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Chapter 4

Parametric methods

4.1 Introduction

This chapter considers inference procedures for parametric spatial point process
models. The widespread use of sensible but ad hoc methods based on sum-
mary statistics of the kind studied in Chapter 4.3 have through the last two
decades been supplied by likelihood based methods for parametric spatial point
process models. The increasing development of such likelihood based methods,
whether frequentist or Bayesian, has lead to more objective and efficient sta-
tistical procedures. When checking a fitted parametric point process model,
summary statistics and residual analysis (Chapter 4.5) play an important role
in combination with simulation procedures.

Simulation free estimation methods based on composite likelihoods or pseudo
likelihoods are discussed in Section 4.3. Markov chain Monte Carlo (MCMC)
methods have had an increasing impact on the development of simulation-
based likelihood inference, where maximum likelihood inference is studied in
Section 4.4, and Bayesian inference in Section 4.5. On one hand, as the devel-
opment in computer technology and computational statistics continues, compu-
tationally-intensive simulation-based methods for likelihood inference probably
will play a increasing role for statistical analysis of spatial point patterns. On
the other hand, since larger and larger point pattern dataset are expected to be
collected in the future, and the simulation free methods are much faster, they
may continue to be of importance, at least at a preliminary stage of a paramet-
ric spatial point process analysis, where many different parametric models may
quickly be investigated.

Much of this review is inspired by the monograph Møller and Waagepetersen
(2004) and the discussion paper Møller and Waagepetersen (2007). Other recent
textbooks related to the topic of this chapter include Baddeley, Gregori, Mateu,
Stoica and Stoyan (2006), Diggle (2003), Illian, Penttinen, Stoyan and Stoyan
(2008), and Van Lieshout (2000). Readers interested in background material on
MCMC algorithms for spatial point processes are referred to Geyer and Møller
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8 CHAPTER 4. PARAMETRIC METHODS

(1994), Geyer (1999), Møller and Waagepetersen (2004), and the references
therein. Notice the comments and corrections to Møller and Waagepetersen
(2004) at www.math.aau.dk/~jm.

4.2 Setting and notation

The methods in this chapter will be applied to parametric models of Poisson,
Cox, Poisson cluster, and Gibbs (or Markov) point processes. These models also
play a major role in Chapter 4.2, but the reader will be reminded about the
definitions and some of the basic concepts of these models. Chapter 5.3 studies
spatio-temporal point process models specified in terms on a conditional inten-
sity (of another kind than the Papangelou conditional density which is of funda-
mental importance in the present chapter), while other kinds of spatio-temporal
point process models, which are closely related to the Cox point process models
considered in this chapter, can be found in e.g. Brix and Diggle (2001) and Brix
and Møller (2001).

We mostly confine attention to planar point processes, but many concepts,
methods, and results easily extend to R

d or a more general metric space, includ-
ing multivariate and marked point process models. Chapter 4.6 treats statistics
for multivariate and marked point process models.

We illustrate the statistical methodology with various application examples,
where most are examples of inhomogeneous point patterns. Often the R package
spatstat has been used, see Baddeley and Turner (2005, 2006). Software in R

and C, developed by Rasmus Waagepetersen in connection to our paper Møller
and Waagepetersen (2007), is available at www.math.aau.dk/~rw/sppcode.

We consider a planar spatial point process X, excluding the case of multiple
points, meaning that X can viewed as a random subset of R

2. We assume also
that X is locally finite, i.e. X ∩B is finite whenever B ⊂ R

2 is finite.
We let W ⊂ R

2 denote a bounded observation window of area |W | > 0. In
most application examples W is a rectangular region. Usually we assume that
just a single realization X ∩W = x is observed, i.e. the data

x = {s1, . . . , sn}

is a spatial point pattern. Here the number of points, denoted n(x) = n, is finite
and considered to be a realization of a non-negative discrete random variable
(if n = 0 then x is the empty point configuration). Sometimes, including two
of our application examples, two or more spatial point patterns are observed,
and sometimes a hierarchical point process model may then be appropriate as
illustrated in Sections 4.4.2 and 4.5.1 (see also Chapter 4.3 where multivariate
point patterns are discussed).

In order to account for edge effects, we may assume that X ∩W = x ∪ y is
observed so that ‘x conditional on y’ is conditionally independent of X outside
W . The details are given in Sections 4.3.4 and 4.4.1.

Finally, I[·] is an indicator function, and ‖ · ‖ denotes the usual distance in
R

2.
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4.3 Simulation free estimation methods

This section reviews simple and quick estimation procedures based on vari-
ous estimating equations for parametric models of spatial point processes. The
methods are simulation free and the estimating equations are derived from a
composite likelihood (Sections 4.3.1-4.3.2), or by a minimum contrast estima-
tion procedure (Section 4.3.2), or by considering a pseudo likelihood function
(Section 4.3.4).

4.3.1 Methods based on first order moment properties

Consider a spatial point process X with a parametric intensity function ρβ(s),
where s ∈ R

2 and β is an unknown real d-dimensional parameter which we want
to estimate. We assume that ρβ(s) is expressible in closed form. This is the
case for many Poisson, Cox and Poisson cluster point process models, while it
is intractable for Gibbs (or Markov) point processes (Chapter 4.2). Below we
consider a composite likelihood function (Lindsay, 1988) based on the intensity
function.

Recall that we may interpret ρβ(s) ds as the probability that precisely one
point falls in an infinitesimally small region containing the location s and of
area ds. Let Ci, i ∈ I, be a finite partitioning of the observation window W
into disjoint cells Ci of small areas |Ci|. Define Ni = I[X ∩ Ci 6= ∅] and

pi(β) = Pβ(Ni = 1) ≈ ρβ(ui)|Ci|

where ui denotes a representative point in Ci. Consider the product of marginal
likelihoods for the Bernoulli trials Ni,
∏

i∈I

pi(β)Ni(1 − pi(β))1−Ni ≈
∏

i∈I

(ρβ(ui)|Ci|)
Ni(1 − ρβ(ui)|Ci|)

1−Ni . (4.1)

In the right hand side of (4.1) we may neglect the factors |Ci| in the first part
of the product, since they cancel when we form likelihood ratios. Then, as the
cell sizes |Ci| tend to zero, under suitable regularity conditions the limit of the
product of marginal likelihoods becomes

Lc(β;x) = exp

(

−

∫

W

ρβ(s) ds

) n
∏

i=1

ρβ(si). (4.2)

We call Lc(β;x) the composite likelihood function based on the intensity
function. If X is a Poisson point process with intensity function ρβ(s), then
Lc(β;x) coincides with the likelihood function.

