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Abstract

An α-permanental random field is briefly speaking a model for a collection of random

variables with positive associations, where α is a positive number and the probabil-

ity generating function is given in terms of a covariance or more general function so

that density and moment expressions are given by certain α-permanents. Though such

models possess many appealing probabilistic properties, many statisticians seem un-

aware of α-permanental random fields and their potential applications. The purpose of

this paper is first to summarize useful probabilistic results using the simplest possible

setting, and second to study stochastic constructions and simulation techniques, which

should provide a useful basis for discussing the statistical aspects in future work. The

paper also discusses some examples of α-permanental random fields.

Keywords: α-determinant; α-permanent; covariance; doubly stochastic construction; nega-

tive binomial distribution; perfect simulation; Poisson randomization.

1 Introduction

Permanental (or boson) and determinantal (or fermion) point processes as introduced by

(Macchi, 1971, 1975) and their extensions to α-permanental and α-determinantal point pro-

cesses (Shirai and Takahashi, 2003a,b, Georgii and Yoo, 2005, Hough et al., 2006, McCullagh
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and Møller, 2006) have in recent years been of much research interest in probability theory,

with applications in statistical physics (here α is a positive parameter in the α-permanental

case, while 1/α is a negative integer in the α-determinantal case). However, to the best of

our knowledge, the statistical and computational aspects of these models have so far mainly

been unexplored, and many statisticians may be unaware of the models many appealing

properties and potential applications. The focus of the present paper is on α-permanental

point process models in the simplest setting, namely when such point processes can be iden-

tified by a random field N = (Ns; s ∈ S) of discrete non-negative random variables, where

at first S is taken as a finite index set S = {s1, . . . , sm}, but extensions to infinite S is

considered in the final part of the paper. We call such a random field an α-permanental

random field. The present paper should provide a useful basis for discussing the statistical

aspects of α-permanental random fields, and it is based partly on the above-mentioned refer-

ences and the seminal work by Griffiths (1984), Griffiths and Milne (1987), and in particular

Vere-Jones (1997), and partly on some new results of our own. Though many results extend

to the general setting where S is a Polish space, including the special case of spatial point

processes in R
d, a much more technical exposition would then be needed, see e.g. Shirai and

Takahashi (2003a).

Section 2 introduces some notation and discusses the definition and existence of α-

permanental random fields, and in Section 3 some properties are explored. The stochastic

construction and simulation of α-permanental random fields is covered in Section 4. In Sec-

tion 5 specific examples of model types and some of their properties are presented. Finally,

Section 6 discusses possible extensions of the models.
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2 Preliminaries

2.1 Definition and notation

An α-permanental random field is specified by a real parameter α > 0 and a function

C : S × S → R, which since S is finite can be identified with a real m×m matrix, also

denoted C. Whether C is considered a function or a matrix will depend on the context,

and the two representations are used interchangeably throughout the paper. Notationally

we write Ci,j = C(si, sj). We define an α-permanental random field through its probability

generating function as follows, where I denotes the identity matrix, |A| is the determinant

of a square matrix A, and we take 00 = 1.

Definition 1 Let S = {s1, . . . , sm} be an arbitrary finite set, α > 0, and C : S ×S → R. A

collection of non-negative integer-valued random variables N = (Ns, s ∈ S) is said to be an

α-permanental random field with parameter (α, C) if the probability generating function for

N,

ϕ(z) = ϕ(zs; s ∈ S) = E
∏

s∈S

zNs

s

is of the form

ϕ(z) = |I + α(I−Z)C|−1/α (1)

where Z denotes the diagonal matrix with (zs; s ∈ S) on the diagonal. We denote this

N ∼ per(α, C).

In accordance with the references given at the very beginning of Section 1, we call it an

α-permanental random field, while a so-called α-determinantal random field appears if α is

negative (see Section 6.2). The reason for the names of these models are partly explained by
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the close connection between α-determinants and α-permanents and the fact that density

and moment expressions are given in terms of α-determinants or α-permanents, see Section 3.

For notational convenience we also write Nsi
= Ni. If N ∼ per(α, C) then I + αC is

necessarily non-singular (otherwise (1) would not be well-defined for z = 0), and we can

define the matrix

C̃ = αC(I + αC)−1 = I − (I + αC)−1. (2)

Using this parameterization we can write (1) as

ϕ(z) =
[

|I−C̃|/|I−ZC̃|
]1/α

. (3)

On the other hand, if (3) is a probability generating function then I−C̃ is necessarily non-

singular, and setting

C =
1

α
C̃(I − C̃)−1 (4)

we obtain (1). Consequently, we can equally well parameterize per(α, C) by (α, C̃).

Using the Schur decomposition of C (Bhatia, 1997), the relation between the eigenvalues

λi of C and the eigenvalues λ̃i of C̃ is seen to be

λi =
λ̃i

α − αλ̃i

, λ̃i =
αλi

1 + αλi
, i = 1, . . . , m. (5)

We let ‖λi‖ denote the modulus of λi and define the spectral norm of C as

‖C‖ = max{‖λ1‖, . . . , ‖λm‖} (and similarly for C̃).

2.2 Existence of the α-permanental random field

By Definition 1, per(α, C) exists if and only if (1) (or equivalently (3)) is a proper probability

generating function. It is clear that this is not the case for all (α, C). The problem of
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characterizing the set of (α, C) such that (1) is a proper probability generating function

is treated in detail in Vere-Jones (1997), but no easily verifiable necessary and sufficient

condition is known. There are however some known sufficient conditions expressed either

through (α, C) or (α, C̃), and the two most important sufficient conditions for the present

exposition are the following.

