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1 | INTRODUCTION

In Sir David R. Cox’s highly influential paper ‘Some StatisticalMethods Connectedwith Series of Events’ (Cox, 1955) he
invented doubly stochastic Poisson processes obtained by a generalization of Poisson processes where the intensity
function Λ that varies over space or time is a stochastic process. These Cox models play nowadays an important role
when analysing point patterns in Euclidean spaces or on spheres (see Møller and Waagepetersen, 2004; Lawrence
et al., 2016, and the references therein). In particular, Cox processes driven by a transformed Gaussian process (GP)
Y or independent copiesY1, . . . ,Yh ofY play a major role: A Log Gaussian Cox process (LGCP) has Λ (u ) = exp(Y (u ) )
(Møller et al., 1998; Cuevas-Pacheco and Møller, 2018); LGCPs constitute the most widely used subclass of Cox
processes. An interrupted Cox process (ICP) is obtained by an independent thinning of a Poisson process, where the
retention probability of a point u is given by exp(−∑h

i=1Yi (u )
2 ) (Stoyan, 1979; Lavancier andMøller, 2016). Moreover,

a permanental point process (PPP) is obtained when Λ (u ) = ∑h
i=1Yi (u )

2 (Macchi, 1975; McCullagh and Møller, 2006).
In recent years there has been an increasing interest in analysing point patterns on a linear network L, that is, L is

a connect set given by a finite union of bounded, closed, line segments in Òk (the real coordinate space of dimension
k ) which can only overlap at their endpoints, see Ang et al. (2012), Baddeley et al. (2015), the references therein as
well as further references given later in the present paper. The purpose of the present paper is to use the isotropic
covariance function models developed in Anderes et al. (2020) as well as newmodels developed in this paper, thereby
constructing models for GPs and hence LGCPs, ICPs, and PPPs on linear networks. Also we construct new simula-
tion algorithms, consider statistical procedures and applications, and discuss whether we should use the geodesic or
resistance metric.

The paper consists of two parts, Sections 2-3 on our setting for isotropic covariance functions and related GPs,
and Sections 4-7 on point processes, in particular Cox processes, including the cases of LGCPs, ICPs, and PPPs on
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linear networks and how these models can be used for fitting real data. More specifically: Section 2.1 considers a
general metric space (S , d ) in order later to compare covariance functions and point processes for the case S = L

with the cases where S = Òk or S = Ók (the k -dimensional unit sphere). When S = L we have in mind that d is
either the geodesic metric dG or the resistance metric dR . Section 2.2 is a summary of results for dR , including a
useful expression for the metric. Furthermore, when S = L, Section 3.1 studies isotropic covariance functions of the
form c (u,v ) = c0 (d (u,v ) ) and provides a less technical summary of results from Anderes et al. (2020) and examples
of isotropic covariances function not appearing in that paper. Simulation algorithms for GPs on L with an isotropic
covariance function are developed in Section 3.2, where the case with L a tree is particular tractable. Our setting
for point processes is given in Section 4.1, and Section 4.2 introduces first and higher order intensity functions which
become useful whenwe later studyCox processmodels. In particular, we focus on the pair correlation function and the
related K -function defined in Section 4.2, where we stress the importance of considering an isotropic pair correlation
function g (u,v ) = g0 (d (u,v ) ) , partly because inference procedures have mainly been developed for this case and
partly since for LGCPs, ICPs, and PPPs isotropy of g becomes equivalent to isotropy of the covariance function for
the underlying GPs. As discussed in Section 4.3, g , K , and other functional characteristics for point processes become
useful for statistical inference. Section 5.1 treats Cox processes in our general setting, since moment and many other
properties of Cox processes driven by transformed Gaussian processes do not depend on which space we consider
– the dependence of the metric space (S , d ) occurs when we want to specify well-defined parametric models of
covariance functions, simulate the underlying GPs, and use statistical inference procedures, which for the case S = L
are the topics of Sections 3 and 6. Moreover, Section 5.2 studies the properties of LGCPs, ICPs, and PPPs models, and
in Section 6 we demonstrate how these models may be fitted to real data. Finally, Section 7 summaries our findings
and discuss some open problems.

(Some more text will be added here)

2 | METRIC SPACES

2.1 | Setting

The state space for the points of the point processes considered in this paper is a metric space (S , d ) equipped with
a reference measure ν. We focus on the case where S is a linear network and compare with the cases where S = Òk
is the k -dimensional Euclidean space or S = Ók = {u ∈ Òk+1 | ‖u ‖ = 1} is the k -dimensional unit sphere, with d and
ν specified as follows.

(a) The case S = Òk : d (u,v ) = ‖u − v ‖ is given by the usual Euclidean distance and ν (A) = ∫
A
du is Lebesgue

measure.
(b) The case S = Ók : d (u,v ) = dG (u,v ) = arccos(u · v ) is the geodesic (orthodromic, great-circle, or shortest path)

metric and ν = νk is k -dimensional Hausdorff/surface measure (see e.g. Dai and Xu, 2013, Chapter 1). Here, u · v
is the usual inner product of u and v .

(c) The case S = L = ∪m
i=1Li of a linear network: We assume m < ∞, each Li ⊂ Òk is a closed line segment of length

l i ∈ (0,∞) , Li ∩Lj is either empty or an endpoint of both Li and Lj whenever i , j , and L is a path-connected set.
Furthermore, d is a ‘natural’ metric and ν (A) = ∫

A
dL (u ) is arc length measure. We let |L | = ∑m

i=1 l i =
∫
L
dL (u )

denote the length of the linear network.

The remainder of this section are remarks to the case (c).
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For infinite and/or disconnected linear networks, definitions and results may be applied separately to each con-
nected component of the network if we consider point and Gaussian processes which are mutually independent on
the connected components.

Our definition in (c) may be extended to the more abstract case of a graph with Euclidean edges, i.e., graphs with
edges viewed as line or curve segments allowing us to consider points on the graph which are either vertices or points
on an edge (Anderes et al., 2020). In the present paper we avoid this generalization partly for ease of presentation
and partly since statistical methods have so far only been developed for the case (c).

For each line segment Li , there are two possible arc length parametrisations. We assume one is chosen and given
by ui (t ) = (1 − t/l i )ai + (t/l i )bi , t ∈ [0, l i ], where ai and bi are the endpoints of Li . The definitions and results in this
paper will not depend on this choice, including when calculating arc length measure restricted to Li : For Borel sets
A ⊆ Li , ∫A dL (u ) = ∫ l i

0
1(ui (t ) ∈ A) dt , where 1( ·) denotes the indicator function.

LetV denote the set of endpoints of L1, . . . , Lm and consider the graph with vertex setV and edge set E given
by L1, . . . , Lm , i.e., two distinct vertices u,v ∈ V form an edge if and only if {u,v } = {aj , b j } for some j ∈ {1, . . . ,m },
in which case we write u ∼ v . We have mainly two cases of natural metrics in mind, namely when d is the geodesic
metric dG or the resistance metric dR as developed in Anderes et al. (2020) when extending the original definition in
Klein and M. Randić (1993) for V to L: Let u,v ∈ L. Then dG (u,v ) = min ∫

puv
dL (w ) where the minimum is over all

paths puv ⊆ L connecting u and v . When defining dR (u,v ) , without loss of generality assume that u,v ∈ V , since
if e.g. u ∈ Lj \V , we may split Lj into the two line segments with endpoints {aj ,v } and {v , b j }, and then consider
a new graph with vertex set V ∪ {u } and edge set E ∪ {{aj ,v }, {v , b j }} (this follows from (B) in Theorem 1 below).
Viewing the graph (V , E ) as an electrical network with resistor l i at edge Li , i = 1, . . . ,m , then dR (u,v ) is the effective
resistance between u and v as obtained by Kirkhoff’s laws. In Section 2.2 below we provide the detailed definition of
dR . Indeed there are other interesting metric when S = L, including the least-cost metric (Rakshit et al., 2017), but to
the best of our knowledge parametric models for covariance functions (which is one topic of our main interest) have
so far only been developed when d = dG , d = dR , or d is given by the usual Euclidean distance; the latter case is
usually not a natural metric on a linear network.