If there is a unique β which maximizes Lc(β;x), we call it the maximum com-
posite likelihood estimate (based on the intensity function). The corresponding
estimating function sc(β;x) is given by the derivative of logLc(β;x) with respect
to β,

sc(β;x) =
n
∑

i=1

d log ρβ(si)/dβ −

∫

W

(d log ρβ(s)/dβ)ρβ(s) ds. (4.3)
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The estimating equation sc(β;x) = 0 is unbiased (assuming in (4.3) that (d/dβ)
∫

W
· · · =

∫

W
(d/dβ) · · · ). Asymptotic properties of maximum composite likeli-

hood estimators are investigated in Waagepetersen (2007) and Waagepetersen
and Guan (2007). For a discussion of asymptotic results for maximum likeli-
hood estimates of Poisson process models, see Rathbun and Cressie (1994) and
Waagepetersen (2007).

The maximum composite likelihood estimate can easily be determined using
spatstat, provided ρβ(s) is of the log linear form

log ρβ(s) = βT z(s) (4.4)

where z(s) is a real function of the same dimension as β. In practice z(s) is
often a covariate. This covariate may only be partially observed on a grid of
points, and hence some interpolation technique may be needed (Rathbun, 1996;
Rathbun, Shiffman and Gwaltneyet, 2007; Waagepetersen, 2008). An example
is considered in Section 4.3.3.

We refer to a log linear Poisson process when X is a Poisson process with
intensity function of the form (4.4). For many Cox process models, the intensity
function is also of the log linear form (4.4). Specifically, let Y = {Y (s) : s ∈ R

2}
be a spatial process where each Y (s) is a real random variable with mean one,
and let X conditional on Y (s) be a Poisson process with intensity function

Λ(s) = exp(βT z(s))Y (s). (4.5)

Then (4.4) is satisfied. Usually Y is not observed, and the distribution of Y may
depend on another parameter ψ, which may be estimated by another method
as discussed in Section 4.3.2.

4.3.2 Methods based on second order moment properties

Let the situation be as in Section 4.3.1. Consider a parametric model for the
pair correlation function gψ or another second order characteristic such as the
(inhomogeneous) K-function Kψ (Baddeley, Møller and Waagepetersen, 2000;
see also Chapter 4.3). We assume that β and ψ are variation independent, that
is, (β, ψ) ∈ B × Ψ, where B ⊆ R

p and Ψ ⊆ R
q.

Recall that ρ
(2)
β,ψ(s, t) = ρβ(s)ρβ(t)gψ(s, t) is the second order product den-

sity, and we may interpret ρ
(2)
β,ψ(s, t) dsdt as the probability of observing a point

in each of two infinitesimally small regions containing s and t and of areas ds
and dt, respectively. Using the same principle as in Section 4.3.1 but consid-
ering now pairs of cells Ci and Cj , i 6= j, we can derive a composite likelihood

Lc(β, ψ) based on the second order product density. Plugging in an estimate β̂,
e.g. the maximum composite likelihood estimate based on the intensity function,
we obtain a function Lc(β̂, ψ) which may be maximized to obtain an estimate
of ψ. See Møller and Waagepetersen (2007).

Minimum contrast estimation is a more common estimation procedure, where
the idea is to minimize a ‘contrast’ (or ‘distance’) between e.g. Kψ and its
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non-parametric counterpart K̂(r) (Chapter 4.3), thereby obtaining a minimum
contrast estimate. For instance, ψ may be estimated by minimizing the contrast

∫ b

a

(

K̂(r)α −Kψ(r)α
)2

dr (4.6)

where 0 ≤ a < b < ∞ and α > 0 are chosen on an ad hoc basis, see e.g.
Diggle (2003) and Møller and Waagepetersen (2004). Theoretical properties of
minimum contrast estimators are studied in Heinrich (1992).

These ‘simulation-free’ estimation procedures are fast and computationally
easy, but the disadvantage is that we have to specify tuning parameters such as
a, b, α in (4.6).

4.3.3 Example: tropical rain forest trees

Figure 4.1 provides an example of an inhomogeneous point pattern where the
methods described in Sections 4.3.1-4.3.2 apply. The figure shows the locations
of rain forest trees in a rectangular observation window W of size 500 × 1000
m. This point pattern together with another point pattern of another kind of
trees have previously been analyzed in Waagepetersen (2007) and Møller and
Waagepetersen (2007). They are just a small part of a much larger data set
comprising hundreds of thousands of trees belonging to hundreds of species
(Hubbell and Foster, 1983; Condit, Hubbell and Foster, 1996; Condit, 1998).
Figure 4.2 shows two kinds of covariates z1 (altitude) and z2 (norm of altitude
gradient) which are measured on a 100 × 200 square grid, meaning that we
approximate the altitude and the norm of altitude gradient to be constant on
each of 100 × 200 squares of size 5 × 5 m.

Figure 4.1: Locations of 3605 Beilschmiedia pendula Lauraceae trees observed
within a 500 × 1000 m region at Barro Colorado Island.

A plot of a non-parametric estimate of the inhomogeneous K-function (omit-
ted here) confirms that the point pattern in Figure 4.1 is clustered. This clus-
tering may be explained by the covariates in Figure 4.2, by other unobserved
covariates, and by tree reproduction by seed dispersal. We therefore assume an
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Figure 4.2: Rain forest trees: the covariates z1 (altitude; left panel) and z2
(norm of altitude gradient; right panel) are recorded on a 5 by 5 m grid (the
units on the axes are in meters).

inhomogeneous Cox process model as specified by (4.5) with β = (β0, β1, β2)
T

and z = (z0, z1, z2)
T , where z0 ≡ 1 so that β0 is interpreted as an intercept.

Moreover, Y in (4.5) is modelled by a stationary shot noise process with mean
one, that is,

Y (s) =
1

ωσ2

∑

t∈Φ

k((s− t)/σ) (4.7)

where Φ is a stationary Poisson process with intensity ω > 0, k(·) is a density
function with respect to Lebesgue measure, and σ > 0 is a scaling parameter.
We call X an inhomogeneous shot noise Cox process (Møller, 2003; Waagepeter-
sen, 2007; Møller and Waagepetersen, 2007). Finally, as in a modified Thomas
process (Thomas, 1949), we assume that k(x) = exp(−‖x‖2/2)/(2π) is a bivari-
ate normal kernel. For short we then refer to X as an inhomogeneous Thomas
process.

