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Data example
Sky positions of 10546 galaxies outside the Milky Way band.



(cont.)

From the Revised New General Catalogue and Index Catalogue
(RNGC/IC) and considered by Steinicke (2015) and Lawrence
et al. (2016).

Dependence between the points such as spatial clustering
between galaxies?



The k-dimensional unit sphere

Sk = {u ∈ Rk+1 | ‖u‖ = 1}, k = 1, 2, . . .

Main interest: k = 1 (the circle) and k = 2 (the sphere).



Point pattern analysis
Models and tools in Rk and Sk are basically the same as long
as the appropriate analogue is used:

I Homogeneity in Rk means that the point process
distribution is invariant under translation. On the sphere
the corresponding action is a rotation.

I Lebesgue measure on Rk should be replace by surface
measure on Sk .

I Eucledian distance should be replaced by great circle
distance.

This has probably been well-known to people in the field
‘forever’, but never published in a mainstream understandable
way until recently (apart from a short remark in Ripley, 1977).



History

I Robeson, Li and Huang (2014): Def. of K̂ in the
homogeneous case but without theoretical details.

I Lawrence, Baddeley, Milne and Nair (2016): ‘Corrected’
def. of K̂ and taking care of inhomogeneity and boundaries
+ inhomogeneous Thomas process.

I Møller and Rubak (2016): Details on Palm distributions +
functional summaries + DPPs.

I Cuevas-Pacheco and Møller (2018): LGCPs and GPs.

I Møller, Nielsen, Porcu and Rubak (2018): DPPs, in
particular spectral representations.



Natural (transitive) group action is given by
rotations

A rotation is a real (k + 1)× (k + 1) matrix R with RRT = I
and detR = 1. It acts on Sk as a linear map.

If k = 1: For 0 ≤ θ < 2π,

R =
[

cos θ − sin θ
sin θ cos θ

]

If k = 2: See en.wikipedia.org/wiki/Rotation_matrix

en.wikipedia.org/wiki/Rotation_matrix


Natural reference measure: Surface measure ν = νk

For k = 1 and u = (cos θ, sin θ) with 0 ≤ θ < 2π,

dν1(u) = dθ

is the usual Lebesgue measure on [0, 2π).

For k = 2 and u = (sinϑ cosϕ, sinϑ sinϕ, cosϑ) where
ϑ ∈ [0, π] is the polar latitude and ϕ ∈ [0, 2π) is the polar
longitude,

dν2(u) = sinϑ dϕ dϑ.

For k ≥ 2 and u = (v sinϑ, cosϑ) with v ∈ Sk−1 and
ϑ ∈ [0, π],

dνk(u) = sink−1 ϑ dνk−1(v) dϑ.



(cont.)

Let σk = νk(Sk) be the surface area of the unit ball in Rk+1,
then

σk = 2π(k+1)/2

Γ((k + 1)/2) .

Exercise: Verify the formula above when k = 2, using the
definition of ν2.



Further definitions
Natural metric d : Geodesic metric (shortest path distance or
great circle distance)

d(u, v) = arccos(u · v), u, v ∈ Sk ,

where · is the usual inner product, so 0 ≤ d(u, v) ≤ π.

Point process on Sk : a random finite subset X ⊂ Sk ; isotropic
if RX ∼ X for every rotation R .

Its intensity (function) ρ, pair correlation function g (pcf), etc.
are defined as in the Euclidean case but w.r.t. νk .
If g is isotropic, i.e., g(u, v) = g0(d(u, v)), then X is said to be
SOIRI)(second-order intensity reweighted isotropic) and we
define the (inhomogeneous) K -function (for an arbitrary
u ∈ Sk) by

K (t) =
∫

d(u,v)≤t
g0(d(u, v)) dνk(v) for 0 ≤ t ≤ π.