2.2 | The resistance metric

This section defines the resistance metric dR for a graph with Euclidean edges (Anderes et al., 2020) in the special
case of a linear network L = ∪m

i=1Li as given in case (c) in Section 2.1. The section also summarises some properties
of dR and compares with dG .

Consider the graphG = (V , E ) and its relation ∼ as defined above. Since the resistancemetric on L is an extension
of the classic (effective) resistance metric dV defined onV , we start by recalling what dV is: Let u0 ∈ V be an arbitrarily
chosen vertex called the origin. For any u,v ∈ V , define the so-called conductance function by

con(u,v ) =

1/‖u − v ‖ if u ∼ v
0 otherwise

and define a matrix ∆ with rows and columns indexed byV so that its entry (u,v ) is given by

∆(u,v ) =


1 + c (u ) if u = v = u0
c (u ) if u = v , u0
−con(u,v ) otherwise
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where c (u ) = ∑
w ∈V :w∼u con(u,w ) is the sum of the conductances associated to the edges incident to vertex u . In fact

∆ is symmetric and strictly positive definite, and it is similar to the ‘Laplacian matrix’ from electrical network theory
(when viewing G as an electrical network over the nodes with resistors given by the length of each line segment, see
e.g. Kigami, 2003; Jorgensen and Pearse, 2010) except that ∆ has the additional 1 added at entry (u0,u0 ) which makes
∆ invertible. Let B0 be a Gaussian vector indexed byV and having mean zero and covariance matrix Σ = ∆−1. Then
the resistance metric onV is the variogram

dV (u,v ) = Öar(B0 (u ) − B0 (v ) ) = Σ (u,u ) + Σ (v ,v ) − 2Σ (u,v ) for u,v ∈ V . (1)
It can be shown that dV does not depend on the choice of origin u0, cf. Theorem 1 below. IfV is large, we may expect
∆ to be sparse and hence there are quick methods for obtaining Σ = ∆−1 (see e.g. Rue and Held, 2005).

Now, extend B0 by linear interpolation to a mean zero Gaussian process (GP) Z0 on L so that
Z0 (u ) =

‖u − bi ‖
l i

B0 (ai ) +
‖u − ai ‖

l i
B0 (bi ) for u ∈ Li .

For i = 1, . . . ,m , define a mean zero Brownian bridge Bi on Li so that
Ãov(Bi (u ),Bi (v ) ) = min{ ‖u − ai ‖ ‖v − bi ‖, ‖v − ai ‖ ‖u − bi ‖ }/l i for u,v ∈ Li ,

and define

Zi (u ) =

Bi (u ) for u ∈ Li
0 for u ∈ L \ Li .

Finally, the resistance metric on L is defined by

dR (u,v ) =
m∑
i=0

Öar(Zi (u ) − Zi (v ) ) for u,v ∈ L. (2)

Note that dR (u,v ) = dV (u,v ) if u,v ∈ V .
For the following theorem, which follows from Anderes et al. (2020, Propositions 2-4), we use a terminology as

follows. A closed line segment in Òk with endpoints a and b is denoted [a, b ] = {at + b (1 − t ) | 0 ≤ t ≤ 1}. A path is
a subset of L of the form [u,v1 ] ∪ [v1,v2 ] · · · ∪ [vi−1,vi ] ∪ [vi ,v ] where u,v ∈ L, v1, . . . ,vi ∈ V are vertices, i ≥ 0 is
an integer, and we interpret [v1,v2 ] · · · ∪ [vi−1,vi ] as the empty set if i = 0. If all vertices in G are of order two, we
say that L is a loop (since L is isomorphic to a circle). If there is no loop, we say that L is a tree.

Theorem 1 We have the following for the resistance and geodesic metrics on a linear network L.

(A) The definition 2 of dR does not depend on the choice of origin u0 ∈ V .
(B) Both dR and dG are metrics on L, and their definitions are invariant to splitting a line segment Li into two line segments.
(C) For every u,v ∈ L, dG (u,v ) ≥ dR (u,v ) , with equality if and only if there is only one path connecting u and v . In

particular, dG = dR if and only if L is a tree.
(D) If G is a loop, then dR (u,v ) = dG (u,v ) − dG (u,v )2/

∑m
i=1 l i .
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The following proposition shows how dR (u,v ) can be easily calculated.

Proposition 1 For any u ∈ Lj and v ∈ Li , let

s = ‖u − aj ‖, t = ‖v − ai ‖, Ai = dV (ai , bi )/l 2i − 1/l i .

Then Ai ≤ 0 with equality if and only if Li is the only path connecting ai and bi , and dR (u,v ) satisfies the following.

(A) If i = j then

dR (u,v ) =

Ai (t − s )2 + t − s if t ≥ s,

Ai (s − t )2 + s − t if t ≤ s,
(3)

so dR (u,v ) considered as a function of t is linear (the caseAi = 0) or quadratic (the caseAi < 0) on each of the intervals
[0, s ] and [s, l i ], continuous on [0, l i ], and differentiable on [0, l i ] \ {s }.

(B) If i , j then

dR (u,v ) = Ai t 2 + Bi j (s )t + Ci j (s ) (4)
where

Bi j (s ) = 1 −
2

l i

[
Σ (ai , ai ) − Σ (ai , bi ) −

l j − s
l j

Σ (aj , ai ) +
l j − s
l j

Σ (aj , bi ) −
s

l j
Σ (b j , ai ) +

s

l j
Σ (b j , bi )

]
and

Ci j (s ) =
(l j − s )2

l 2
j

Σ (aj , aj )+
s2

l 2
j

Σ (b j , b j )+2
s (l j − s )

l 2
j

Σ (aj , b j )+Σ (ai , ai )−2
l j − s
l j

Σ (aj , ai )−2
s

l j
Σ (b j , ai )+

s (l j − s )
l j

,

so dR (u,v ) is a linear or quadratic concave function of t ∈ [0, l i ].
(C) If i , j then

dR (u,v ) ≥ min{dR (u, ai ), dR (u, bi ) } . (5)
Proof Since l i = dG (ai , bi ) = dV (ai , bi ) , Theorem 1[C] gives that Ai ≤ 0with equality if and only if Li is the only path
connecting ai and bi . From (1) and (2) we obtain (3) and (4) by a straightforward calculation, and thereby we easily
see that dR (u,v ) as a function of t behaves as stated in (A) and (B). Finally, since dR (u,v ) is a concave function of
t ∈ [0, l i ] in the case i , j , the inequality (5) follows.

Some remarks are in order. It follows from (3) and (4) that once Σ has been calculated, dR (u,v ) can be quickly
calculated. We have dR (v , ai ) = Ai t 2 + t , cf. (3) with s = 0, and dR (u, ai ) = Ci j (s ) , cf. (4) with t = 0, so we can rewrite
(4) as

dR (u,v ) = dR (u, ai ) + dR (v , ai ) +
[
Bi j (s ) − 1

]
t .
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This together with the triangle inequality show that Bi j (s ) ≤ 1. The inequality (5) becomes useful when searching for
point pairs u,v ∈ L with dR (u,v ) ≤ r and v ∈ Li , since we need only to consider the cases where dR (u, ai ) ≤ r or
dR (u, bi ) ≤ r .