Condition I C is a covariance matrix and α ∈
(
0, 2

m−1

)
∪
{

2
m−1

, 2
m−2

, . . . , 1, 2
}
.

Condition II C̃ has non-negative entries and ‖C̃‖ < 1.

Condition I is a minor extension of the corresponding result in Vere-Jones (1997), and it

can be found in e.g. Shirai (2007). It is related to the double stochastic construction of

the α-permanental random field described in Section 4.1, which is particularly simple when

α = 2/k for k ∈ N. The sufficiency of Condition II is an immediate consequence of (17)

in Section 3.3, where the density of the α-permanental random field is expressed using α-

determinants of C̃. Note that α can be any positive number under Condition II.

One important necessary condition C must satisfy is

C(s, s) ≥ 0 for all s ∈ S. (6)

This follows later from equation (8).

Finally, a useful expansion for ‖zs‖ ≤ 1, s ∈ S, is

− log |I − ZC̃| =

∞∑

n=1

tr
{(

ZC̃
)n}

/n if ‖C̃‖ < 1. (7)

See e.g. Goulden and Jackson (1983).
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3 Properties of α-permanental random fields

In accordance with Shirai (2007) we define the α-determinant of an n×n matrix A with

entries Ai,j as

detαA =
∑

σ∈Sn

αn−c(σ)A1,σ(1)A2,σ(2) · · ·An,σ(n)

where Sn is the set of all permutations of 1, . . . , n, and c(σ) denotes the number of cycles

in σ. We obtain the usual permanent if α = 1, and if we allow α < 0 the usual determi-

nant |A| arises in the special case α = −1 (Minc, 1978). Note that the α-determinant is

closely related to the α-permanent |A|α = αndetαA studied in Vere-Jones (1988, 1997), but

|A|−1 = (−1)n|A| is not the determinant if n is odd.

When studying α-permanental random fields we will need various matrices formed from

C and C̃. We introduce these for C in the following, while the analogous definitions for C̃

simply are obtained by replacing C with C̃. For any multi-set T = {t1, . . . , tn}, ti ∈ S we

let CT denote the n×n matrix with (i, j)’th entry C(ti, tj). If T is of the special form

T = {s1, . . . , s1
︸ ︷︷ ︸

ns1

, . . . , si, . . . , si
︸ ︷︷ ︸

nsi

, . . . , sm, . . . , sm
︸ ︷︷ ︸

nsm

},

for non-negative integers n = (ns; s ∈ S) with n⋆ =
∑

s∈S ns > 0 we also write CT = C[n],

and we define detαC[0] = 1.

In general the computation of the permanent of a matrix is #P-complete (Valiant, 1979),

which also appears to hold for the α-determinant in general when α 6= −1. However, in Kou

and McCullagh (2008) an algorithm for approximating the α-determinant for α > 0 is given,

which may help overcome the difficulties of calculating the α-determinant in applied work.
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3.1 Relation to the negative binomial distribution

Let N ∼ per(α, C). From the form of (1) it is clear that for any S ′ ⊂ S the subfield

NS′ = (Ns; s ∈ S ′) is also a α-permanental random field; NS′ ∼ per(α, CS′). Particularly,

the probability generating functions of the one dimensional marginals Ns, s ∈ S are of the

form (1+α(1−z)C(s, s))−1/α. Hence, if b−(κ, π) denotes the negative binomial distribution

with parameters κ > 0 and 0 ≤ π < 1, and probability density function

Γ(n + κ)

n!Γ(κ)
πn(1 − π)κ, n = 0, 1, . . . ,

we see that

Ns ∼ b−
(

1

α
,

αC(s, s)

1 + αC(s, s)

)

. (8)

Consider the sum N⋆ =
∑

s∈S Ns. By (1), the probability generating function of N⋆ is

ϕ⋆(z) = |I + α(1 − z)C|−1/α. (9)

Rewriting in terms of the eigenvalues of C, (9) yields

ϕ⋆(z) =
∏

i: λi∈R

(1 + α(1 − z)λi)
−1/α

×
∏

i:λi 6∈R

(
1 + 2α(1 − z)Re(λi) + α2(1 − z)2‖λi‖2

)−1/(2α)
. (10)

Hence, if 1/α is an integer, the distribution of N⋆ is of matrix geometrical form, see Asmussen

and O’Cinneide (1998) and the references therein. If C only has real eigenvalues λi ≥ 0,

i = 1, . . . , m, then (10) implies that

N⋆ ∼ b−
(

1

α
,

αλ1

1 + αλ1

)

⋆ . . . ⋆ b−
(

1

α
,

αλm

1 + αλm

)

. (11)
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A well-known property for ‘zero-states’ of the negative binomial distribution can be gen-

eralized as follows concerning the probability

ϕ⋆(0) = P(Ns = 0 for all s ∈ S).

From (10) follows that

d

dα
log ϕ⋆(0) =

2m1 + m2

2α2
− 1

2

∑

i:λi 6∈R

‖λi‖2

where m1 respective m2 denote the number of real respective non-real eigenvalues λi, i =

1, . . . , m. Thus, if C has only real eigenvalues, ϕ⋆(0) is an increasing function of α, and

ϕ⋆(0) → 1 for α → ∞.