For β we obtain the maximum composite likelihood estimate (β̂0, β̂1, β̂2) =
(−4.989, 0.021, 5.842) (under the Poisson model this is the maximum likelihood
estimate). Assuming asymptotic normality (Waagepetersen, 2007), 95% con-
fidence intervals for β1 and β2 under the fitted inhomogeneous Thomas pro-
cess are [−0.018, 0.061] and [0.885, 10.797], respectively, while much more nar-
row intervals are obtained under the fitted Poisson process ([0.017, 0.026] and
[5.340, 6.342]).

An unbiased estimate of the inhomogeneous K-function at distance r > 0 is
given by

∑

i,j=1,...,n: i 6=j

I[‖si − sj‖ ≤ r]

ρ(si)ρ(sj)|W ∩ (W + si − sj)|

where W + s denotes W translated by s, and |W ∩ (W + si − sj)| is an edge
correction factor, which is needed since we sum over all pairs of points observed
within W . In practice we need to plug in an estimate of ρ(si)ρ(sj), and we

use the parametric estimate ρ
β̂
(si)ρβ̂(sj) with β̂ the estimate obtained above.

Let K̂(r) denote the resulting estimate of K(r). Using the minimum contrast
estimation procedure based on (4.6) with a = 0, b = 100, and α = 1/4, we
obtain (ω̂, σ̂) = (8 × 10−5, 20).
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Estimation of this inhomogeneous Thomas process and an inhomogeneous log
Gaussian Cox process, i.e. when log Y in (4.5) is a Gaussian process (see Møller,
Syversveen and Waagepetersen, 1998, and Chapter 4.2), and their corresponding
estimated K-functions are further considered in Møller and Waaagepetersen
(2007).

4.3.4 Pseudo likelihood

The maximum pseudo likelihood estimate is a simple and computationally fast
but less efficient alternative to the maximum likelihood estimate. In the special
case of a parametric Poisson point process model, the two kinds of estimates
coincide. Since the pseudo likelihood function is expressed in terms of the Pa-
pangelou conditional intensity, pseudo likelihood estimation is particular useful
for Gibbs (or Markov) point processes, while it is in general not useful for Cox
and Poisson cluster processes.

We recall first the definition of the Papangelou conditional intensity in
the case where X restricted to W has a parametric density fθ(x) with re-
spect to the Poisson process on W with unit intensity (Chapter 4.2). Let
x = {s1, . . . , sn} ⊂ W denote an arbitrary finite point configuration in W ,
and s an arbitrary location in W \ x. Assume that fθ(x) is hereditary, mean-
ing that fθ(x ∪ {s}) > 0 implies that fθ(x) > 0. For fθ(x) > 0, define the
Papangelou conditional intensity by

λθ(s, x) = fθ(x ∪ {s})/fθ(x). (4.8)

We may interpret λθ(s, x) ds as the conditional probability that there is a point
of the process in an infinitesimally small region containing s and of area ds
given that the rest of the point process coincides with x. How we define λθ(s, x)
if fθ(x) = 0 turns out not to be that important, but for completeness let us
set λθ(s, x) = 0 if fθ(x) = 0. In the special case of a Poisson process with
intensity function ρθ(s), we simply have λθ(s, x) = ρθ(s). In the case of a Gibbs
(or Markov) point process, λθ(s, x) depends only on x through its neighbours
to s (see Chapter 4.2), and the intractable normalizing constant of the density
cancel in (4.8).

The pseudo likelihood can then be derived by a limiting argument similar
to that used for deriving the composite likelihood in (4.2), the only difference
being that we replace pi(β) in (4.1) by the conditional probability

pi(θ) := Pθ(Ni = 1|X \ Ci = x \ Ci) ≈ λθ(ui, x \ Ci)|Ci|.

Under mild conditions (Besag, Milne and Zachary, 1982; Jensen and Møller,
1991) the limit becomes the pseudo likelihood function

Lp(θ;x) = exp

(

−

∫

W

λθ(s, x) ds

) n
∏

i=1

λθ(si, x) (4.9)

which was first introduced in Besag (1977). Clearly, for a Poisson process with a
parametric intensity function, the pseudo likelihood is the same as the likelihood.
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The pseudo score is the derivative of logLp(θ;x) with respect to θ, that is,

s(θ;x) =
n
∑

i=1

d log λθ(si, x)/dθ −

∫

W

(d log λθ(s, x)/dθ)λθ(s, x) ds. (4.10)

This provides an unbiased estimating equation s(θ;x) = 0 (assuming in (4.10)
that (d/dθ)

∫

W
· · · =

∫

W
(d/dθ) · · · ). This can be solved using spatstat if λθ is

of a log linear form similar to that in (4.4), that is,

log λθ(s, x) = βT t(s, x) (4.11)

(Baddeley and Turner, 2000).
Suppose thatX may have points outsideW , and we do not know its marginal

density fθ(x) on W . To account for edge effects, assume a spatial Markov
property is satisfied. Specifically, suppose there is a region W⊖R ⊂ W such
that conditional on X ∩ (W \W⊖R) = y, we have that X ∩W⊖R is independent
of X \ W , and we know the conditional density fθ(x|y) of X ∩ W⊖R given
X ∩ (W \W⊖R) = y, where fθ(·|y) is hereditary. Here the notation W⊖R refers
to the common case where X is a Gibbs (or Markov) point process with a finite
interaction radius R (see Chapter 4.2), in which case W⊖R is naturally given by
the W eroded by a disc of radius R, that is,

W⊖R = {s ∈W : ‖s − t‖ ≤ R for all t ∈W}. (4.12)

For s ∈ W⊖R, exploiting the spatial Markov property, the Papangelou condi-
tional intensity is seen not to depend on points from X \W , and it is given by
replacing fθ(x) by fθ(x|y) in the definition (4.8). We denote this Papangelou
conditional intensity by λθ(s, x ∪ y). Note that λθ(s, x ∪ y) depends only on
x ∪ y through its neighbours to s, and all normalizing constants cancel. Conse-
quently, we need only to specify fθ(·|y) up to proportionality, and the pseudo
likelihood Lp(θ;x∪ y) is given by (4.9) when λθ(s, x) is replaced by λθ(s, x∪ y).
The pseudo score s(θ;x∪y) is obtained as the derivative of logLp(θ;x∪y) with
respect to θ, and it provides an unbiased estimating equation s(θ;x ∪ y) = 0.