Exercise:

1. Discuss what is meant by ‘random finite subset X ⊂ Sk ’.

2. Verify that SOIRI is equivalent to that g is invariant under
rotations, i.e., g(Ru,Rv) = g(u, v) for all rotations R and all
distinct u, v ∈ Sk if and only if g is of the form
g(u, v) = g0(d(u, v)) for all distinct u, v ∈ Sk .

3. Why is X SOIRI if X is isotropic?

4. Show that

K (t) = σk−1

∫ t

0
g0(ϕ) sink−1 ϕ dϕ.



The Poisson process

‘Usual definition’ of a Poisson process with intensity (function)
ρ...

For a Poisson process, g = 1, so SOIRI and

K (t) = νk(cap with polar longitude t) = σk−1

∫ t

0
sink−1 ϕ dϕ.

Exercise: Show that for a Poisson process,

K (t) = 2π(1− cos t) if k = 2.



Not so uniformly distributed points on the sphere

I As you might know uniformly sampled points on a flat
map doesn’t correspond to uniform points on the sphere:
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K-function for not so uniform points

I A plot of the K -function clearly shows departure
(clustering) from what is expected under complete spatial
randomness:

0 5000 10000 15000 20000

0e
+

00
2e

+
08

4e
+

08

r

K
(r

)

K̂(r)
Kpois(r)

0 5000 10000 15000 20000

−
1.

5e
+

07
−

5.
0e

+
06

5.
0e

+
06

1.
5e

+
07

r

K
(r

)−
K

p
o

is
(r

)

K̂(r) − Kpois(r)
Kpois(r) − Kpois(r)



Proper uniform points on the sphere

I Instead of the previous naive approach the latitude should
be the arccosine of a uniform point in [−1, 1] which gives
a nice homogeneous distribution:
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K-function for proper uniform points on the sphere

I Then the K -function agrees with complete spatial
randomness (notice the completely different scale on the
plot of the difference):
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Reduced Palm distribution
For u ∈ Sk , Xu follows the reduced Palm distribution at u if

E
∑
u∈X

h(u,X \ {u}) =
∫
ρ(u)Eh(u,Xu) dνk(u)

for any non-negative (measurable) function h
(Xu can be arbitrary if ρ(u) = 0).

If D(X ) is absolutely continuous w.r.t. Poisson (int.=1):

f !
x ({x1, . . . , xn}) = f ({x, x1, . . . , xn})/ρ(x).

For a Poisson process X , we have Xu ∼ X .

If X is isotropic, ρ > 0, and Ru rotates u to e = (0, . . . , 0, 1):

Xu ∼ RuXe, P (Xe ∈ F ) = 1
ρσk

E
∑
u∈X

1
[
R>u (X \ {u}) ∈ F

]
.



Exercise
Suppose X is SOIRI. Let A ⊆ Sk (Borel) with νk(A) > 0. It
can be shown that

K (t) = E
∑

u∈X∩A

∑
v∈X\{u}

1(d(u, v) ≤ t)
ρ(u)ρ(v)νk(A)

=
∫

u∈A: ρ(u)>0
E
∑

v∈Xu

1(d(u, v) ≤ t)
ρ(v)νk(A) dνk(u).

1. Using the first formula above, discuss how a non-parametric
estimator K̂ (t) may be obtained if X has been observed within
a window W and ρ is known (or has been estimated).

2. Assuming X is isotropic and ρ > 0, show that
ρK (t) = E

∑
v∈Xe

1(d(e, v) ≤ t)

and interpret ρK (t).



Exercise

Assuming X is isotropic and ρ > 0, discuss how to define F , G ,
and J-functions.



Models
I Gibbs/Markov point processes, LGCPs, cluster point

processes, and DPPs are defined in a similar way as in the
Euclidean case.

I For LGCPs and DPPs we deal with covariance functions:
c : Sk × Sk 7→ C is a complex covariance function if it is
Hermitian and positive (semi-)definite. It is isotropic if
c(u, v) = c0(d(u, v)) for all u, v ∈ Sk ; then c is real. So
c(u, v) = c0(d(u, v)) is a covariance function if and only if
c0 is a real function so that ∑n

i ,j=1 aiajc0(d(ui , uj)) ≥ 0 for
all a1, . . . , an ∈ R and all pairwise distinct u1, . . . , un ∈ Sk .