3.2 Moments

For non-negative integers a and b, let a(0) = 1, and a(b) = a!/(a− b)! = a(a−1) · · · (a− b+1)

if a ≥ b > 0. The factorial moments are given by

E
∏

s∈S

N (ns)
s = detαC[n] (12)

for non-negative integers (ns; s ∈ S). This can be obtained by expanding out the powers

of (zs − 1) in (1), cf. Vere-Jones (1997) and Shirai and Takahashi (2003a). Note that (12)

implies that (α, C) is such that detαC[n] ≥ 0 for all non-negative integers (ns; s ∈ S).

In general, only the lower dimensional moments are computationally tractable. The first

and second order moments are given by

ENs =C(s, s), VarNs =C(s, s)+αC(s, s)2, Cov(Ns, Nt)=αC(s, t)C(t, s), if s 6= t. (13)

By (13) it is clear that

Ns = 0 (almost surely) if and only if C(s, s) = 0. (14)
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If C(s, s) > 0, we obtain from (13) the well-known property of the negative binomial distri-

bution that Ns is over-dispersed. Moreover, (13) implies that Cov(Ns, Nt) ≥ 0, cf. Vere-Jones

(1997). Note that if C is symmetric and non-negative, there is a one-to-one correspondence

between (α, C) and the moments given by (13).

If C is a covariance function, consider its correlation function

R(s, t) = C(s, t)/ [C(s, s)C(t, t)]1/2 , s, t ∈ S (15)

where we take R(s, t) = 0 if C(s, s) = 0 or C(t, t) = 0. Then by (13), the correlation between

Ns and Nt is

Corr(Ns, Nt) = αR(s, t)2

[
C(s, s)C(t, t)

(1 + αC(s, s))(1 + αC(t, t))

]1/2

, s, t ∈ S. (16)

The right hand side in (16) is an increasing function of α, and it tends to R(s, t)2 as α → ∞.

3.3 Probability density function

The probability density function of an α-permanental random field can be expressed us-

ing α-determinants of C̃ as follows, see Vere-Jones (1997). For any non-negative integers

n = (ns; s ∈ S) with n⋆ =
∑

s∈S ns,

P(N = n) = |I − C̃|1/αα−n⋆detαC̃[n]

/
∏

s∈S

ns! . (17)

This can be obtained by expanding out the powers of zs in (3).

As described in Section 3.1 the marginal distribution of any Ns and possibly also of

the ‘margin’ N⋆ are related to the negative binomial distribution. However, even the joint

distribution of two random variables Ns and Nt is in general complicated, cf. the discussion

in Griffiths and Milne (1987).
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3.4 Independence

Independence properties of infinite divisible α-permanental random fields have been studied

in Griffiths and Milne (1987), and their results are summarized here with slight generaliza-

tions.

Suppose that T, U ⊂ S are disjoint, non-empty, and let S = T ∪ U . Recall that the

subfields NT and NU are independent if and only if the probability generating function

ϕ(zs; s ∈ S) of N is a product of two functions, one of (zs; s ∈ T ) and one of (zs; s ∈ U).

It follows immediately from (1) that NT and NU are independent

if C(t, u) = C(u, t) = 0 whenever t ∈ T and u ∈ U . (18)

If C is symmetric, then by (13), Cov(Nt, Nu) = αC(t, u)2, and so NT and NU are independent

if and only if C(t, u) = 0 whenever t ∈T and u ∈ U . (19)

The property of C in (18)-(19) means that if we order the elements in S so that the elements

of T come before those of U , then C restricted to T ∪ U is block-diagonal with respect to

the partition given by T and U . If C is not symmetric, it is possible that Cov(Ns, Nt) =

C(t, u)C(u, t) is zero even if Nt and Nu are not independent, and we can not in general

replace ‘if’ in (18) by ‘if and only if’.

Furthermore, we can replace C by C̃ everywhere in (18)-(19). This follows by similar

arguments as above but using (3). In addition, assume that the eigenvalues of C̃ are bounded

strictly in modulus by one, and define a directed graph G(C̃) with vertex set S and edges
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〈si, sj〉 if si 6= sj and C̃(si, sj) 6= 0. Then NT and NU are independent

if and only if every directed circuit in G(C̃) contains vertices of either T or U ,

but not both. (20)

This follows by combining (3) and (7), using similar arguments as in the proof of Theorem 3

in Griffiths and Milne (1987).

3.5 Thinning

Let 0 ≤ πs ≤ 1, s ∈ S, be given numbers, and consider a random field Nth = (N th
s ; s ∈ S)

so that conditional on N, the N th
s are mutually independent and N th

s ∼ b(Ns, πs). We say

that Nth is obtained by an independent thinning of N with retention probabilities πs, s ∈ S.

Define

Cth
s,t =

√
πsπtCs,t, s, t ∈ S. (21)

It follows immediately from (1) that

Nth ∼ per(α, Cth). (22)

Suppose that C is a covariance matrix. Then Cth given by (21) is also a covariance

matrix, and N and Nth share the same correlation matrix R given by (15). By (16) 0 ≤

Corr(N th
s , N th

t ) ≤ Corr(Ns, Nt), where Corr(N th
s , N th

t ) is an increasing function of πs and of

πt.
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3.6 Convolution

By (1), for any α1 > 0 and α2 > 0,

per

(

α1,
α2

α1 + α2

C

)

⋆ per

(

α2,
α1

α1 + α2

C

)

= per

((
1

α1

+
1

α2

)−1

, C

)

provided of course that the two first α-permanental random fields exist. In particular,

per(α, C) = per(αn, C/n)⋆n

for any n ∈ N such that per(αn, C/n) exists, where ⋆n denotes convolution n times.