For an application example of maximum pseudo likelihood, see Section 4.4.2.
Asymptotic results for maximum pseudo likelihood estimates are established in
Jensen and Møller (1991), Jensen and Kunsch (1994), and Mase (1995, 1999).
Alternatively a parametric bootstrap can be used, see e.g. Baddeley and Turner
(2000).

4.4 Simulation-based maximum likelihood infer-

ence

For Poisson process models, computation of the likelihood function is usually
easy, cf. Section 4.3.1. For Gibbs (or Markov) point process models, the likeli-
hood contains an unknown normalizing constant, while for Cox process models,
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the likelihood is given in terms of a complicated integral. Using MCMC meth-
ods, it is now becoming quite feasible to compute accurate approximations of
the likelihood function for Gibbs and Cox process models as discussed in Sec-
tions 4.4.1 and 4.4.3. However, the computations may be time consuming and
standard software is yet not available.

4.4.1 Gibbs point processes

Consider a parametric model for a spatial point process X, where X restricted
to W has a parametric density fθ(x) with respect to the Poisson process on
W with unit intensity. For simplicity and specificity, assume that fθ(x) is of
exponential family form

fθ(x) = exp(t(x)T θ)/cθ (4.13)

where t(x) is a real function of the same dimension as the real parameter θ, and
cθ is a normalizing constant. In general, apart from the special case of a Poisson
process, cθ is not ‘known’, i.e. cθ has no closed form expression. Equation (4.13)
holds if the Papangeleou conditional intensity λθ(s, x) is of the log linear form
(4.11). This is the case for many Gibbs (or Markov) point processes when the
interaction radius R <∞ is known. Examples include most pairwise interaction
point processes such as the Strauss process, and more complicated interaction
point processes such as the area-interaction point process, see Chapter 4.2.

From (4.13) we obtain the score function u(θ;x) and the observed informa-
tion j(θ),

u(θ;x) = t(x) − Eθt(X), j(θ) = Varθt(X),

where Eθ and Varθ denote expectation and variance with respect to X ∼ fθ. Let
θ0 denote a fixed reference parameter value. The score function and observed
information may be evaluated using the importance sampling formula

Eθk(X) = Eθ0
[

k(X) exp
(

t(X)T (θ − θ0)
)]

/(cθ/cθ0) (4.14)

with k(X) given by t(X) or t(X)t(X)T . For k ≡ 1, we obtain

cθ/cθ0 = Eθ0
[

exp
(

t(X)T (θ − θ0)
)]

. (4.15)

Approximations of the likelihood ratio fθ(x)/fθ0(x), score, and observed in-
formation can be obtained by Monte Carlo approximation of the expectations
Eθ0 [· · · ] using MCMC samples from fθ0 . Here, to obtain an approximate max-
imum likelihood estimate, Monte Carlo approximations may be combined with
Newton-Raphson updates. Furthermore, if we want to test a submodel, approx-
imate p-values based on the likelihood ratio statistic or the Wald statistic can
be derived by MCMC methods. See Geyer and Møller (1994), Geyer (1999),
and Møller and Waagepetersen (2004).

The path sampling identity (Gelman and Meng, 1998)

log(cθ/cθ0) =

∫ 1

0

Eθ(s)t(X)(dθ(s)/ds)Tds (4.16)
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provides an alternative and often numerically more stable way of computing a
ratio of normalizing constants. Here θ(s) is a differentiable curve, e.g. a straight
line segment, connecting θ0 = θ(0) and θ = θ(1). The log ratio of normalizing
constants is approximated by evaluating the outer integral in (4.16) using e.g.
the trapezoidal rule and the expectation using MCMC methods (Berthelsen and
Møller, 2003; Møller and Waagepetersen, 2004).

For a Gibbs point process with unknown interaction radius R, the likelihood
function is usually not differentiable as a function of R. Therefore maximum
likelihood estimates of R are often found using a profile likelihood approach,
where for each fixed value of R we maximize the likelihood as discussed above.
Examples are given in Møller and Waagepetersen (2004).

If X may have points outside W , and we do not know its marginal density
fθ(x) on W , we may account for edge effects by exploiting the spatial Markov
property (Section 4.3.4), using the smaller observation window W⊖R given by
(4.12). If fθ(x|y) denotes the conditional density of X ∩W⊖R = x given X ∩
(W \W⊖R) = y, the likelihood function

L(θ;x) = Eθfθ (x|X ∩ (W \W⊖R))

may be computed using a missing data approach, see Geyer (1999) and Møller
and Waagepetersen (2004). A simpler but less efficient alternative is the border
method, considering the conditional likelihood function

L(θ;x|y) = fθ(x|y)

where the score, observed information, and likelihood ratios may be computed
by analogy with the case above based on (4.14). See Møller and Waagepetersen
(2004) for a discussion of these and other approaches for handling edge effects.

Asymptotic results for maximum likelihood estimates of Gibbs point pro-
cess models are reviewed in Møller and Waagepetersen (2004) but these results
are derived under restrictive assumptions of stationarity and weak interaction.
According to standard asymptotic results, the inverse observed information pro-
vides an approximate covariance matrix of the maximum likelihood estimate,
and log likelihood ratio and Wald statistics are asymptotically χ2-distributed.
If one is suspicious about the validity of the asymptotic approach, an alternative
is to use a parametric bootstrap. See Møller and Waagepetersen (2004).

4.4.2 Example: ants nests

Figure 4.3 shows two point patterns of ants nests which are of two types, Messor
wasmanni and Cataglyphis bicolor, see Harkness and Isham (1983). The inter-
action between the two types of ants nests is of main interest for this data set.
Notice the rather atypical polygonal observation window W given in Figure 4.3.