3 | GAUSSIAN PROCESSES AND ISOTROPIC COVARIANCE FUNCTIONS

Let (S , d ) be a metric space as in Section 2.1 and recall that a function c : S × S ↦→ Ò is positive definite (sometimes
called positive semi-definite) if ∑n

j ,`=1 aj a`c (u j ,u` ) ≥ 0 for all a1, . . . , an ∈ Ò, all pairwise distinct u1, . . . ,un ∈ S , and
n = 1, 2, . . .. Let Y = {Y (u ) | u ∈ S } be a GP, where each Y (u ) is a real-valued random variable. The distribution
of Y is specified by that for n = 1, 2, . . . and every u1, . . . ,un , (Y (u1 ), . . . ,Y (un ) ) follows an n-dimensional normal
distribution given by the mean function µ (u ) = ÅY (u ) and the covariance function

c (u,v ) = Ãov(Y (u ),Y (v ) ) = Å[Y (u )Y (v ) ] − µ (u )µ (v ) .
The necessary and sufficient condition for a well-defined GP is the property of the covariance function that it is
symmetric and positive definite.

3.1 | Isotropic covariance functions

We are in particular interested in isotropic covariance functions c meaning that c is of the form c (u,v ) = c0 (d (u,v ) )
for all u,v ∈ S . Here, with some abuse of terminology, we also call c0 a covariance function and it is required to be
positive definite, that is, ∑n

j ,`=1 aj a`c0 (d (u j ,u` ) ) ≥ 0 for all a1, . . . , an ∈ Ò, all pairwise distinct u1, . . . ,un ∈ S , and
n = 1, 2, . . .. In Sections 3.1.1 and 3.1.2 below we assume that the variance σ2 = c0 (0) is strictly positive and consider
the correlation function r0 (t ) = c0 (t )/σ2 in connection to the cases (a)–(c) in Section 2.1. In all of our examples, r0
will be a completely monotone function.

3.1.1 | The classical cases of Euclidean spaces and spheres

Let S = Òk and d (u,v ) = ‖u − v ‖ , cf. case (a) in Section 2.1. Then Schoenberg (1938) and Gneiting (2001) provide
detailed studies of continuous isotropic covariance functions, and Table 1 shows examples of popular parametric
models for continuous isotropic correlation functions which are well-defined for every dimension k = 1, 2, . . .. Instead
let S = Ók and d (u,v ) = dG (u,v ) , cf. case (b) in Section 2.1. Then a complete characterization of continuous isotropic
covariance functions is given in Schoenberg (1942); see also Gneiting (2013). In particular, r0 defines a continuous
correlation functions for any dimension k = 1, 2, . . . if and only if r0 (t ) = ∑∞

`=0 β` cos` (t ) where the sequence β0, β1, . . .is a probability mass function. Examples of such correlation functions are seen in Table 1. Compared to the case
S = Òk , the ranges of shape and smoothness parameters are more restrictive.

3.1.2 | The case of linear networks

Suppose S = L is a linear network, cf. case (c) in Section 2.1, where we let either d = dG or d = dR . Many of the
commonly used isotropic correlation functions, including those in Table 1, are valid with respect to the resistance
metric but not always with respect to the geodesic metric. The reason for this is discussed at the end of this section
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Model Correlation function r0 (t ) Range of shape and smoothness parameters
Powered exponential exp (−t α /φ ) α ∈ (0, 2] if S = Òk ; α ∈ (0, 1] if S = Ók or S = L
Matérn 21−α

Γ (α )

(√
2α t

φ

)α
Kα

(√
2α t

φ

)
α > 0 if S = Òk ; 0 < α ≤ 1

2 if S = Ók or S = L
Generalized Cauchy (1 + ( tφ )

α )−τ/α τ > 0; α ∈ (0, 2] if S = Òk ; α ∈ (0, 1] if S = Ók or S = L
Dagum 1 − ( ( tφ )

τ/(1 + ( tφ )
τ ) ) ατ τ ∈ (0, 2] and α ∈ (0, τ ) if S = Òk ;

τ ∈ (0, 1] and α ∈ (0, 1] if S = Ók or S = L
TABLE 1 Four parametric models for an isotropic correlation function r0 (r ) . Here, Γ is the gamma function, Kν isthe modified Bessel function of the second kind, φ is a scale parameter, τ is a shape parameter, and α is a
smoothness parameter. The correlation functions are well-defined at all scales φ > 0 but the range of shape and
smoothness parameters depend on the model and the space S . For S = Òk or S = Ók , the correlation functions are
well-defined for every dimension k = 1, 2, . . .. For S = L, conditions on L may be needed if distance is not measured
by the resistance but the geodesic metric, see Section 3.1.2.

and is based on the following results.
Recall that a function f : [0,∞) ↦→ Ò is completely monotonic if it is non-negative and continuous on [0,∞) and

for j = 0, 1, . . . and all u > 0, the j -th derivative f (j ) (u ) exists and satisfies (−1) j f (j ) (u ) ≥ 0. By Bernstein’s theorem,
f is completely monotone if and only if it is the Laplace transform of a non-negative finite measure on [0,∞) , meaning
that for every t ≥ 0,

f (t ) = f (0)
∫

exp(−st ) dF (s ) (6)
where F is a cumulative distribution function with F (s ) = 0 for s < 0. We refer to F as the Bernstein CDF correspond-
ing to f . The following gives a few examples of completely monotone functions obtained from using F specifying
a gamma distribution Γ (τ,φ ) with shape parameter τ and inverse scale parameter φ, or an inverse gamma distribu-
tion Γ−1 (τ,φ ) , or a generalized inverse Gaussian distribution. Similarly other non-negative valued distributions with
a known Laplace transform can be used to produce completely monotone functions.

Example 1 The following functions f1, f2, f3 are completely monotone functions with f1 (0) = f2 (0) = f3 (0) = 1 and they
have corresponding Bernstein CDFs F1, F2, F3 defined as follows. For τ > 0, φ > 0, and t ≥ 0,

f1 (t ) = (1 + t/φ )−τ , F1 ∼ Γ (τ,φ ), (7)
and

f2 (t ) =
2φτ

Γ (τ ) (t/φ )
τ/2Kτ (2

√
tφ ), F2 ∼ Γ−1 (τ,φ ) . (8)

Moreover, for ψ > 0, χ > 0, λ ∈ Ò, and t ≥ 0,

f3 (t ) = (1 + 2t/ψ )−λ/2
Kλ (

√
(2t +ψ )χ )

Kλ (
√
ψχ ) (9)
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and F3 is the CDF for a generalized inverse Gaussian distribution with probability density function

(ψ/χ )λ/2
2Kλ (

√
ψχ ) s

λ−1 exp(−sψ/2 − χ/(2s ) ), s ≥ 0.

In the next theorem, which summaries Theorems 1 and 2 in Anderes et al. (2020), we need the following definition.
We say that L is a 1-sum of L1 = L1 ∪ . . . ∪ Lj and L2 = Lj+1 ∪ . . . ∪ Lm if L1 and L2 are (connected) linear networks
where 1 ≤ j < m , L1 ∩ L2 = {u0} consists of a single point u0, and

d (u,v ) = d (u,u0 ) + d (v ,u0 ) whenever u ∈ L1 and v ∈ L2.
This property is possible if d = dG or d = dR but unless L is a straight line segment it is impossible if d is the given by
the usual Euclidean distance. Using induction we say for n = 3, 4, . . . that L = L1 ∪ . . . ∪ Ln is a 1-sum of L1, . . . , Ln
if L is a 1-sum of L1 ∪ . . . ∪ Ln−1 and Ln .
Theorem 2 Let f : [0,∞) ↦→ Ò be a completely monotone and non-constant function. Then f (dR (u,v ) ) is strictly positive
definite over (u,v ) ∈ L × L. Moreover, if L is a 1-sum of trees and loops, then f (dG (u,v ) ) is strictly positive definite over
(u,v ) ∈ L × L. However, if there are three distinct paths between two points on L, then there exists a constant φ > 0 so
that exp(−dG (u,v )/φ ) is not positive definite over (u,v ) ∈ L × L.