4 Stochastic constructions and simulation

In this section we discuss stochastic constructions and perfect simulation algorithms for the

α-permanental random field N. We call a simulation perfect if it (at least in theory, i.e. apart

from the use of a random number generator) exactly follows a given target distribution. To

exclude the trivial case where Ns = 0 for all s ∈ S, we assume that C has rank r > 0.

Furthermore, we assume m > 1, since N just follows a negative binomial distribution if

m = 1.

4.1 Doubly stochastic construction

Assume that G = (Gs; s ∈ S) is a random field of non-negative real random variables with

Laplace transform (or moment generating function) of the form

E exp

(
∑

s∈S

Gszs

)

= |I − αZC|−1/α (23)
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for zs ∈ [−1, 1], s ∈ S, where Z is the diagonal matrix with diagonal (zs; s ∈ S). This

is a multivariate extension of the gamma distribution, where all one-dimensional marginals

are gamma-distributed, but it is an open question to establish necessary and sufficient con-

ditions on (α, C) for (23) to be a Laplace transform of some distribution on [0,∞)m, see

Krishnamoorthy and Parthasarathy (1951) and Vere-Jones (1997). Suppose that N condi-

tioned on G consists of mutually independent Poisson random variables Ns with mean Gs,

s ∈ S. It is immediately verified that (1) is satisfied, so N ∼ per(α, C), cf. Vere-Jones

(1997).

By this doubly stochastic construction, if we can generate G, we can straightforwardly

generate N. Below two different constructions of G are described.

Method I: Assume Condition I (Section 2.2) is satisfied. Generate a m×m Wishart matrix

K with 2/α degrees of freedom and mean C. If Gsi
= Ki,i then G has moment generating

function (23). Simulation of Wishart distributed matrices is described in e.g. Johnson (1987).

Method II: Assume Condition I is satisfied and α = 2/k for some k ∈ N. Generate

independent zero-mean Gaussian random fields Y1 = (Y1,s; s ∈ S), . . . ,Yk = (Yk,s; s ∈ S)

with covariance function C/k. If Gs = Y 2
1,s+ · · ·+Y 2

k,s, s ∈ S, then G has moment generating

function (23). Various simulation methods for Gaussian random fields are implemented in

the R package RandomFields by Martin Schlather. See also Schlather (1999), Lantuejoul

(2002), and the references therein.

Method I corresponds to the extension given in Shirai (2007), and the simpler Method II
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has also been considered in Vere-Jones (1997).

4.2 Poisson randomization

In the sequel, it seems more natural to work with C̃ rather than C, where we assume

that Condition II (Section 2.2) is satisfied. The assumption that C̃ ≥ 0 ensures that the

right hand sides in the density expressions (24)-(25) and (27) below are non-negative. The

α-permanental field N can then be constructed by the following five steps of a Poisson ran-

domization (a similar construction for spatial point processes was introduced in McCullagh

and Møller (2006)).

1. For n ∈ N, define a probability density function by

pn(t1, . . . , tn) =
1

tr(C̃n)

n∏

i=1

C̃(ti, ti+1), (t1, . . . , tn) ∈ Sn, (24)

where tn+1 = t1. Using the Schur decomposition of C̃ (Bhatia, 1997), we obtain the

normalizing constant tr(C̃n) =
∑m

i=1 λ̃n
i of this density. It can be viewed as a Markov

random field defined on the graph with vertices 1, . . . , n and edges 〈i, i+1〉, i = 1, . . . , n,

with the turn-around edge 〈n, n + 1〉 = {n, 1}. It reduces to the “Ising model on the

ring” if S = {s, t} and C̃(s, s) = C̃(t, t).

2. Define a random variable W with probability density function

pW (n) =
tr(C̃n)

Dn
, n ∈ N, (25)

where

D = − log |I − C̃|. (26)
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If the eigenvalues of C̃ are real with 0 ≤ λ̃i < 1, then D = −
∑m

i=1 log(1 − λ̃i) and W

follows a mixture of logarithmic distributions with parameters λ̃i, i = 1, . . . , m, where

the i’th logarithmic distribution has weight − log(1−λ̃i)/D in the mixture distribution.

3. Consider an ordered point process (R1, . . . , RW ), where conditioned on W = n, (R1, . . . , Rn)

follows (24). Thus (R1, . . . , RW ) takes values in the countable set ∪∞
n=1S

n, and its prob-

ability density function p(t1, . . . , tn) = pW (n)pn(t1, . . . , tn) is

p(t1, . . . , tn) =
1

nD

n∏

i=1

C̃(ti, ti+1), (t1, . . . , tn) ∈ Sn, n ≥ 1. (27)

Moreover, define a random field M = (Ms; s ∈ S) with Ms =
∑W

j=1 I[Rj = s]. We call

M a cluster and each Ri, i = 1, . . . , W , a point of the cluster, i.e. Ms counts how many

points in the cluster are equal to s.

4. Let V be a Poisson random variable with mean D/α, and conditioned on V = n, if

n > 0, let M(1), . . . ,M(n) be mutually independent copies of M. These clusters are gen-

erated by corresponding mutually independent ordered point processes (R
(1)
1 , . . . , R

(1)
W1

),

(R
(2)
1 , . . . , R

(2)
W2

), . . ., which are independent of V .