The Catagplyphis ants feed on dead Messors and hence the positions of Mes-
sor nests might affect the choice of sites for Cataglyphis nests, while the Messor
ants are believed not to be influenced by presence or absence of Cataglyphis
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Figure 4.3: Locations of nests for Messor (triangles) and Cataglyphis (circles)
ants. The observation window W is polygonal (solid line), and the enclosing
rectangle for W (dashed line) is 414.5 ft by 383 ft.

ants when choosing sites for their nests. Högmander and Särkkä (1999) there-
fore specified a hierarchical model based on first a point process model for the
Messor nests, and second a point process model for the Cataglyphis nests given
the Messor nests. Both types of models are pairwise interaction point process
models, with the log Papangelou conditional intensity of the form

log λ(s, x) = U(s) +

n
∑

i=1

V (‖s− si‖)

for x = {s1, . . . , sn} ⊂ W and s 6∈ x, where U(s) and V (‖s − si‖) are real
functions called the first respective second order potential. In other words, if X
is such a pairwise interaction point process, then X has density

f(x) ∝ exp





n
∑

i=1

U(si) +
∑

1≤i<j≤n

V (‖si − sj‖)





with respect to the Poisson process on W with intensity one. Furthermore, the
pairwise interaction process models are so-called Strauss processes with hard
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cores specified as follows. For distances t > 0, define

V (t; r) =











−∞ if t ≤ r

1 if r < t ≤ R

0 otherwise

where R ≥ 0 is the interaction range, r ∈ [0, R) denotes a hard core distance
(or no hard core if r = 0), and exp(−∞) = 0. First, for the Messor nests, the
Strauss process with hard core rM is given by first and second order potentials

UM1({s}) = βM , UM2({si, sj}) = ψMV (‖si − sj‖; rM ).

Thus the conditional intensity for a putative Messor nest at a location s is zero
if an existing Messor nest occurs within distance rM from s, and otherwise the
log conditional density is given by the sum of βM and ψM times the number
of neighbouring Messor nests within distance R. Second, conditional on the
pattern xM of Messor nests, the Cataglyphis nests are modelled as an inho-
mogeneous Strauss process with one hard core rCM to the Messor nests and
another hard core rC between the Cataglyphis nests, i.e. using potentials

UC1({s}) = βC+ψCM

n
∑

i=1

V (‖s−si‖; rCM ), UC2({si, sj}) = ψCV (‖si−sj‖; rC).

We use the maximum likelihood estimates rM = 9.35 and rC = 2.45 (distances
are measured in ft), which are given by the observed minimum interpoint dis-
tances in the two types of point patterns. Using positive hard cores rM and rC
may be viewed as an ad hoc approach to obtain a model which is well-defined
for all real values of the parameters βM , βC , ψM , ψCM , and ψC , whereby both
repulsive and attractive interaction within and between the two types of ants
can be modelled. However, as noted by Møller (1994) and Geyer and Thomp-
son (1995), the Strauss hard core process is a poor model for clustering due to
the following ‘phase transition property’: for positive values of the interaction
parameter, except for a narrow range of values, the distribution will either be
concentrated on point patterns with one dense cluster of points or in ‘Poisson-
like’ point patterns.

In contrast to Högmander and Särkkä (1999), we find it natural to let
rCM = 0, meaning there is no hard core between the two types of ants nests.
Further, for comparison we fix R at the value 45 used in Högmander and Särkkä
(1999), though pseudo likelihood computations indicate that a more appropriate
interaction range would be 15. In fact, Högmander and Särkkä (1999) consid-
ered a subset of the data in Figure 4.3 within a rectangular region, and they
conditioned on the observed number of points for the two species when comput-
ing maximum likelihood and maximum pseudo likelihood estimates, whereby
the parameters βM and βC vanish. Instead we fit the hierarchical model to the
full data set, and we do not condition on the observed number of points.

We first correct for edge effects by conditioning on the data in W \W⊖45,
where W⊖45 denotes the points within W with distance less than 45 to the
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boundary of W . Using spatstat, the maximum pseudo likelihood estimate
(MPLE) of (βM , ψM ) is (−8.21,−0.09), indicating (weak) repulsion between
the Messor ants nests. Without edge correction, we obtain a rather sim-
ilar MPLE (−8.22,−0.12). The edge corrected MPLE of (βC , ψCM , ψC) is
(−9.51, 0.13,−0.66), indicating a positive association between the two species
and repulsion within the Cataglyphis nests. If no edge correction is used, the
MPLE for (βC , ψCM , ψC) is (−9.39, 0.04,−0.30). Högmander and Särkkä (1999)
also found a repulsion within the Cataglyphis nests, but in contrast to our result
a weak repulsive interaction between the two types of nests. This may be ex-
plained by the different modelling approach in Högmander and Särkkä (1999),
where the smaller observation window excludes a pair of very close Cataglyphis
nests, and where also the conditioning on the observed number of points in the
two point patterns may make a difference.

No edge correction is used for our maximum likelihood estimates (MLE’s).

The MLE’s β̂M = −8.39 and ψ̂M = −0.06 again indicate a weak repulsion within
the Messor nests, and the MLE’s β̂C = −9.24, ψ̂CM = 0.04, and ψ̂C = −0.39
also indicate positive association between Messor and Cataglyphis nests, and
repulsion within the Cataglyphis nests. Confidence intervals for ψCM , when the
asymptotic variance estimate is based on observed information or a parametric
bootstrap, are [−0.20, 0.28] (observed information) and [−0.16, 0.30] (parametric
bootstrap).

The differences between the MLE and the MPLE (without edge correction)
seem rather minor. This is also the experience for MLE’s and corresponding
MPLE’s in Møller and Waagepetersen (2004), though differences may appear in
cases with a strong interaction.

4.4.3 Cluster and Cox processes

This section considers maximum likelihood inference for cluster and Cox process
models. This is in general complicated and computionally more demanding than
for Gibbs (or Markov) point processes.

For example, consider the case of an inhomogeneous shot noise Cox processX
as defined by (4.5) and (4.7). We can interpret this as a Poisson cluster process
as follows. The points in the stationary Poisson process Φ in (4.7) specify the
centres of the clusters. Conditional on Φ, the clusters are independent Poisson
processes, where the cluster associated to t ∈ Φ has intensity function