In Table 1, for each model, r0 is completely monotone for the ranges of the parameters (cf. the comments to
Theorem 1 in Anderes et al., 2020). So by Theorem 2, if L is a 1-sum of trees and loops, for each example of r0 in
Table 1 and for r0 given by f1, f2, or f3 in (7)–(9), r0 (dR (u,v ) ) is a valid correlation function, but r0 (dG (u,v ) ) is only
valid in more special cases. Note that in Table 1, the ranges of the parameters are the same when S = Ók or S = L.
Finally, (7) is the special case of the generalized Cauchy function when α = 1 in Table 1, whilst (8) and (9) are not
covered by Table 1.

For example, consider the Chicago street network in Figure 1 (a standard example of a linear network, cf. Ang
et al., 2012)). Then L is not a a 1-sum of trees and loops and therefore we have not used the geodesic metric for
the cases of covariance functions related to Figure 1 (more details on this figure is given in Section 3.2). See also the
counter examples in Anderes et al. (2020, Section 5).

3.2 | Simulation of GPs on linear networks

This section discusses how to simulate a GPY = {Y (u ) | u ∈ L} on a linear network L = ∪m
i=1Li as given in case (c) in

Section 2.1. We assume without loss of generality that the mean function ofY is zero.
A straightforward algorithm applicable to any metric d and any linear network L consists in first selecting finite

subsets Dj ⊂ Lj , j = 1, . . . ,m; then simulatingY restricted to the set D given by the union ofV and D1, . . . ,Dm , e.g.
by using Choleski decomposition of the corresponding covariance matrix ΣD ; and finally, for u not in V or ∪m

j=1Dj ,approximating Y (u ) by the average of those Y (v ) where v ∈ D is closest to u (‘closest’ with respect to the given
metric d or perhaps better dÇ). The disadvantage of this algorithm is of course that the dimension of ΣD can be large
and hence Choleski decomposition (as well as other methods) can be slow.

If c is an exponential covariance function, L is a tree, and d = dG = dR , the algorithm in the Theorem 4 below is
much faster to use. For s > 0, the exponential correlation function r0 (t ) = exp(−t s ) appears as two special cases in
Table 1 with scale parameter φ = 1/s , namely the powered exponential model with α = 1 and the Mátern model with
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α = 1
2 . To prove Theorem 4 we first need to establish a Markov property given in the following theorem, where we

denote the shortest path between u,v ∈ L by puv .

Theorem 3 Suppose that for s > 0 and σ > 0, Y is a GP on a tree L with exponential covariance function c (u,v ) =
σ2 exp(−sd (u,v ) ) with d = dG = dR . If u,v ,w ∈ L withw ∈ puv thenY (u ) andY (v ) are conditionally independent given
Y (w ) . Furthermore, for w1, . . . ,wn ∈ L,Y (u ) andY (v ) are conditionally independent givenY (w1 ), . . . ,Y (wn ) provided
wi ∈ puv for at least onewi .

Proof For the first statement in the theorem, note that sincew ∈ puv then d (u,v ) = d (w ,v ) + d (w ,v ) and therefore
c (u,v ) = c (u,w )c (w ,v )/σ2. Thus the covariance matrix for (u,v ,w ) has the form

Σu,v ,w =
©«

σ2 c (u,w )c (w ,v )/σ2 c (u,w )
c (u,w )c (w ,v )/σ2 σ2 c (w ,v )

c (u,w ) c (w ,v ) σ2

ª®®®¬ .
Inverting the covariance matrix, we get that the corresponding precision matrix has 0 at entries (1, 2) and (2, 1) , thus
implying thatY (u ) andY (v ) are conditionally independent givenY (w ) .

For the second statement in the theorem, note that the case n = 1 is the first statement. Consider the case
n = 2, i.e., we condition on Y (w1 ) and Y (w2 ) , where w1,w2 ∈ L and e.g. w1 ∈ puv . Since L is a tree Y (w2 ) must
be conditionally independent of either Y (u ) or Y (v ) given Y (w1 ) . Assume without loss of generality that this is
Y (u ) . Thus,Y (u ) is conditionally independent of (Y (v ),Y (w2 ) ) givenY (w1 ) , which implies thatY (u ) andY (v ) are
conditionally independent given (Y (w1 ),Y (w2 ) ) . In a similar way we verify the case with n ≥ 3.

Using Theorem 3, we can now prove that the simulation algorithm given in Theorem 4 below generates a GP with
an exponential covariance function on a tree. Pick an arbitrary origin u0 ∈ V and set G0 (u0 ) = {u0}. For j = 1, 2, . . ., if
u ∈ V \ ∪j −1

i=0
Gi (u0 ) and u ∼ v for some v ∈ G j −1 (u0 ) , we call u a child of j -th generation to u0 and define G j (u0 ) ⊂ V

as the set of all children of j -th generation to u0. Moreover, for the GP Y = {Y (w ) |w ∈ L} constructed in the
following theorem, if u ∈ G j −1 (u0 ) , v ∈ G j (u0 ) , and u ∼ v , we define Y (u,v ) = {Y (w ) |w ∈ (u,v ] } where (u,v ] is
the half-open line segment with endpoints u and v so that u is excluded and v is included.

Theorem 4 Suppose that L is a tree, and that s > 0 and σ > 0. Consider the following iterative construction of random
variablesY (w ) where u0 ∈ V is arbitrary.

• Forw = u0, generateY (w ) from N (0,σ2 ) .
• For j = 1, 2, . . ., conditioned on all theY (w ) so far generated, generate independent GPsY (u,v ) for all u ∈ G j −1 (u0 )

and all v ∈ G j (u0 ) with u ∼ v , whereY (u,v ) depends only onY (u ) and for everyw ,w1,w2 ∈ (u,v ] we have

Å[Y (w ) |Y (u ) ] = exp(−‖w − u ‖s ) )Y (u ) (10)
Ãov[Y (w1,w2 ) |Y (u ) ] = σ2 (exp(−‖w1 − w2 ‖s ) − exp(−‖w1 − u ‖s − ‖w2 − u ‖s ) ) . (11)

• OutputY = {Y (w ) |w = u0 orw ∈ (u,v ] for some j ∈ Î, u ∈ G j −1 (u0 ), v ∈ G j (u0 ) with u ∼ v }.

ThenY is a mean-zero GP on L with exponential covariance function c (u,v ) = σ2 exp(−sd (u,v ) ) where d = dG = dR .
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Proof We prove by induction that if Y is as stated at the end of theorem, then the iterative construction is correct.
Clearly the distribution of Y (u0 ) is correct; let us denote this step by j = 0. For step j ≥ 1, condition on all the
Y (w ) so far generated, which by the induction hypothesis have been correctly generated. If we take two points
w1 and w2 contained in different line segments between points in G j −1 (u0 ) and G j (u0 ) , then by Theorem 3, Y (w1 )
and Y (w2 ) are (conditionally) independent, which is in accordance to our construction. So it suffices to consider
the (conditional) distribution of (Y (w1 ),Y (w2 ) ) when w1,w2 ∈ (u,v ], u ∈ G j −1 (u0 ) , v ∈ G j (u0 ) , and u ∼ v . This
(conditional) distribution depends only onY (u ) , cf. Theorem 3, and it is straightforwardly seen to be a bivariate normal
distribution with mean and covariance matrix given by 10. Therefore the output of the algorithm has the correct
distribution.