5. The Poisson randomization is given by the random field N = (Ns; s ∈ S) with

Ns =

V∑

i=1

M (i)
s

counting how many points in all the V clusters are equal to s (setting Ns = 0 if V = 0).

The validity of this Poisson randomization is stated and proven below.

Proposition 1 Let Condition II be satisfied. Then the random field N given by the Poisson

randomization 1.−5. has a probability generating function of the form (3), i.e. N ∼ per(α, C).
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Proof:

The proof in McCullagh and Møller (2006) of the validation of the Poisson randomization is

based on density calculations. Below we give an alternative, short, and simple proof based

on the probability generating function.

Let zs ∈ [−1, 1], s ∈ S. By the construction of N in the Poisson randomization, and by

first conditioning on V , and next using that V is Poisson distributed with mean D/α, we

obtain

E
∏

s∈S

zNs

s = E

[(

E
∏

s∈S

zMs

s

)V
]

= exp

[
D

α

(

E
∏

s∈S

zMs

s − 1
)]

. (28)

By the construction of M and (27),

E
∏

s∈S

zMs

s =
∞∑

n=1

∑

(t1,...,tn)∈Sn

∏

s∈S

z
Pn

j=1
I[tj=s]

s p(t1, . . . , tn)

=
1

D

∞∑

n=1

∑

(t1,...,tn)∈Sn

1

n

n∏

j=1

ztj C̃(tj, tj+1)

=
1

D
(− log |I − ZC̃|) (29)

where the last identity follows from (7). Combining (26) and (28)-(29) yields

E
∏

s∈S

zNs

s = exp
[ 1

α

(

− log |I − ZC̃| + log |I − C̃|
)]

=
(

|I − C̃|/|I − ZC̃|
)1/α

which agrees with the probability generating function (1).

Incidentally, if C ′ = αC is fixed, then N|(NS⋆ > 0) can be seen to converge in distribution

to M as α → ∞, cf. McCullagh and Møller (2006).

Remark:

The requirement of Condition II to be satisfied can be replace by only requiring the perma-
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nental random field to be infinitely divisible (which is implied by Condition II). Infinitely

divisibility has been characterized by Griffiths and Milne (1987) and it is shown that it

implies both ‖C̃‖ < 1 and that all cyclic products formed using C̃ are non-negative which

ensures the density (27) is still well-defined.

4.3 Perfect simulation of the Poisson randomization

Let the situation be as in Section 4.2. Perfect simulation of a realization from the Poisson

randomization is straightforward if we know how to make a perfect simulation of a cluster as

given in steps 1.-2. This can be done by first generating a realization W = n from (25), and

then use the following sequential simulation scheme. From (24) follows by induction that for

any n ∈ N,

pn−i(t1, . . . , tn−i) =
1

tr(C̃n)
C̃i+1(tn−i, t1)

n−i−1∏

j=1

C̃(tj , tj+1), i = 0, 1, . . . , n − 1,

where we set
∏n−i−1

j=1 · · · = 1 if i = n−1. Hence, first we draw t1 from the probability density

function

p1(t1) ∝ C̃n(t1, t1)

and second, successively for i = 2, . . . , n, since ti|(t1, . . . , ti−1) ∼ ti|(t1, ti−1), we draw ti from

the conditional probability density function

pi|1,i−1(ti|t1, ti−1) ∝ C̃n−i+1(ti, t1)C̃(ti−1, ti).

5 Examples

In this section, specific examples of α-permanental random field models are studied.
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5.1 Example I

Let C = κQ, where κ > 0 and Q is a projection of rank r > 0. In this special case N

satisfies many striking and unusual properties, and we refer therefore to it as the special

α-permanental random field.

Recall that a real m × m matrix Q is a projection if Q2 = Q, and it has then r unit

eigenvalues and m− r zero eigenvalues, where r is the rank of Q. As verified in Appendix B,

Q is a (real) projection of rank r if and only if it is of the form

Q = U

[
Ir B

01 02

]

U⋆ = U1U
⋆
1 + U1BU⋆

2 (30)

for an arbitrary unitary matrix U = [U1 U2] and an arbitrary complex r × (m − r) matrix

B such that U1BU⋆
2 is a real m × m matrix, where Ir is the r × r identity matrix, and 01

and 02 are corresponding zero-matrices. Here the columns in the matrix (BU⋆
2 )⋆ = U2B

⋆ are

arbitrary complex vectors in the orthocomplement to the complex linear subspace given by

the span of the columns in U1. Combining (2) and (30), it follows that

C and C̃ are proportional if and only if C is proportional to a projection. (31)

Since C has r non-zero eigenvalues which are all equal to κ, (11) reduces to

N⋆ ∼ b− (r/α, ακ/(1 + ακ)) .

Further, C̃ = (ακ/(1 + ακ))Q, and we obtain from (12) and (17) that the expressions for

the factorial moments and the probability density function are closely related, since

E
∏

s∈S

N (ns)
s = κn⋆detαQ[n], P(N = n) =

κn⋆detαQ[n]

(1 + ακ)n⋆+r/α
∏

s∈S ns!
(32)

where n⋆ =
∑

s∈S ns.
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If Q has non-negative entries, the procedure for perfect simulation of a cluster (Sec-

tion 4.3) simplifies, since C̃i = (ακ/(1+ακ))iQ for any i ∈ N, and the conditional probability

density functions

pi|1,i−1(ti|t1, ti−1) ∝ Q(ti, t1)Q(ti−1, ti), i = 2, . . . , n,

are of the same form.