λθ(s|t) = exp(βT z(s))
1

ωσ2
k((s− t)/σ), s ∈ R

2,

where θ = (β, ω, σ). Finally, X consists of the union of all cluster points.
With probability one, X and Φ are disjoint. Moreover, in applications Φ

is usually unobserved. In order to deal with edge effects, consider a bounded
region Wext ⊇ W so that it is very unlikely that clusters associated to centres
outside Wext have points falling in W (see Brix and Kendall, 2002, and Møller,
2003). We approximate then X ∩W by the union of clusters with centres in
Ψ := Φ∩Wext. Let f(x|ψ) denote the conditional density of X∩W given Ψ = ψ,
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where the density is with respect to the Poisson process on W with intensity
one. For x = {s1, . . . , sn},

fθ(x|ψ) = exp



|W | −

∫

W

∑

t∈ψ

λθ(s|t) ds





n
∏

i=1

λθ(si|t) (4.17)

and the likelihood based on observing X ∩W = x is

L(θ;x) = Eωfθ(x|Ψ) (4.18)

where the expectation is with respect to the Poisson process Ψ on Wext with
intensity ω. As this likelihood has no closed form expression, we may consider Ψ
as missing data and use MCMC methods for finding an approximate maximum
likelihood estimate, see Møller and Waagepetersen (2004). Here one important
ingredient is an MCMC simulation algorithm for the conditional distribution of
Ψ given X ∩W = x. This conditional distribution has density

fθ(ψ|x) ∝ fθ(x|ψ)fω(ψ) (4.19)

where
fω(ψ) = exp (|Wext|(1 − ω))ωn(ψ) (4.20)

is the density of Ψ. For conditional simulation from (4.19), we use a birth-death
type Metropolis-Hastings algorithm studied in Møller (2003).

For a log Gaussian Cox process model, the simulation-based maximum like-
lihood approach is as above except for the following. To specify the density of
the Poisson process X ∩ W |Y , since log Y in (4.5) is a Gaussian process, we
need only to consider Y (s) for s ∈W . Hence, in contrast to above, edge effects
is not a problem, and the conditional density of X ∩W given Y is

f(x|Y (s), s ∈W ) = exp

(

|W | −

∫

W

exp(Y (s)) ds +

n
∑

i=1

Y (si)

)

. (4.21)

However, when evaluating the integral in (4.21) and when simulating from the
conditional distribution of Y on W given X∩W = x, we need to approximate Y
on W by a finite-dimensional log Gaussian random variable YI = (Y (ui), i ∈ I)
corresponding to a finite partition {Ci, i ∈ I} of W , where ui is a representative
point of the cell Ci and we use the approximation Y (s) ≈ Y (ui) if s ∈ Ci.
For simulation from the conditional distribution of YI given X ∩W = x, we
use a Langevin-Hastings algorithm (also called a Metropolis adjusted Langevin
algorithm), see Møller, Syversveen and Waagepetersen (1998) and Møller and
Waagepetersen (2004).

For the shot noise Cox process model considered above, the likelihood (4.18)
and its MCMC approximation are complicated functions of θ, possibly with
many local modes. Similarly, in the case of a log Gaussian Cox process model.
Careful maximization procedures are therefore needed when finding the (approx-
imate) maximum likelihood estimate. Further details, including examples and
specific algorithms of the MCMC missing data approach for shot noise and log
Gaussian Cox processes, are given in Møller and Waagepetersen (2004, 2007).
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4.5 Simulation-based Bayesian inference

A Bayesian approach often provides a flexible framework for incorporating prior
information and analyzing spatial point process process models. Section 4.5.1
considers an application example of a Poisson process, where a Bayesian ap-
proach is obviously more suited than a maximum likelihood approach. Bayesian
analysis for cluster and Cox processes is discussed in Section 4.5.2, while Sec-
tion 4.5.3 considers Gibbs (or Markov) point processes. In the latter case a
Bayesian analysis is more complicated because of the unknown normalizing con-
stant appearing in the likelihood term of the posterior density.

4.5.1 Example: reseeding plants

Armstrong (1991) considered the locations of 6378 plants from 67 species on
a 22 m by 22 m observation window W in the south western area of Western
Australia. The plants have adapted to regular natural fires, where resprouting
species survive the fire, while seeding species die in the fire but the fire triggers
the shedding of seeds, which have been stored since the previous fire. See also
Illian, Møller and Waagepetersen (2008), where further background material is
provided and various examples of the point patterns of resprouting and reseed-
ing plants are shown. Figure 4.4 shows the locations of one of the reseeding
plants Leucopogon conostephioides (called seeder 4 in Illian, Møller and Waa-
gepetersen, 2008). This and 5 other species of reseeding plants together with
the 19 most dominant (influential) species of resprouters are analyzed in Illian,
Møller and Waagepetersen (2008). Since it is natural to model the locations of
the reseeding plants conditionally on the locations of the resprouting plants, we
consider below a model for the point pattern x in Figure 4.4 conditional on the
point patterns y1, . . . , y19 corresponding to the 19 most dominant species of re-
sprouters, as given in Figure 1 in Illian, Møller and Waagepetersen (2008). For
a discussion of possible interaction with other seeder species, and the biological
justification of the the covariates defined below, we refer again to Illian, Møller
and Waagepetersen (2008).

Let κt,i ≥ 0 denote a parameter which specifies the radius of interaction
of the ith resprouter at location t ∈ yi, and let κ denote the collection of all
κt,i for t ∈ yi and i = 1, . . . , 19. For i = 1, . . . , 19, define covariates zi(s) =
zi(s;κt,i, t ∈ yi) by

zi(s;κt,i, t ∈ yi) =
∑

t∈yi: ‖s−t‖≤κt,i

(

1 − (‖s− t‖/κt,i)
2
)2

.

Conditional on y1, . . . , y19, we assume that x = {s1, . . . , sn} is a realization of a
Poisson process with log linear intensity function

log ρθ,y1,...,yn
(s) = β0 +

19
∑

i=1

βizi(s;κt,i, t ∈ yi)
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Figure 4.4: Locations of 657 Leucopogon conostephioides plants observed within
a 22 × 22 m window.

where θ = (β, κ) and β = (β0, . . . , β19) is a regression parameter, where β0 is
an intercept and βi for i > 0 controls the influence of the ith resprouter. The
likelihood depends on κ in a complicated way, and the dimension of κ is much
larger than the size of the data x. This makes it meaningless to find maximum
likelihood estimates.