I The theory for isotropic covariance functions on Sk (mainly
due to classic papers by Schoenberg) differs from that of
stationary covariance functions on Rk – similar parametric
models have different ranges (see ‘linear networks’).

I For DPPs we need spectral representations, where in fact
things become much tractable in the isotropic case of
continuous covariance functions: the orthonormal base is
given by spherical harmonics, see Møller et al. (2018) and
references therein.



Parametric models for c0(r), 0 ≤ r ≤ π

Model Correlation function c0(r) Parameter range
Powered exp. exp (−rα/φ) α ∈ (0, 1], φ > 0
Matérn 2

Γ(ν)

(
r

2φ

)ν
Kν

(
r
φ

)
0 < ν ≤ 1

2 , φ > 0
Gen. Cauchy (1 + ( r

φ
)α)−τ/α φ, τ > 0, α ∈ (0, 1]

Dagum 1− (( r
φ

)τ/(1 + ( r
φ

)τ )) α
τ φ > 0, τ ∈ (0, 1]

multiquadric
(

(1−δ)2

1+δ2−2δ cos r

)τ
δ ∈ (0, 1), τ > 0

Sine power 1− sin(r/2)α α ∈ (0, 2)
Spherical (1 + 1

2
r
φ

)(1− r
φ

)2
+ φ > 0

Askey (1− r
φ

)τ+ φ > 0, τ ≥ 2
C 2-Wendland (1 + τ r

φ
)(1− r

φ
)τ+ φ ∈ (0, π], τ ≥ 4

C 4-Wendland (1 + τ r
φ

+ τ2−1
3

r2

φ2 )(1− r
φ

)τ+ φ ∈ (0, π], τ ≥ 6

Table 1: Here Γ is the gamma function, Kν is the modified Bessel
function of the second kind, and t+ := max{t, 0} for t ∈ R.



Comments to Table 1

For the powered exponential, Matérn, generalized Cauchy,
Dagum, multiquadric, and sine power models, k ∈ {1, 2, . . .},
whilst for the spherical, Askey, C 2-Wendland, and C 4-Wendland
models, k ∈ {1, 2, 3}.

For each model, the specified parameter range ensures that
c0(r) is well-defined, cf. Gneiting (2013), and hence for any
σ2 > 0, c(r) := σ2c0(r) is an isotropic covariance function.



Analysing the sky positions of galaxies
Sky positions of 10546 galaxies outside the Milky Way band.



Cox process
Conditional on a non-negative process Λ = {Λ(u) | u ∈ Sk}, X
is assumed to be a Poisson process with intensity function Λ.

This Cox process is well-defined if
∫
Sk EΛ(u) dνk(u) <∞; then

the intensity function is ρ(u) = EΛ(u).

Pair correlation function:

g(u, v) = E[Λ(u)Λ(v)]
EΛ(u)EΛ(v)

taking 0/0 = 0 and provided∫
Sk
∫
Sk E[Λ(u)Λ(v)] dνk(u) dνk(v) <∞.

Model ρ and the residual process Λ0(u) = Λ(u)/ρ(u) (so
g(u, v) = E[Λ0(u)Λ0(v)]).



Data analysis

Lawrence et al. (2016) fitted the intensity function

ρ(u) = 6.06− 0.112 sin θ cosφ− 0.149 sin θ sinφ + 0.320 cos θ
+ 1.971 cos2 θ,

where u = (sin θ cosφ, sin θ sinφ, cos θ), θ ∈ [0, π] is the
colatitude, and φ ∈ [0, 2π) is the longitude.

Different plots and tests in the accompanying supporting
information to Lawrence et al. (2016): the galaxies are
aggregated and not well-described by an inhomogeneous
Poisson process model.