5.2 Example II

If C has rank one it can be written on the form, Ci,j = aibj , i, j = 1, . . . , m, for some real

vectors (a1, . . . , am) and (b1, . . . , bm). We will assume that C is of this form with
∑m

i=1 Ci,i >

0. The matrix A := (I−Z)C appearing in (1) has (i, j)’th entry (1−zi)aibj . If A is a non-zero

matrix, i.e. zi 6= 1 for all i = 1, . . . , m, then A has rank one and eigenvalue
∑m

i=1(1−zi)Ci,i

with corresponding eigenvector ((1 − z1)a1, . . . , (1 − zm)am)⊤. Consequently, by (1),

ϕ(z) =

(

1 + α

[
m∑

i=1

(1 − zi)Ci,i

])−1/α

.

It follows that the distribution of N depends only on C through the diagonal elements.

Consequently, we may without loss of generality assume C to be a positive definite symmetric

matrix with non-negative entries of the form Ci,j =
√

cicj for some non-zero vector c =

(c1, . . . , cm), ci ≥ 0, i = 1, . . . , m. Then the only non-zero eigenvalue of C is κ :=
∑m

i=1 ci =

∑m
i=1 Ci,i, and it is a special α-permanental random field as discussed in Example I with

Q = 1
κ
C. From (11) we have

N⋆ ∼ b−
(

1

α
,

ακ

1 + ακ

)

. (33)
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By differentiation of the probability generating function it is straightforward to find the prob-

ability of N = n for any vector of non-negative integers n = (n1, . . . , nm) with
∑m

i=1 ni = n⋆

p(n) =
Γ( 1

α
+ n⋆)

Γ( 1
α
)

(

1 + ακ
)−n⋆−

1

α

m∏

i=1

cni

i

ni!
.

Combining this with (33) yields

p(n|n⋆) = n⋆!
m∏

i=1

1

ni!

(ci

κ

)ni (34)

such that N|n⋆ is multinomial with event probabilities c1
κ
, . . . , cm

κ
.

In this setup the random field is directly parameterized by the mean (EN1, . . . , ENm) =

(c1, . . . , cm), and using the fact that N⋆ follows a negative binomial distribution and that

N|N⋆ is multinomial makes a two step perfect simulation scheme straightforward. The

correlation between Ni and Nj is

Corr(Ni, Nj) =

√
ci

1/α + ci

cj

1/α + cj

so sites with a large mean is more strongly correlated to all other sites than a site with

a smaller mean. If N is homogeneous in the sense that c1 = · · · = cm = c the correlation

between the counts at any two sites is Corr(Ni, Nj) = αc/(1 + αc). Furthermore, as is the

case for α-permanental random fields in general, correlation grows with α as well.

Figure 1 shows four realizations of such a homogeneous random field with c = 100 and

α = 1. The figure exemplifies how the correlation in this model effectively results in very

little variation within a realization of the random field compared to the large variation be-

tween realizations. Based on 1000 simulations the average of the empirical variance within

each realization was 15.4 compared to the marginal variance Var(Ni) = 110, i = 1, . . . , 2500.

While this model is mathematically tractable it seems to be of less interest in applications
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Figure 1: Four independent realizations of the random field of Example II on a 50× 50 grid

with c1 = · · · = c2500 = 10 and α = 1.

due to low flexibility, and in spatial applications the model is unaffected by usual neigh-

borhood relations based on distances since correlation structures only depend on the mean

values at any given given pair of sites.

Remark:

In Example II it was sufficient to let C be symmetric, but this is not in general possible for

an α-permanental random field where C has rank higher than one. Take e.g. N ∼ per(α, C)

with C a non-symmetric matrix such that the α-permanental random field is well-defined.

Then a corresponding random field parameterized by a symmetric matrix C ′ would have to

be given by C ′
i,j =

√
Ci,jCj,i for the covariances to be the same, but the distribution is in
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general not the same using C and C ′ since the corresponding α-determinants (and thereby

the factorial moments) differ when the rank is higher than one.

5.3 Example III

In this example, we consider a model for an α-permanental random field in the case where

S = {s1, . . . , sm} is a finite number of sites on the real line with s1 < · · · < sm. First a

slight modification of the double stochastic construction of N = (Ns; s ∈ S) as described

in Method II (Section 4.1) is considered, and we therefore require that α = 2/k for some

k ∈ N. Furthermore, for each s ∈ S, let z(s) = (z0(s), z1(s), . . . , zp(s)) be given covariates

for Ns, where we let z0(s) = 1 for all s ∈ S such that β0 introduced below has the interpre-

tation of an intercept on the log-scale. The random mean field M = (Ms; s ∈ S) is mod-

eled as Ms = exp(β⊤z(s))(Y 2
1,s + · · ·+ Y 2

k,s), where Y1 = (Y1,s; s ∈ S), . . . ,Yk = (Yk,s; s ∈ S)

are independent zero-mean Gaussian random fields with the exponential covariance matrix

Cov(Yi,s, Yi,t) = ρ|s−t|, 0 < ρ < 1. Suppose that N conditioned on M consists of mutually

independent Poisson random variables Ns with mean Ms, s ∈ S. Then N ∼ per(α, C), where

Ci,j = C(si, sj) = exp
(
β⊤(z(si) + z(sj))/2

)
ρ|si−sj |. (35)

Using this construction the model is at least well-defined for α = 2/k, k ∈ N, but the

following proposition extends the model to all α > 0.