In practice, when using Theorem 4 for simulation, a discretization on each line segment is needed. For some
integer n j > 0 (which may depend on l j ) and each u ∈ Lj , Y (u ) is approximated by Y (u j (s ) ) if u is closest to u j (si )
with si = i l j /n j and i ∈ {0, 1, . . . , n j }; or, if u is the midpoint between si−1 and si , we approximateY (u ) by the average
(Y (u j (si−1 ) ) +Y (u j (si ) ) )/2. To generate the n j −1 normal variablesY (u j (si ) ) , i = 1, . . . , n j −1, we start by generating
the variable Y (u j (s1 ) ) in accordance to (10)-(11) with w = w1 = w2 = s1. Then we can add u j (s1 ) to the vertex set,
whereby we split l j into the two line segments given by this new vertex and the endpoints of l j . Hence, if n j > 1,
we can repeat the procedure when generating Y (u j (s2 ) ) , and so on until all the n j − 1 normal variables have been
generated.

It is important to notice that Theorems 3 and 4 do not hold if L is not a tree. Indeed, a GP on the circle Ó1
(which is equivalent to a loop of length 2π) with exponential covariance function, considering four arbitrary points
on Ó1, it can be shown that the GP is not Markov. On the other hand, letting c (u,v ) = a cosh(b (dG (u,v ) − π ) ) for
a, b > 0, Pitt (1971) verified that the GP on Ó1 with covariance function c is Markov, but considering two arbitrary
points on a tree together with a point on the path connecting them, it can be shown that the GP on the tree with
covariance function c is not Markov. Consequently, we cannot have a covariance function only depending on the
geodesic distance which makes an arbitrary linear network Markov, and in general, if we want to simulate a GP with
an exponential covariance function on a linear network which is not a tree, we cannot rely on Markov properties and
have to use the straightforward, but slower, algorithm described in the beginning of this section.

For other covariance functions than the exponential, Theorem 4 can be used in connection to the following
theorem which follows from (6) and the central limit theorem.
Theorem 5 Suppose d is a metric on L so that (u,v ) ↦→ exp(−sd (u,v ) ) for (u,v ) ∈ L2 is a well-defined correlation
function for all s > 0, and letY be a mean-zero GP on L with covariance function

c (u,v ) = σ2
∫

exp(−sd (u,v ) ) dF (s ) (12)
where σ > 0 and F is a CDF with F (s ) = 0 for s < 0. For an integer n > 0 and i = 1, . . . , n , generate Si from F and then
Yi as a mean-zero GP on L with covariance function σ2 exp(−Si d (u,v ) ) so that (S1,Y1 ), . . . , (Sn ,Yn ) are independent.
Calculate Ȳn =

∑n
i=1Yi /n . Then

√
nȲn is a mean-zero stochastic process on L with covariance function c. As n → ∞,

√
nȲn approximates Y in the sense that any finite dimensional distribution of

√
nȲn converges in distribution towards the

corresponding finite dimensional distribution ofY .

Theorem 5 allows simulation of any GP with a covariance function of the form (12), if a simulation algorithm for
F is available and the metric d satisfies the condition in the theorem. For the case of a tree and d = dG = dR , this
gives a fast simulation algorithm when combined with the algorithm in Theorem 4. For other cases it may be faster
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simply to use the straight forward algorithm in the beginning of this section, provided of course that d satisfies the
condition in the theorem (so it may work for d = dR but not for d = dG , cf. Theorem 2).

Figure 1 shows examples of simulations of zeromean GPs defined on the Chicago street network andwith various
isotropic covariance functions r (u,v ) = r0 (d (u,v ) ) where d = dR is the resistance metric. In the first two plots (the
top row), r0 (t ) = exp(−st ) is an isotropic exponential correlation function, the next two plots (the middle row) relate
to Theorem 5 with the Bernstein CDF given by a gamma distribution or inverse gamma distribution (see the left panel
in the bottom row), and the last plot shows the corresponding correlation functions for t ≤ 200 feet (the side length of
a square surrounding the network is a little less than 1000 feet and themaximal distancewith respect to the resistance
metric is about 675 feet). Since the resistance metric is used, the covariance functions for the GPs in plots 1–4 are
well-defined, cf. Theorem 2. The top row shows the scaling effect of the parameter s for the exponential correlation
function. Plots 2–4 are comparable, since the mean values of s all agree, and the last plot indicates that the correlation
is smallest when r is fixed and rather similar when using the gamma or inverse gamma distribution. Accordingly, in
plot 2 we see less smoothness than in plots 3 and 4 which show a similar degree of smoothness.

4 | POINT PROCESSES AND THEIR CHARACTERISTICS

4.1 | Setting

Consider again a general metric space (S , d ) , where S = L is of our primary interest, cf. Section 2.1. We restrict
attention to point processes whose realisations can be viewed as locally finite subsets x of S : For x ,A ⊆ S , define
xA = x ∩A and let n (xA ) denote the cardinality of xA , then the state space of a point process is N = {x ⊂ S | n (xA ) <
∞ whenever A ⊆ S is bounded}. EquipNwith the smallestσ-algebra such that themapping x ↦→ n (xA ) is measurable
whenever A ⊆ S is a bounded Borel set. In this paper, by a point process is meant a random variable X with values in
N (in the terminology of point process theory, X is a simple locally finite point process, see e.g. Daley and Vere-Jones,
2003). Hence, for any bounded Borel set A ⊆ S , the count N (A) = n (XA ) is a random variable.

We need the following notions where ν is a reference measure on S , cf. Section 2.1. We say that X is a Poisson
process with intensity function ρ : S ↦→ [0,∞) if for any bounded Borel set A ⊆ L, N (A) is Poisson distributed with
finite mean ∫

A
ρ (u ) dν (u ) , and conditioned on N (A) , the points in XA are independent and each point has a density

proportional to ρ with respect to ν restricted to A. For every u ∈ L, we let Xu be the point process which follows the
reduced Palm distribution of X at u , that is,

Å
∑
u∈X

h (X \ {u },u ) =
∫
ρ (u )Åh (Xu ,u ) ν (u )

for any non-negative measurable function h defined on N × L. Intuitively, Xu follows the distribution of X \ {u }
conditioned on that u ∈ X (see e.g. Møller and Waagepetersen, 2004, Appendix C). If ρ (u ) = 0, Xu may follow an
arbitrary distribution. If X is Poisson process with intensity function ρ, then X and Xu are identically distributed
whenever ρ (u ) > 0.

Let X1 denote the Poisson process with intensity 1. Suppose S = Ók or S = L, and X has density f with respect to
X1 (implicitly assuming the distribution of X is absolutely continuous with respect the distribution of X1). If ρ (u ) > 0,
then Xu has a density fu with respect to X1 such that

fu ({u1, . . . ,un }) = f ({u,u1, . . . ,un })/ρ (u ) for n = 1, 2, . . . and pairwise distint u1, . . . ,un ∈ S \ {u } . (13)
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F IGURE 1 Simulation of zero mean GPs on the Chicago street network with an isotropic exponential covariance
function c (u,v ) = r0 (dR (u,v ) ) . Top row: When r0 (t ) = exp(−st ) with parameter s = 0.1 or s = 0.01. Middle row:
When r0 is a mixture of exponential correlation functions with s following a gamma distribution or inverse gamma
distribution, where in both cases the mean of s is 0.01. Bottom row: For plots 2–4, the corresponding densities for
F and correlation functions, where the curves in black, red, and green correspond to plots 2–4, respectively.
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4.2 | Moment and invariance properties

Let S and the reference measure ν be as in one of the cases (a)–(c) in Section 2.1. The point process X has n-th
order intensity function ρ (u1, . . . ,un ) (with respect to the n-fold product measure of ν) if this is a non-negative Borel
function so that

Å [N (A1 ) · · · N (An ) ] =
∫
A1

· · ·
∫
An

ρ (u1, . . . ,un ) dν (u1 ) · · · dν (un ) < ∞ (14)

for every pairwise disjoint, bounded, Borel sets A1, . . . ,An ⊂ S (ρ (u1, . . . ,un ) is also called the n-th order product
density for the n-th order reduced moments measure). Thus, ρ (u1, . . . ,un ) is a locally integrable function, which is
almost everywhere unique on Sn (with respect to the n-fold product measure of ν). In the following, for simplicity
nullsets are ignored, so the non-uniqueness of ρ (u1, . . . ,un ) is ignored. Moreover, when we write ρ (u1, . . . ,un ) it is
implicitly assumed that the n-th order intensity function exists.