Thomas process
Lawrence et al. (2016) proposed the ‘inhomogeneous Thomas
process’, that is,

Λ0(u) =
∑
y∈Y

fy ,ξ(u)/κ

where Y is a homogeneous Poisson point process with intensity
κ > 0 and

fy ,ξ(u) = ξ

4π sinh ξ exp(ξ(u · y)), u ∈ S2,

is the density of the von Mises-Fisher distribution on S2 (ξ > 0).

Then

K (r) = K(κ,ξ)(r) = KPois(r)+
cosh(2ξ)− cosh

(√
2ξ2(1 + cos r)

)
4κ sin2 ξ

.



LGCP

Cuevas-Pacheco and Møller (2018): LGCP with the same fitted
intensity function as above and log Λ0 a Gaussian process with
an isotropic covariance function given by the multiquadric
model

c0(r) = σ2
(

(1− δ)2

1 + δ2 − 2δ cos r

)τ
, δ ∈ (0, 1), τ, σ > 0,

and s.t. log Λ0 has mean −σ2 (⇔ EΛ0 = 1).



Model fitting

To fit both point process models a minimum contrast procedure
was used, that is,∫ b

a

(
K̂ (t)0.25 − Kθ(t)0.25

)2
dt

where b > a ≥ 0 are user-specified parameters and θ is the
parameter vector for the residual process.

Thomas: The expression for K above.
LGCP: Numerical approximation.



Model checking

Because the K -function has been used for the estimation
procedure, we need other functional summaries for model
checking.

The F ,G and J-functions are not well defined....

However, an independent thinning with retention probabilities
ρmin/ρ(u) ensures that the resultant point process Xthin is
isotropic.



Exercise

Is Xthin a Cox process and then what is the residual process?



Model checking: details

Under each fitted Thomas and LGCP model based on the data:

1. Simulate 7499 realizations of Xthin and compute F̂ , Ĝ ,
Ĵ-functions for each simulation.

2. Compute 95%-global envelopes and calculate the p-value
of the global rank envelope test.

A small detail: Cuevas-Pacheco and Møller (2018) used the
global rank envelope test and considered intervals of p-value
given by liberal (lower) and conservative (upper) values, but
today I would had used the extreme rank length test and a
single p-value, see Myllymäaki et al. (2017), Mrkvička et al.
(2018), Myllymäaki and Mrkvička (2019). However, the
conclusions in the following would be the same.



Model checking for fitted Thomas process

Figure 1: F-function Figure 2: G-function Figure 3: J-function

Full lines: Functional summary statistics for each simulation.
Dashed lines: Envelopes using integration interval [0, 1.396] (as
in Lawrence et al., 2016); 0.01% ≤ p ≤ 1.28%.
Dotted lines: Envelopes using integration interval [0, 0.175]
(corresponding to 0–10 degrees); 0.01% ≤ p ≤ 1.05%.
In both cases, p is less than about 1%.



Model checking for fitted LGCP process

Figure 4: F-function Figure 5: G-function Figure 6: J-function

Full lines: Functional summary statistics for each simulation.
Dashed lines: Envelopes using integration interval [0, 1.396];
0.01% ≤ p ≤ 1.23%.
Dotted lines: Envelopes using integration interval [0, 0.175];
24.02% ≤ p ≤ 24.09%.



Model checking sensitivity

To study the sensitivity of the model checking procedure based
on thinning and a global rank envelope test, Cuevas-Pacheco
and Møller (2018) generated 1000 times ‘a new point pattern
dataset’ and repeated the model checking procedure each time.

Thereby, for each combination of the two fitted models and
each of the two integration intervals, we obtained 1000
estimates of (F̂ , Ĝ , K̂ ) and 1000 p-values.



Model checking sensitivity for Thomas process

Figure 7: F-function Figure 8: G-function Figure 9: J-function

Full lines: Functional summary statistics for each simulation.
Dashed lines: Envelopes using integration interval [0, 1.396].
Dotted lines: Envelopes using integration interval [0, 0.175].