Proposition 2 Let S = {s1, . . . , sm}, s1 < · · · < sm, 0 < ρ < 1, and α > 0. If C is

given by (35) then all entries of C̃ = αC(I + αC)−1 are non-negative and per(α, C) is thus

well-defined.
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Proof:

We have C = DBD, where D is a diagonal matrix with Di,i = exp
(
β⊤z(si)/2

)
, i = 1, . . . , m,

and B is the matrix with entries Bi,j = ρ|si−sj |. Using a notation as in Appendix A, B is a

Green’s matrix with ai = ρ−|si−s1| and bi = ρ|si−s1|. Thus, if the inverse B−1 = T exists, T

is tridiagonal, and it is straightforward to verify that the matrix T given in the following is

indeed the inverse of B. The diagonal elements are

Ti,i =
1 − ρ2|si+1−si−1|

(1 − ρ2|si+1−si|)(1 − ρ2|si−si−1|)
, i = 1, . . . , m

where we define s0 = sm+1 = ∞, such that ρ2|s1−s0| = ρ2|s2−s0| = ρ2|sm+1−sm| = ρ2|sm+1−sm−1| =

0. The non-zero off-diagonal elements are

Ti,i+1 = Ti+1,i =
−ρ|si+1−si|

1 − ρ2|si+1−si|
, i = 1, . . . , m−1.

Now,

C̃ = (I + (αC)−1)−1 = (I + α−1D−1B−1D−1)−1 = αD(αD2 + T )−1D,

where the first equality follows by the Woodbury matrix identity (Woodbury, 1950) since

C is non-singular. Clearly the matrix αD2 is diagonal and positive definite. The sum of

positive definite matrices is positive definite, so (αD2 + T ) is a symmetric positive definite

tridiagonal matrix with non-positive off-diagonal elements. Lemma 1 in Appendix A implies

that all elements of (αD2 + T )−1 are non-negative, and the result follows.

Figure 2 is inspired by a dataset that fits into this setup (counts of clover leaves in 200

squares of size 5 × 5 cm along a 10 m transect line, see Augustin et al. (2006) ), where the

data can be viewed as a one-dimensional random field consisting of 200 sites on the real

line with positive association expected between the counts due to clustering of clovers in
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Figure 2: Realizations of the random field of Example III for different values of α and ρ.

patches. Figure 2 shows four different simulated datasets of this type using different values

of α and ρ. Since no covariates are available the only other parameter in the model is β0,

which controls the mean value EN1 = · · · = EN200 = exp(β0). For different values of (α, ρ),

permanental random fields were simulated using the Poisson randomization described in

Section 4.2, where β0 = log(1.28) is fixed so that the random fields have the same mean as

the data from Augustin et al. (2006). Table 5.3 summarizes some characteristics for each

of the simulated models. Here the correlation between neighboring sites is straightforward

to calculate, and for the real data the empirical estimate is reported. Further, V is the

number of clusters in a simulation, and from both its mean and its four simulated values it

is clear that realizations of V tend to be higher for smaller values of α and ρ. On the other

hand, realizations of W , which denotes the size of a cluster, tends to be larger for larger
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values of α and ρ. This gives an intuitive understanding of how the dependence structure is

created in the Poisson randomization: Large values of α lead to a small number of very large

clusters, and large values of ρ makes the correlation within the cluster high, such that a few

close sites are sampled many times in a cluster. Simulations 1 and 2 (α = 1) were also done

Simulation 1 2 3 4 Real data

(α, ρ) (1, 0.75) (1, 0.95) (10, 0.75) (10, 0.95) -

E(Ns) 1.28 1.28 1.28 1.28 1.28

Corr(Nsi
, Nsi+1

) 0.316 0.507 0.522 0.837 0.508

E(V ) 119 63 39 21 -

P (W = 1) 0.627 0.563 0.408 0.475 -

P (W ≤ 2) 0.793 0.706 0.575 0.623 -

P (W ≤ 10) 0.980 0.919 0.869 0.849 -

P (W ≤ 100) 1.000 0.999 0.994 0.975 -

V 130 62 45 20 -

W 2.29 5.85 8.18 34.9 -

Table 1: Parameter values and characteristics of the four simulated random fields considered

in Example III. The bottom two rows are observed quantities for the specific simulation

whereas the other values are calculated theoretically. The right most column shows the

empirical mean and lag 1 autocorrelation of one of the real data sets from Augustin et al.

(2006).

using the double stochastic construction of Section 4.1 to compare simulation time of the two

algorithms. In the Poisson randomization the most computer intensive part is calculating
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all the necessary powers of C̃ used both to simulate the cluster length W and in the perfect

simulation of a cluster, cf. Sections 4.2-4.3. After this initialization repeated simulations of

the random field are faster and 1, 000 simulations only take about 20 times longer to generate

as the first simulation alone. It is however much faster to use the double stochastic scheme,

which for 1, 000 simulations took only 1/30 of the corresponding simulation time for the

Poisson randomization.

6 Extensions

6.1 Extension to infinite random fields

In the following we consider extensions of the α-permanental random field to S = ∪∞
i=1Si for

finite S1 ⊆ S2 ⊆ · · · . Suppose that α > 0 and C : S×S → R are such that NSi
∼ per(α, CSi

)

for any i = 1, 2, . . ., where CSi
denotes the restriction of C to Si × Si. Then NS1

,NS2
, . . .

form a consistent family of finite dimensional random fields, so the extension to all of S,

N = NS, is thus well-defined, and we still write N ∼ per(α, C).