In particular, ρ (u ) is the usual intensity function. The point process is said to be (first-order) homogeneous if
ρ (u ) = ρ0 is constant. For instance, this is the case if S = Òk and X is stationary, i.e., its distribution is invariant under
translations in Òk ; or if S = Ók and X is isotropic, i.e., its distribution is invariant under rotations on Ók . A similar
example is not easy to specify if S = L, since there is no natural (transitive) group action on a linear network.

Instead of the second order intensity function, one usually considers the pair correlation function (pcf) given by
g (u,v ) = ρ (u,v )

ρ (u )ρ (v ) ,

setting a
0 = 0 for a ≥ 0. For a Poisson process, ρ (u1, . . . ,un ) = ρ (u1 ) · · · ρ (un ) , so g = 1. One often interprets

g (u,v ) ≤ 1 as repulsion/inhibition/regularity and g (u,v ) ≥ 1 as attraction/clustering/aggregation, though care should
be taken if u and v are ‘distant apart’.

The specific models in this paper are typically attractive (g ≥ 1) and satisfies the following stronger property: For
n = 2, 3, . . ., i = 1, . . . , n − 1, and any pairwise distinct u1, . . . ,un ∈ S ,

ρ (u1, . . . ,un ) ≥ ρ (u1, . . . ,ui )ρ (ui+1, . . . ,un ), (15)
or equivalently, for any pairwise disjoint, bounded, Borel sets A1,A2, . . . ⊂ S ,

Å [N (A1 ) · · · N (An ) ] ≥ Å [N (A1 ) · · · N (Ai ) ] Å [N (Ai+1 ) · · · N (An ) ] .

In other words, (15) means that the counts N (A1 ),N (A2 ), . . . are positively correlated at all orders, and for brief we
shall say that X is positively correlated at all orders.

Non-parametric estimation of ρ and g are discussed in e.g. Baddeley et al. (2015) and the references therein; see
also Shaw et al. (2021) when S = Òk ; Lawrence et al. (2016) when S = Ók ; and Rakshit et al. (2017) and Rakshit
et al. (2019) when S = L. For non-parametric estimation of the pcf, kernel methods are used. Since these may be
sensible to the choice of bandwidth, popular alternatives which avoid using kernel methods are given by estimators
of the K -function in (16)–(17) below. On the other hand, for the specific parametric models in this paper, we have
simple expressions for g but not for K , and since the K -function is an accumulated versions of g , it may be harder to
interpret (we return to this at the end of Section 4.2.2).
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4.2.1 | K -functions in the classical cases of Euclidean spaces and spheres

Let either (S , d ) = (Òk , ‖ · ‖ ) or (S , d ) = (Ók , dG ) , cf. cases (a)–(b) in Section 2.1, and suppose g (u,v ) = g0 (d (u,v ) )
is isotropic. This is satisfied if S = Òk and X is stationary and isotropic or if S = Ók and X is isotropic, but we
do not assume that X is homogeneous. Following Baddeley et al. (2000), Lawrence et al. (2016), and Møller and
Rubak (2016), we say that X is second-order intensity reweighted stationary (SOIRS) if S = Òk and second order
intensity reweighted isotropic (or pseudo/correlation isotropic) if S = Ók , and the (inhomogeneous) K -function is for
an arbitrary u ∈ S given by

K (t ) =
∫
d (u,v ) ≤t

g (u,v ) dν (v ) . (16)

So
K (t ) = KÒk (t ) = σk −1

∫ t

0
r k −1g0 (r ) dr if S = Òk and t ≥ 0

where σk −1 = 2πk /2/Γ (k /2) is the surface area of the (k − 1)-dimensional unit sphere, and

K (t ) = KÓk (t ) = σk −1
∫ t

0
g0 (ϑ ) sink −1 ϑ dϑ if S = Ók and 0 ≤ t ≤ π .

Thus, for k = 1, KÒ (t ) = KÓ (t ) agree for every t ∈ [0, π ].

4.2.2 | K -functions in the case of linear networks

Suppose S = L and g (u,v ) = g0 (δ (u,v ) ) where δ is a metric on L (we switch from the previous notation d to δ
for convenience since we consider derivatives below). Then X is said to be δ-correlated, cf. Rakshit et al. (2017); if
δ = dG , X is also said to be second-order reweighted pseudostationary (Ang et al., 2012). Following Rakshit et al.
(2017) and defining R = infu∈L supv ∈L d (u,v ) , the K -function is given by

K (t ) = KL (t ) =
∫ t

0
g0 (r ) dr , 0 ≤ t ≤ R . (17)

Note that K depends only on g0, but g depends on both g0 and δ . We have KL = KÒ/2 if L is a straight line segment
which is broken into m line segments. If X is a Poisson process, then K (t ) = t .

Non-parametric estimation of K is carefully studied in Rakshit et al. (2017) when the following technical assump-
tion for the metric is made. Suppose δ is regular, meaning that for every u ∈ L, δ (u,v ) is a continuous function of
v ∈ L and there is a finite set N ⊂ L such that for i = 1, . . . ,m and all v ∈ Li \ N , the Jacobian

Jδ (u,v ) = | (d/dt )δ (u,v ) |
exists and is non-zero where t = ‖v − ai ‖ . Both dG and dR are regular, where JdG = 1 and a useful expression for the
calculation of JdR is given in the following corollary which follows immediately from Proposition 1.
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Corollary 1 For all u ∈ Lj and v ∈ Li with u , v , using a notation as in Proposition 1, we have

d
dt dR (u,v ) =


2Ai (t − s ) + 1 if i = j , t > s,

2Ai (t − s ) − 1 if i = j , t < s,

2Ai t + Bi j (s ) if i , j .

(18)

Some final remarks are in order. For u ∈ L and 0 ≤ t ≤ R , define
wδ (u, t ) = 1

/ ∑
v ∈L: δ (u,v )=t

1/Jδ (u,v ) .

This is a weight which accounts for the geometry of the linear network when shifting from arc length measure on
L to Lebesgue measure on the positive half-line (Rakshit et al., 2017, Propositions 1 and 2). For δ = dG , we have
wG (u, t ) = 1/#{v ∈ L | δ (u,v ) = t }, since JdG = 1, and for δ = dR , once the matrix Σ from Section 2.2 has been
calculated, wdR is quickly calculated from (18). It follows from (14), (17), and Rakshit et al. (2017, Equation (8)) that
for any Borel set A ⊆ L of positive arc length measure,

K (t ) = 1

νL (A)
Å

∑
u∈XA

∑
v ∈X \{u}

1(δ (u,v ) ≤ t )wδ (u, δ (u,v ) )
ρ (u )ρ (v ) . (19)

Non-parametric estimators of K are based on omitting the expectation symbol in (19), possibly after elaborating on
the right hand side in (19) in order to realize how correction factors can be included in order to adjust for edge effects,
cf. Rakshit et al. (2017). In terms of Palm probabilities, for dL-almost all u ∈ L with ρ (u ) > 0,

K (t ) = 1

|L | Å
∑
v ∈Xu

1(δ (u,v ) ≤ t )wδ (u, δ (u,v ) )
ρ (v ) .

In general the weight makes it hard to interpret this expression of K .

