, . . . , un)/αn,

where we define the α-weighted permanent by

perα[c](u1, . . . , un) =
∑
π

α#πc(u1, uπ1) · · · c(un, uπn)

where the sum is over all permutations π = (π1, . . . , πn) of
(1, . . . , n) and #π is the number of cycles.



Data example 1 (Møller & Rasmussen, 2022)
Crimes in a part of Chicago



Fitting a LGCP model with exp. cov. fct.
We need to use dR in the exp. cov. fct.

Observed and fitted pcf (minimum contrast):
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Model checking: Empirical F , G , J
These are three purely empirical summary functions:
I We skip the formal definitions (see Christensen & Møller,

2020), but obtained by modifying the empirical F -, G-,
and J-functions for inhomogeneous point patterns on a
Euclidean space (introduced by Van Lieshout, 2011) to
linear networks.

I Do not correct for the network geometry, so their shapes
alone can in general not be used to conclude anything
about e.g. the presence of regularity or clustering.

I Still useful tools for providing a global rank envelope, i.e.,
a confidence region for a given test function obtained from
simulations under a fitted model (Myllymäki, Mrkvička,
Grabarnik, Seijo & Hahn, 2017).



Checking fitted LGCP
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0 25 50 75 100 0 25 50 75 100 0 25 50 75 100

0

2

4

6

8

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

r

T
(r

)

Central function Data function

Combined global test: p = 0.155

Figure 2: Concatenation of F̂ , Ĝ , and Ĵ (black solid line) along with
95% global rank envelopes (grey region) and p-value for the
associated global rank envelope test.



Simulation under fitted LGCP
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Data example 2 (Christensen & Møller, 2020)
Spine locations at first 3 dendrite trees: Planar projection (left;
main branch is black), simplified networks embedded in R2

(middle; distances are preserved), and non-parametric kernel
intensity estimates (right).
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Data example (Christensen & Møller, 2020)
Spine locations at next 3 dendrite trees: Planar projection (left;
main branch is black), simplified networks embedded in R2

(middle; distances are preserved), and non-parametric kernel
intensity estimates (right).
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Checking fitted inhomogeneous Poisson processes
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Figure 3: K̂ minus the K -function for a Poisson process (solid line)
along with 95% global rank envelopes (grey region) based on 2499
simulations from the fitted inhomogeneous Poisson process model,
and p-intervals for the associated global rank envelope tests.



ICP model for each dendrite tree
Let

ρ(u) = ρ11(u ∈ main branch) + ρ21(u ∈ side branch)

and

− ln Π = squared zero mean GP, c(u, v) = σ2 exp(−βdG(u, v)).

Estimate
I (ρ1, ρ2) by maximizing the first-order composite likelihood

(Poisson likelihood)
I (σ, β) using a minimum contrast procedure based on g

(performed better than using K or maximizing a
second-order composite likelihood).



Checking fitted ICP models
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1

2

3

5 10 15 5 10 15 5 10 15

r (µm)

Dendrite 1, p−interval: (0.088, 0.099)

F̂(r) Ĝ(r) Ĵ(r)
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Figure 4: Concatenation of F̂ , Ĝ , and Ĵ (black solid line) along with
95% global rank envelopes (grey region) based on 2499 simulations
from the fitted ICP model; and p-intervals for the associated global
rank envelope tests.
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