Conditions and properties of the α-permanental field generalizes easily to this case. For

example, in place of Condition II (Section 2.2) we may now require that for every integer

j > 0 exists an integer i ≥ j such that C̃Si
has non-negative entries and ‖C̃Si

‖ < 1. Then N

exists for any α > 0.

6.1.1 Stationarity and inhomogeneity

Consider the special case where S = Z
d is the d-dimensional integer lattice. We say that N

is stationary if N and (Ns+t; s ∈ S) are identically distributed for all t ∈ Z
d, and that C is
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stationary if C(s + u, t + u) = C(s, t) for all s, t, u ∈ Z
d. It follows immediately from (1)

that stationarity of N is equivalent to stationarity of C.

Suppose that CT is of rank at most one whenever T ⊂ S is finite. Considering the

extension of Example II to the case where S is infinite, we see that N is stationary if and

only if C(s, t) = c for all s, t ∈ S, where c ≥ 0.

Inspiration for a general method to model an inhomogeneous α-permanental random field

on basis of a stationary one is found by revisiting Example III. This model has a possibly

inhomogeneous mean µ = (µs; s ∈ S) based on covariates, and an alternative construction of

the model is as an independent thinning of a permanental random field with constant mean

µ̃0 for all s ∈ S, provided µ̃0 ≥ sup{µs; s ∈ S}. The retention probabilities would then be

πs = µs/µ̃0, s ∈ S.

6.2 Determinantal random fields

If α < 0 is allowed in Definition 1, a new class of random fields called α-determinantal

random fields emerges. These random fields are well-studied in Vere-Jones (1997), and they

share many of the properties of α-permanental random fields as well as there are differ-

ences. For example, 1/α needs to be an integer. The formulae for the moments and the

probability density are still given by (12) and (17), but due to the sign change of α, the

α-determinantal random fields exhibit negative correlations and under dispersion. Further-

more, they are multivariate extensions of the binomial distribution instead of the negative

binomial distribution. The simulation of an α-determinantal random field can be done by a

kind of stochastic Gram-Schmidt orthogonalization as described by Hough et al. (2006).
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A Green’s matrices and tridiagonal matrices

We will need some results on Green’s matrices and tridiagonal matrices (sometimes called

Jacobi matrices). The results presented here are either from Karlin (1968) or direct conse-

quences of results herein.

A Green’s matrix is a symmetric n×n matrix G with Gij = amin(i,j)bmax(i,j) for some

a1, . . . , an, b1, . . . , bn ∈ R. If G is invertible, then it is a Green’s matrix if and only if the

inverse T = G−1 is symmetric and tridiagonal.

For any n×n matrix A and any {i1, . . . , im} ⊆ {1, . . . , n} we introduce the minor of A,

mA(i1, . . . , im), as the determinant of the matrix obtained from A by deleting all other rows

and columns than i1, . . . , im. If a symmetric tridiagonal matrix T is positive definite, any

minor of T is positive.

The (i, j)’th element of the inverse T−1 is given as the following (due to symmetry we

only need to specify the elements with i ≤ j). If i = j, then

T−1
i,i =

1

|T |mT (1, . . . , i−1, i+1, . . . , n).
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If i < j, then

T−1
i,j =

(−1)j+i

|T | mT (1, . . . , i−1)Ti,i+1Ti+1,i+2 · · ·Tj−1,jmT (j+1, . . . , n).

Consequently, a sufficient condition for all elements of T−1 to be non-negative is that the

off-diagonal elements are non-positive and T is positive definite. This result is summarized

in the following lemma.

Lemma 1 Let T be a symmetric tridiagonal matrix. If T is positive definite and Ti,j ≤ 0

for all i6=j, then T−1
i,j ≥ 0 for all i, j.

B Schur decomposition of a projection

This appendix verifies that a real m× m matrix Q of rank r is a projection if and only if it

is of the form (30).

Assume that Q is a projection. Combining this assumption with the Schur decomposition

(Bhatia, 1997), Q is seen to be of the form Q = U∆Ū for some unitary matrix U and some

lower triangular matrix ∆ with the first r diagonal elements equal to one and the remaining

m − r diagonal elements equal to zero, and so that ∆2 = ∆. Writing ∆ on the block form

∆ =

[
A B

01 E

]

with similar dimensions of the four matrices as those in (30), it follows from ∆2 = ∆ that

A = A2, B = AB + BE, and E = E2. Thus the first identity in (30) is equivalent to that

A = Ir and E = 02. Since A = A2 is upper triangular with all diagonal elements equal to

one, we obtain first by considering the elements ai,i+1 above the diagonal that ai,i+1 = 2ai,i+1,

i.e. ai,i+1 = 0, and second by considering the elements ai,i+2 twice above the diagonal that
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ai,i+2 = ai,i+2+ai,i+1ai+1,i+2+ai,i+2 = 2ai,i+2, i.e. ai,i+2 = 0, and in a similar way by induction

it follows that A = Ir. Since E = E2 is strictly upper triangular, we obtain first that the

elements ei,i+1 above the diagonal are zero, and second that the elements ei,i+2 twice above

the diagonal satisfy ei,i+2 = ei,i+1ei+1,i+2 = 0, and so on, i.e. E = 02. Hence the first identity

in (30) is obtained, while the other identity immediately follows.

On the other hand, if (30) holds, then it follows immediately that Q is a projection of

rank r.
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