4.3 | Estimation and model checking

For the parametric families of Cox point process models as considered in this as well as other papers, the most com-
mon estimation methods are based on the intensity, pair correlation, or K -functions using either minimum contrast
estimation, composite likelihood, or Palm likelihoods, see Møller andWaagepetersen (2007, 2017) and the references
therein. (Some more text will be added here)

Formodel checking other functional summaries are neededwhen ρ, g , orK and their corresponding non-parametric
estimators have been used for estimation. For the case S = L, Cronie et al. (2020) define analogies to the F (the empty
space), G (the nearest-neighbour distribution), and J -functions in Van Lieshout (2011). The main result in Cronie et al.
(2020) is that these definitions make good sense under a certain condition called intensity reweighted moment pseu-
dostationarity (IRMPS): X is IRMPS if inf ρ > 0 and δ is a regular metric on L such that for n = 2, 3, . . ., any pairwise
distinct u1, . . . ,un ∈ L, and any u ∈ L, g (u1, . . . ,un ) = ρ (n ) (u1, . . . ,un )/[ρ (u1 ) · · · ρ (un ) ] is of the form

g (u1, . . . ,un ) = g0 (δ (u,u1 ), . . . , δ (u,un ) ) (20)
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for some function g0. This condition is satisfied if X is a Poisson process or if L equal to a line segment and X is
a LGCP having a stationary pair correlation function (see Section 5.2.1), but apart from these examples Cronie et al.
(2020) do not correctly verify any other cases of models where IRMPS is satisfied, and in our opinion IRMPS is a very
restrictive assumption (see again Section 5.2.1). However, Cronie et al. (2020) demonstrate for examples of planar
linear networks the practical usefulness of empirical estimators of the inhomogeneous linear J -function for both a
Poisson process, a simple sequential inhibition (SSI) point process, and a LGCP (as we show in Section 5.2.1, IRMPS
is in general not satisfied for the LGCP, and we expect it is also not satisfied for the SSI point process where it is hard
to evaluate ρ (n ) for n ≥ 2). Furthermore, Christensen and Møller (2020) introduce three purely empirical summary
functions obtained bymodifying the empirical F ,G , and J -functions for inhomogeneous point patterns on a Euclidean
space to linear networks. Briefly, the modification consists of replacing the Euclidean space with the linear network,
introducing the shortest path distance instead of the Euclidean distance, and adapting the notion of an eroded set
to linear networks. Christensen and Møller (2020) demonstrate the usefulness of the empirical summary functions
when modelling spine locations on dendrite trees.

To validate a fitted model when considering one or more empirical summary functions, the most popular method
uses simulations to obtain confidence regions called global envelopes and p-values for global envelope tests based on
the extreme rank length as described in Myllymäki et al. (2017), Mrkvička et al. (2020), and Myllymäki and Mrkvička
(2019). (Some more text will be added here)

5 | COX PROCESSES DRIVEN BY TRANSFORMED GAUSSIAN PROCESSES

5.1 | General setting

Let X be a point process on S as considered in Section 4.1 and let Λ = {Λ (u ) | u ∈ S } be a non-negative stochastic
process so that with probability 1, for any bounded Borel set A ⊆ S , the measure ξ (A) = ∫

A
Λ (u ) dν (u ) is finite.

Suppose X is a Cox process driven by Λ, that is, X conditioned on Λ is almost surely a Poisson process with intensity
function Λ. Usually in applications Λ is unobserved, and so the Cox process X is indistinguishable from the inhomoge-
neous Poisson process X |Λ when only one point pattern dataset is available (for a discussion of which of two models
is most appropriate, see Møller and Waagepetersen, 2004, Chapter 5).

Henceforth, assume ÅΛ (u ) is a locally integrable function with respect to ν. Then the Cox process X is well-
defined and has intensity function ρ (u ) = ÅΛ (u ) . Let W ⊆ S be a bounded Borel set which we think of as an
observation window with ν (W ) > 0. Then XW is a Cox process driven by Λ restricted toW , and XW has a density
given by

f ({u1, . . . ,un }) = Å
[
exp

(∫
W
(1 − Λ (u ) ) dν (u )

) n∏
i=1

Λ (ui )
]

for pairwise distint u1, . . . ,un ∈ W (21)

with respect to X1 ∩W , where X1 is the unit rate Poisson process, cf. Section 4.1. In particular, if S = Ók or S = L,
lettingW = S , then for u ∈ S with ρ (u ) > 0, Xu has density

fu ({u1, . . . ,un }) = Å
[
exp

(∫
W
(1 − Λ (u ) ) dν (u )

)
Λ (u )
ρ (u )

n∏
i=1

Λ (ui )
]

(22)

with respect to X1, cf. (13). In general the densities in (21) and (22) are intractable because the expected values are
difficult to evaluate. Instead the following moment properties are exploited for inference: By conditioning on Λ it
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follows from (14) and the moment properties of the Poisson process that
ρ (u1, . . . ,un ) = Å [Λ (u1 ) · · · Λ (un ) ] .

It is often useful to write Λ as
Λ (u ) = ρ (u )Λ0 (u ) (23)

where Λ0 = {Λ0 (u ) | u ∈ S } is a non-negative ‘residual’ stochastic process with ÅΛ0 (u ) = 1whenever ρ (u ) > 0. Then
ρ (u1, . . . ,un ) = ρ (u1 ) · · · ρ (un )Å [Λ0 (u1 ) · · · Λ0 (un ) ]

and
g (u,v ) = Å [Λ0 (u )Λ0 (v ) ] . (24)

For most statistical models considered in the literature, it is only ρ (u ) which is allowed to depend on covariate infor-
mation, whilst Λ0 is considered to account for unobserved covariates or other effects which has not been successfully
fitted by a Poisson process with intensity function ρ, see e.g. Møller and Waagepetersen (2007) and Diggle (2014).
Usually, Λ0 is assumed to satisfy additional conditions such as stationarity if S = Òk , isotropy if S = Ók , or homogene-
ity if S = L as exemplified many places in the following. Furthermore, for specific models of Λ0 it usually happens that

Å [Λ0 (u1 ) · · · Λ0 (un ) ] ≥ Å [Λ0 (u1 ) · · · Λ0 (ui ) ] Å [Λ0 (ui+1 ) · · · Λ0 (un ) ] (25)
for n = 2, 3, . . ., i = 2, . . . , n , and all pairwise distinct u1, . . . ,un ∈ S , meaning that X is positively correlated at all orders,
cf. (15).

5.2 | Models

Consider a GPY = {Y (u ) | u ∈ S } with mean function µ and covariance function c, and letY1, . . . ,Yh be independent
copies ofY . In the remainder of this paper we study the following models.

• X is a log Gaussian Cox process (LGCP) if
Λ0 (u ) = exp(Y (u ) ) (26)

and µ (u ) = −c (u,u )/2 for all u ∈ S . The latter condition is required since we want ÅΛ0 (u ) = 1.
• Assume µ = 0. If Π (u ) = exp(−∑h

i=1Yi (u )
2 ) and
Λ0 (u ) = Π(u ) (1 + 2c (u,u ) )h/2 (27)

for all u ∈ S , then X is a interrupted Cox process (ICP). Since ÅΠ (u ) = (1 + 2c (u,u ) )−h/2, we have ÅΛ0 (u ) = 1.
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Note that the definition of Π differs slightly from the one used in Lavancier and Møller (2016), which includes a
factor 1/2 inside the exponential function.

• Assume µ = 0 and c (u,u ) = 1 for all u ∈ L (so c is a correlation function). If

Λ0 (u ) =
1

h

h∑
i=1

Yi (u )2 (28)

then X is a permanental point process (PPP). Since the sum in (28) is χ2 (h )-distributed, ÅΛ0 (u ) = 1.
In all cases, the distribution of X is completely specified by (ρ, c ) and in the case of an ICP or PPP the value of h. Note
that the intensity function ρ can be any non-negative locally integrable function with respect to ν.

LGCP, ICP, and PPP models are well-studied when S = Òk or S = Ók , and most of their properties immediately
extend to the case S = L as discussed in the following.

5.2.1 | Log Gaussian Cox processes

Let X be a LGCP, cf. (26). Møller et al. (1998) studied the case S = Òk , and Cuevas-Pacheco and Møller (2018) the
case S = Ók . As in Møller et al. (1998) and Coeurjolly et al. (2017), we obtain for the general setting of the space S
the following results.