Using a Bayesian setting we treat θ = (β, κ) as a random variable. Based
on Table 1 in Illian, Møller and Waagepetersen (2008) and other considerations
in that paper, we make the following prior assumptions. We let κt,i follow the
restriction of a normal distribution N(µi, σ

2
i ) to [0,∞), where (µi, σ

2
i ) is chosen

so that under the unrestricted normal distribution the range of the zone of
influence is a central 95% interval. Furthermore, we let all the κt,i and the βi
be independent, and each βi is N(0, σ2)-distributed, where σ = 8. Combining
these prior assumptions with the likelihood term, we obtain the posterior density

π(β, κ|x) ∝ exp
(

− β0/(2σ
2) −

19
∑

i=1

{

β2
i /(2σ

2) +
∑

t∈yi

(κt,i − µi)
2/(2σ2

i )
})

× exp
(

−

∫

W

ρθ,y1,...,yn
(s) ds

)

n
∏

i=1

ρθ,y1,...,yn
(si), βi ∈ R, κt,i ≥ 0 (4.22)

(suppressing in the notation π(β, κ|x) that we have conditioned on y1, . . . , y19
in the posterior distribution).

Simulations from (4.22) are obtained by a Metropolis-within-Gibbs algo-
rithm (also called a hybrid MCMC algorithm, see e.g. Robert and Casella, 1999),
where we alter between updating β and κ using random walk Metropolis up-
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dates (for details, see Illian, Møller and Waagepetersen, 2008). Thereby various
posterior probabilities of interest can be estimated. For example, a large (small)
value of P(βi > 0|x) indicates a positive/attractive (negative/repulsive) asso-
ciation to the ith resprouter, see Figure 2 in Illian, Møller and Waagepetersen
(2008).

The model can be checked following the idea of posterior predictive model as-
sessment (Gelman, Meng and Stern, 1996), comparing various summary statis-
tics with their posterior predictive distributions. The posterior predictive distri-
bution of statistics depending onX (and possibly also on (β, κ)) is obtained from
simulations: we generate a posterior sample (β(j), κ(j)), j = 1, . . . ,m, and for
each j ‘new data’ x(j) from the conditional distribution of X given (β(j), κ(j)).
For instance, the grey scale plot in Figure 4.5 is a residual plot based on quad-
rant counts. We divide the observation window into 100 equally sized quadrants
and count the number of plants within each quadrant. The grey scales reflect
the probabilities that counts drawn from the posterior predictive distribution
are less or equal to the observed quadrant counts where dark means small prob-
ability. The stars mark quadrants where the observed counts are ‘extreme’ in
the sense of being either below the 2.5% quantile or above the 97.5% quantile
of the posterior predictive distribution. Figure 4.5 does not provide evidence
against our model. A plot based on the L-function (Chapter 4.3) and the pos-
terior predictive distribution is also given in Illian, Møller and Waagepetersen
(2008). Also this plot shows no evidence against our model.

4.5.2 Cluster and Cox processes

The simulation-based Bayesian approach exemplified above extends to cluster
and Cox processes, where we include the ‘missing data’ η, say, in the posterior
and use a Metropolis-within-Gibbs (or MCMC algorithm) algorithm, where we
alter between updating θ and η. Examples are given below.

In case of the Poisson cluster process model forX considered in Section 4.4.3,
η = Ψ is the point process of centre points. Incorporating this into the posterior,
we obtain the posterior density

π(θ, ψ|x) ∝ fθ(x|ψ)fω(ψ)π(θ)

where fθ(x|ψ) and fω(ψ) are specified in (4.17) and (4.20), and π(θ) is the prior
density. The Metropolis-within-Gibbs algorithm alters between updating from
‘full conditionals’ given by

π(θ|ψ, x) ∝ fθ(x|ψ)fω(ψ)π(θ) (4.23)

and
π(ψ|θ, x) ∝ fθ(x|ψ)fω(ψ). (4.24)

Yet another Metropolis-within-Gibbs algorithm may be used when updating
from (4.23), cf. Section 4.4.3. When updating from (4.24) we use the birth-
death type Metropolis-Hastings algorithm mentioned in connection to (4.19).
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Figure 4.5: Residual plot based on quadrant counts. Quadrants with a ‘*’ are
where the observed counts fall below the 2.5% quantile (white ‘*’) or above
the 97.5% quantile (black ‘*’) of the posterior predictive distribution. The grey
scales reflect the probabilities that counts drawn from the posterior predictive
distribution are less or equal to the observed quadrant counts (dark means small
probability).

Similarly, for a log Gaussian Cox process model for X. Then we may approx-
imate the log Gaussian process Y on W by the finite-dimensional log Gaussian
random variable η = YI specified in Section 4.4.3, and use a Langevin-Hastings
algorithm for simulating from the conditional distribution of η given (θ, x). Rue,
Martino and Chopin (2007) demonstrate that it may be possible to compute
accurate Laplace approximations of marginal posterior distributions without
MCMC simulations.

For instance, Møller and Waagepetersen (2007) considered a log Gaussian
Cox process model for the rain forest trees considered in Section 4.3.3, and
they used a 200 × 100 grid to index η, and imposed certain flat priors on the
unknown parameters. Figure 4.6 shows the posterior means of the systematic
part β0 + β1z1(s) + β2z2(s) (left panel) and the random part Y (s) (right panel)
of the log random intensity function log Λ(s) given by (4.5). The systematic
part seems to depend more on z2 (norm of altitude gradient) than z1 (altitude),
cf. Figure 4.2. The fluctuations of the random part may be caused by small
scale clustering due to seed dispersal and covariates concerning soil properties.
The fluctuation may also be due to between-species competition.

Møller and Waagepetersen (2004, 2007), Beněs, Bodlák, Møller and Waa-
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Figure 4.6: Posterior mean of β0 +β1z1(s)+β2z2(s) (left panel) and Y (s) (right
panel), s ∈ W , under the log Gaussian Cox process model for the tropical rain
forest trees.

gepetersen (2005), and Waagepetersen and Schweder (2006) exemplified the si-
mulation-based Bayesian approach for both Poisson cluster (or shot noise Cox)
process and log Gaussian Cox process models. Other Cox models and appli-
cation examples are considered in Heikkinen and Arjas (1998), Wolpert and
Ickstadt (1998), Best, Ickstadt and Wolpert (2000), and Cressie and Lawson
(2000).

4.5.3 Gibbs point processes

For a Gibbs (or Markov) point process the likelihood function depends on the
unknown normalizing constant cθ, cf. (4.13). Hence, in a Bayesian approach to
inference, the posterior distribution for θ also depends on the unknown cθ, and
in an ‘ordinary’ Metropolis-Hastings algorithm, the Hastings ratio depends on
a ratio of unknown normalizing constants. This ratio may be estimated using
another method, see Section 4.4.1, but it is then unclear from which equilibrium
distribution (if any) we are simulating and whether it is a good approximation
of the posterior. Recently, the problem with unknown normalizing constants
has been solved using an MCMC auxiliary variable method (Møller, Pettitt,
Berthelsen and Reeves, 2006) which involves perfect simulations (Kendall, 1998;
Kendall and Møller, 2000). The technique is applied for Bayesian inference of
Markov point processes in Berthelsen and Møller (2004, 2006, 2008), where
also the many technical details are discussed. Below we briefly demonstrate
the potential of this technique when applied for non/semi-parametric Bayesian
inference of a pairwise interaction point process.