Model checking sensitivity for LGCP process

Figure 10: F-function Figure 11: G-function Figure 12: J-function

Full lines: Functional summary statistics for each simulation.
Dashed lines: Envelopes using integration interval [0, 1.396].
Dotted lines: Envelopes using integration interval [0, 0.175].



Sensitivity for the p-values (intervals)

Figure 13: The 1000 p-values for each combination of the two fitted
models and each of the two integration intervals: the upper curve is
for the fitted LGCP and using the shorter integration interval.



Comments to the plot

Intervals for p-values obtained from the global envelope test
based on combining the F , G , J-functions when repeating the
independent thinning procedure 1000 times.

The three lower solid lines are very close and therefore appear
as one thick solid line in the plot.

From below to the top: Each pair of the dashed and solid lines
corresponds to conservative and liberal p-values for the fitted
Thomas process, using first the long and second the short
integration interval, and for the fitted LGCP, using first the
long and second the short integration interval.



Determinantal point processes (DPPs)
I Defined by a covariance function c(u, v) s.t.

ρ(n)(u1, . . . , un) = det{c(ui , uj)}i ,j=1,...,n.

I Well defined if and only if spectrum(c) ≤ 1.
I DPPs have beautiful mathematical structure.
I They model inhibition between points.
I They have been studied extensively in probability theory

and physics the past 40 years.
I Statistical methodology was developed in Lavancier, Møller

and Rubak (2015).
I Extensions to the sphere were made in Møller and Rubak

(2016) and Møller, Nielsen, Porcu and Rubak (2018).



Parametric DPP models
I For a fixed intensity (i.e., fixed mean number of points on

the sphere) there is a limit to how strong inhibition a DPP
can have.

I We have a ‘most repulsive DPP’ which in many cases can
be the most interesting case since we have strongest
interaction here.

I Ideally we would like to have parametric classes than span
from Poisson to most repulsive.

I There are two promising parametric model classes:
I Multi-quadric: Has two parameters and has nice closed

form expressions for the moments etc., but does not quite
cover the most repulsive case.

I A certain spectral model: Has three parameters (is more
flexible) but the parameters are less easy to interpret.



Simulations

Simulated realizations from 3 DPP models on S2 with mean
number of points 225 when the Northern Hemisphere spherical
point patterns have been projected to the unit disc (with an
equal-area azimuthal projection). Left: Poisson; middle:
multi-quadric; right: most repulsive DPP.



Something on estimation of the K -function

Assume X is SOIRI, ρ(u) = ρ is constant, and X is fully
observed. Natural estimator:

K̂ (t) = σk

N(N − 1)

6=∑
u,v∈X

1 [d(u, v) ≤ t]

corresponding to estimating ρ2 by N(N − 1)/σ2
k (with

N = #X ), which is unbiased for the Poisson process.

At a first glance the normalization seems unproblematic since

K̂ (π) = KPois(π) = σk .



A bias problem
However, in general K (π) = K̂ (π) + 1

ρ

(
Var(N)
E(N) − 1

)
.

For 3 DPP models and k = 2: K̂ − KPois for 500 simulated
point patterns

I Left: Poisson model and usual K̂ .
I Middle: Most repulsive DPP and usual K̂ .
I Right: Most repulsive DPP and modified estimator

(ρ̂2 = N2

σ2
k
).



Exercise

1. Verify that

K (π) = σk + 1
ρ

(
Var(N)
E(N) − 1

)
.

2. Argue why it helps to use ρ̂2 = N2

σ2
k
instead of ρ̂2 = N(N−1)

σ2
k

when estimating K for a DPP.

3. Would this work for a point process with clustering?



Software

Use
I spatstat package in R for simulation and estimation,
I GET (Myllymäki and Mrkvička, 2019) to make global

envelope tests,
I ggplot2 (Wickham, 2016) for visualisation.
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