For any integer n ≥ 2 and any pairwise distinct u1, . . . ,un ∈ S ,
ρ (u1, . . . ,un ) = ρ (u1 ) · · · ρ (un ) exp ( ∑

1≤i<j ≤n
c (ui ,u j )

)
. (29)

In particular, the LGCP is determined by ρ and g = exp(c ) , i.e., by its first and second order moment properties. In
most specific models, including those in Table 1, c ≥ 0 or equivalently X is positively correlated at all orders, cf. (15)
and (29). If c (u,v ) = c0 (d (u,v ) ) is isotropic, then ρ (u1, . . . ,un ) depends only on the inter-point distances d (ui ,u j ) ,
1 ≤ i < j ≤ n .

For any u ∈ S with ρ (u ) > 0, the reduced Palm distribution of Xu is a LGCP with intensity function ρ (v |u ) =
ρ (v ) exp(c (u,v ) ) but the pair correlation function is still g (v ,w |u ) = g (v ,w ) = exp(c (v ,w ) ) for v ,w ∈ S . This
follows from (21) and (22) when S = W = Ók or S = W = L; if S = Òk , see Coeurjolly et al. (2017). See also the
discussion in Section 7 on K -functions for X and Xu .

Assuming S = L is a linear network, let us return to the concept of IRMPS as defined by (20). Cronie et al. noticed
that IRMPS is satisfied for the LGCP if inf ρ > 0 and for all u1,u2,u ∈ L,

c (u1,u2 ) = c1 (δ (u,u1 ), (u,u2 ) ) (30)
for some function c1 (in our notation; see Cronie et al., 2020, Equation (29)). This statement is true due to (29), how-
ever, in our opinion (30) is a very strong condition, sincewe are not aware of any good examples unless L is isometric to
a closed interval and δ is usual (Euclidean/geodesic/resistance) distance. Incidentally, in Cronie et al. (2020, Lemma 2)
the metric δ is assumed to be origin independent; they do not define the meaning of ‘origin independent’ but we have
been informed (by personal communication) that they actually mean that (30) should be satisfied and unfortunately
when Cronie et al. (2020, in the text after Lemma 2) let δ = dR be the resistance metric, they have misunderstood
the meaning of origin independent as used in Anderes et al. (2020, Proposition 2). Moreover, even when using their
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meaning of origin independent, the proof of Cronie et al. (2020, Lemma 2) is incorrect, since they claim that for any
u ′,u ′′,u1 ∈ L we have δ (u ′,u1 ) = δ (u ′′,u1 ) , which is obviously not correct if δ = dR (and it seems wrong in general
no matter what the metric is).

5.2.2 | Interrupted Cox processes

Let X be an ICP, cf. (27). Then X conditioned on Π is obtained by an independent thinning of a Poisson process Z
on S with intensity function ρZ (u ) = ρ (u ) (1 + c (u,u ) )h/2, where the selection probabilities are given by Π. In the
terminology of Stoyan (1979), X is an interrupted point process.

Lavancier and Møller (2016) studied the ICP (as well as many other examples of interrupted point processes)
when S = Òk . For our general state space setting we obtain in a similar way as in Lavancier and Møller (2016) that

g0 (t ) =
(

(1 + σ2 )2

(1 + σ2 )2 − σ4r0 (t )2

)h/2
, (31)

whilst third and higher-order moment results are less simple to express, but it can be proven that X is positively
correlated at all orders. As σ increases from 0 to infinity, then q decreases from 1 to 0, whilst g0 (t ) increases from 1
to (1− r0 (t )2 ) −h/2 if r0 (t ) , 0, which shows a trade-off between the degree of thinning and the degree of clustering.
To understand how g0 (t ) depends on h it is natural to fix the value of q ∈ (0, 1) . Then

g0 (t ) =
(
1 +

(
1 − qh/2

)2
r0 (t )2

)−h/2
is a strictly increasing function of h whenever r0 (t ) , 0. Consequently, taking h = 1 is natural if we wish to model as
much clustering as possible.

For the case L = S and c (u,v ) = σ2 exp(−d (u,v )/φ ) given by an isotropic exponential covariance function,
expressions of KL when h = 1, 2, . . . , 5 are given in (Christensen and Møller, 2020, Appendix A). Although these
expressions were given for d = dG , they remain true for a general metric d because g0 depends only on h, σ2, and
r0 (t ) = exp(−t/φ ) , cf. (31) and our comment after (17).

5.2.3 | Permanental point processes

Let X be an PPP, cf. (28). The case S = Òk is studied in Macchi (1975) and McCullagh and Møller (2006); using the
parametrization in the latter paper, X is a PPP with parameters α = h/2 and C (u,v ) = √

ρ (u )ρ (v )c (u,v )/α . The
process can also be defined in the general state space case, see Shirai and Takahashi (2003).

For n = 1, 2, . . . and u1, . . . ,un ∈ S , define the α-weighted permanent by
perα [c ] (u1, . . . ,un ) = ∑

π

α#πc (u1,uπ1 ) · · · c (un ,uπn )

where the sum is over all permutations π = (π1, . . . , πn ) of (1, . . . , n ) and #π is the number of cycles. The usual
permanent corresponds to α = 1 (Minc, 1978), in which case X is also called a Boson process (Macchi, 1975). We
have

ρ (u1, . . . ,un ) = ρ (u1 ) · · · ρ (un )perα [c ] (u1, . . . ,un )/αn
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from which it can be verified that X is positively correlated at all orders. It also follows that the degree of clustering
is a decreasing function of α . In particular,

g (u,v ) = 1 + c (u,v )2/α .

This reflects the limitation of modelling clustering by a PPP, since c is a correlation function in this model: The pcf is
bounded by 1 + 1/α ≤ 3.

Valiant (1979) showed that exact computation of permanents of general matrices is a #P (sharp P) complete
problem, so no deterministic polynomial time algorithm is available. For most statistical purposes, approximate com-
putation of permanent ratios is sufficient, and analytic approximations are available for large α . However, as α →∞, X
tends to a Poisson process and the process becomes less and less interesting for the purpose of modelling clustering.

The PPP can be extended to the case where α ≥ 0 and c is not necessarily a covariance function (in which case
we loose the connection to Gaussian and Cox processes), see McCullagh and Møller (2006) and Shirai and Takahashi
(2003). Indeed the process also extends to the case where α is a negative integer (a (weighted) determinantal point
processes). We return to this and further properties in Section 7).

6 | APPLICATION OF STATISTICAL INFERENCE PROCEDURES

(Some more text will be added here)
Christensen and Møller (2020) analysed several point pattern datasets given by spine locations on different den-

drite trees which were identified by linear networks. For each dataset they fitted an inhomogeneous ICP with h = 1
and c (u,v ) = σ2 exp(−dG (u,v )/φ ) given by an isotropic exponential covariance function. Specifically, they used a
two step estimation procedure: First, given a parametric model for ρ where the parameter ranges independently of
(σ, β ) , the parameter is estimated by maximizing a first-order composite likelihood function (the Poisson likelihood),
second a minimum contrast procedure based on g0 was used for estimating σ > 0 and φ > 0, where they plug-in the
estimated intensity function. Simulation studies in Christensen and Møller (2020) indicated that 1) it can be difficult
to estimate σ2 and h simultaneously, as an increase in h can be balanced out by an increase in σ2, 2) with the default
bandwidth and kernel from the spatstat-package for estimating g0, minimum contrast estimation based on g0 gener-
ally performs better than if it is based on K (which is consistent with results in Lavancier and Møller, 2016), and 3)
minimum contrast estimation is far more reliable than (second-order) composite likelihood estimation.

7 | CONCLUDING REMARKS

(Some more text will be added here)
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