4.5.4 Example: cell data

The left panel of Figure 4.7 shows the location of 617 cells in a section of the
mocous membrane of the stomach of a healthy rat, where (after some rescaling)
W = [0, 1] × [0, 0.893] is the observation window. The left hand side of the
observation window corresponds to where the stomach cavity begins and the
right hand side to where the muscle tissue begins. The centre panel of Figure 4.7
shows a non-parametric estimate ĝ(r), r > 0, of the pair correlation function for
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Figure 4.7: Left panel: locations of 617 cells in a 2D section of the mocous mem-
brane of the stomach of a healthy rat. Centre panel: non-parametric estimate of
the pair correlation function for the cell data (full line) and 95%-envelopes cal-
culated from 200 simulations of a fitted inhomogeneous Poisson process. Right
panel: non-parametric estimate of the pair correlation function for the cell data
(full line) and 95%-envelopes calculated from 200 simulations of the model fitted
by Nielsen (2000).

the data and simulated 95%-envelopes under an inhomogeneous Poisson process
with a non-parametric estimate for its intensity function (Chapter 4.3). Under a
Poisson process model the theoretical pair correlation function is constant one.
The low values of ĝ(r) for distances r < 0.01 indicates repulsion between the
points. The point pattern looks inhomogeneous in the horizontal direction, and
the data was originally analyzed by Nielsen (2000) using a Strauss point process
model after transforming the first coordinates of the points. The right panel of
Figure 4.7 shows a non-parametric estimate of the pair correlation function for
the data, with simulated 95%-envelopes under the fitted transformed Strauss
point process. The estimated pair correlation is almost within the 95% evelopes
for small values of the distance r, suggesting that the transformed Strauss model
captures the small scale inhibition in the data. Overall, the estimated pair
correlation function follows the trend of the 95%-envelopes, but it falls outside
the envelopes for some values. As the comparison with the envelopes can be
considered as a multiple test problem, this is not necessarily reason to reject the
transformed Strauss model.

We consider an inhomogeneous pairwise interaction point process model for
the point pattern x = {s1, . . . , sn} in Figure 4.7 (left panel). The density is

fβ,ϕ(x) =
1

c(β,ϕ)

n
∏

i=1

β(si)
∏

1≤i<j<≤n

ϕ(‖si − sj‖) (4.25)

with respect to the Poisson process on W with intensity one. Here the first
order term β is a non-negative function which models the inhomogeneity, the
second order term ϕ is a non-negative function which models the interaction,
and c(β,ϕ) is a normalizing constant. A priori it is expected that the cell inten-
sity only changes in the direction from the stomach cavity to the surrounding
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muscles tissue. It is therefore assumed that β(s) depends only on s = (t, u)
through its first coordinate t. Further, partly in order to obtain a well-defined
density and partly in order to model a repulsive interaction between the cells, we
assume that 0 ≤ ϕ(‖si − sj‖) ≤ 1 is a non-decreasing function of the distance
r = ‖si − sj‖. Furthermore, we specify a flexible prior for β(s) = β(t) by a
shot noise process and a flexible prior for ϕ(r) by a piecewise linear function
modelled by a marked Poisson process. For details of these priors and how the
auxiliary variable method from Møller, Pettitt, Berthelsen and Reeves (2006)
is implemented to obtain simulations from the posterior distribution of (β, ϕ)
given x, see Berthelsen and Møller (2008).

The left panel of Figure 4.8 shows the posterior mean of β, E(β|x), together
with pointwise 95% central posterior intervals. Also the smooth estimate of the
first order term obtained by Nielsen (2000) is shown, where the main difference
compared with E(β|x) is the abrupt change of E(β|x) in the interval [0.2, 0.4].
For locations near the edges of W , E(β|x) is ‘pulled’ towards its prior mean as
a consequence of the smoothing prior.

The intensity ρβ,ϕ(s) of the point process is given by the mean of the Pa-
pangelou conditional intensity, that is,

ρβ,ϕ(s) = E [λβ,ϕ(s, Y )fβ,ϕ(Y )] (4.26)

where the expectation is with respect to the Poisson process Y on W with
intensity one, see e.g. Møller and Waagepetersen (2004). Define

ρβ,ϕ(t) =
1

b

∫ b

0

ρβ,ϕ(t, u) du

where W = [0, a] × [0, b] = [0, 1] × [0, 0.893]. Apart from boundary effects,
since β(s) only depends on the first coordinate of s = (t, u), we may expect
that the intensity (4.26) only slightly depends on the second coordinate u, i.e.
ρβ,ϕ(s) ≈ ρβ,ϕ(t). We therefore refer to ρβ,ϕ(t) as the cell intensity, though it
is more precisely the average cell intensity in W at u ∈ [0, a]. The left panel
of Figure 4.8 also shows a non-parametric estimate ρ̂(t) of the cell intensity
(the dot-dashed line). The posterior mean of β(t) is not unlike ρ̂(t) except that
E(β(t)|x) is higher as would be expected due to the repulsion in the pairwise
interaction point process model.

The posterior mean of ϕ is shown in the right panel of Figure 4.8 together
with pointwise 95% central posterior intervals. The figure shows a distinct hard
core on the interval from zero to the observed minimum inter-point distance d =
mini 6=j ‖si−sj‖ which is a little less than 0.006, and an effective interaction range
which is no more than 0.015 (the posterior distribution of ϕ(r) is concentrated
close to one for r > 0.015). The corner at r = d of the curve showing the
posterior mean of ϕ(r) is caused by that ϕ(r) is often zero for r < d (since the
hard core is concentrated close to d), while ϕ(r) > 0 for r > d.
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Figure 4.8: Posterior mean (solid line) and pointwise 95% central posterior
intervals (dotted lines) for β (left panel) and ϕ (right panel). The left panel
also shows the first order term (dashed line) estimated by Nielsen (2000) and
an estimate of the cell intensity (dot-dashed line).
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