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Abstract

We introduce a new variational estimator for the intensity function of an in-
homogeneous spatial point process with points in the d-dimensional Euclidean
space and observed within a bounded region. The variational estimator ap-
plies in a simple and general setting when the intensity function is assumed
to be of log-linear form β+ θ>z(u) where z is a spatial covariate function and
the focus is on estimating θ. The variational estimator is very simple to im-
plement and quicker than alternative estimation procedures. We establish its
strong consistency and asymptotic normality. We also discuss its finite-sample
properties in comparison with the maximum first order composite likelihood
estimator when considering various inhomogeneous spatial point process mod-
els and dimensions as well as settings were z is completely or only partially
known.

Keywords: asymptotic normality, composite likelihood, estimating equation,
inhomogeneous spatial point process, strong consistency, variational estimator.

1 Introduction

Intensity estimation for spatial point processes is of fundamental importance in
many applications, see e.g. Diggle (2003), Møller and Waagepetersen (2007), Illian
et al. (2008), Baddeley (2010), and Diggle (2010). While maximum likelihood and
Bayesian methods are feasible for parametric Poisson point process models (Berman
and Turner (1992)), computationally intensive Markov chain Monte Carlo methods
are needed otherwise (Møller and Waagepetersen (2004)). The Poisson likelihood
has been used for intensity estimation in non-Poisson models (Schoenberg (2005),
Guan and Shen (2010)) where it can be viewed as a composite likelihood based on
the intensity function (Møller and Waagepetersen (2007)and Waagepetersen (2007));
we refer to this as a ‘first order composite likelihood’. For Cox and Poisson clus-
ter point processes, which form major classes of point process models for clustering
or aggregation (Stoyan et al. (1995)), the first and second order moment proper-
ties as expressed by the intensity function ρ and pair correlation function g are
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often of an explicit form, and this has led to the development of estimation pro-
cedures based on combinations of first and second order composite likelihoods and
minimum contrast estimation procedures (Guan (2006), Møller and Waagepetersen
(2007), Waagepetersen (2007)) and to refinements of such methods (Guan and Shen
(2010), Guan et al. (2011)). For Gibbs point processes, which form a major class
of point process models for repulsiveness, the (Papangelou) conditional intensity
is of explicit form and has been used for developing maximum pseudo-likelihood
estimators (Besag (1977), Jensen and Møller (1991), Baddeley and Turner (2000))
and variational estimators (Baddeley and Dereudre (2012)). However, in general for
Gibbs point processes, the moment properties are not expressible in closed form and
it is therefore hard to estimate the intensity function.

The present paper considers a new variational estimator for the intensity func-
tion of a spatial point process X, with points in the d-dimensional Euclidean space
Rd and observed within a bounded region W ⊂ Rd. It is to some extent derived
along similar lines as the variational estimator based on the conditional intensity
(Baddeley and Dereudre (2012)), which in turn is a counterpart of the variational
estimator for Markov random fields (Almeida and Gidas (1993)). However, our vari-
ational estimator applies in a much simpler and general setting. In analogy with the
exponential form of the conditional intensity considered in Baddeley and Dereudre
(2012), we assume that X has a log-linear intensity function

ρ(u) = exp
(
β + θ>z(u)

)
, u ∈ Rd. (1.1)

Here β is a real parameter, θ is a real p-dimensional parameter and θ> is its transpose,
z is a real p-dimensional function defined on Rd and referred to as the covariate
function, and we view θ and z(u) as column vectors. Further details are given in
Sections 2-3.

As the variational estimator in Baddeley and Dereudre (2012), our variational es-
timator concerns θ, while β is treated as a nuisance parameter which is not estimated.
Our variational estimator is simple to implement, it requires only the computation
of the solution of a system of p linear equations involving certain sums over the
points of X falling in W , and it is quicker to use than the other estimation meth-
ods mentioned above. Moreover, our variational estimator is expressible on closed
form while the maximum likelihood estimator for the Poisson likelihood and the
maximum first order composite likelihood estimator for non-Poisson models are not
expressible on closed form and the profile likelihood for θ involves the computation
(or approximation) of d(1 + p/2)(p + 1) integrals. On the one hand, as for the ap-
proach based on first order composite likelihoods, an advantage of our variational
estimator is its flexibility, since apart from (1.1) and a few mild assumptions on z,
we do not make any further assumptions. In particular, we do not require that X
is a grand canonical Gibbs process as assumed in Baddeley and Dereudre (2012).
On the other hand, a possible disadvantage of our variational approach is a loss
in efficiency, since we do not take into account spatial correlation, e.g. through the
modelling of the pair correlation function as in Guan and Shen (2010) and Guan
et al. (2011), or interaction, e.g. through the modelling of the conditional intensity
function as in Baddeley and Dereudre (2012).

The paper is organized as follows. Section 2 presents our general setting. Sec-
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tion 3 specifies our variational estimator and establishes its asymptotic properties.
Section 4 reports on a simulation study of the finite-sample properties of our vari-
ational estimator and the maximum first order composite likelihood estimator for
various inhomogeneous spatial point process models in the planar case d = 2 as well
as higher dimensions and when z is known on an observation window as well as
when z is known only on a finite set of locations. The technical proofs of our results
are deferred to Appendix A.

2 Preliminaries

This section introduces the assumptions and notation used throughout this paper.
Let W ⊂ Rd be a compact set of positive Lebesgue measure |W |. It will play

the role of an observation window. Without any danger of confusion, we also use
the notation |A| for the cardinality of a countable set A, and |u| = max{|ui| : i =
1, . . . , d} for the maximum norm of a point u = (u1, . . . , ud) ∈ Rd. Further, we let
‖u‖ denote the Euclidean norm for a point u ∈ Rd, and ‖A‖ = sup‖u‖=1 |Au| the
supremum norm for a square matrix A, i.e. its numerically largest (right) eigenvalue.
Moreover, for any real p-dimensional function k defined on Rd, we let

‖k‖∞ = sup
u∈Rd
‖k(u)‖. (2.1)

Let X be a spatial point process on Rd, which we view as a random locally finite
subset of Rd. Let XW = X ∩W . Then the number of points in XW is finite; we
denote this number by N(W ) = n(XW ) = |XW |; and a realization of XW is of the
form x = {x1, . . . , xn} ⊂ W , where n = n(x) and 0 ≤ n <∞. If n = 0, then x = ∅
is the empty point pattern in W . For further background material and measure
theoretical details on spatial point process, see e.g. Daley and Vere-Jones (2003)
and Møller and Waagepetersen (2004).

We assume that X has a locally integrable intensity function ρ. By Campbell’s
theorem (see e.g. Møller and Waagepetersen (2004)), for any real Borel function k
defined on Rd such that kρ is absolutely integrable (with respect to the Lebesgue
measure on Rd),

E
∑
u∈X

k(u) =

∫
k(u)ρ(u) du. (2.2)

Furthermore, for any integer n ≥ 1, X is said to have an nth order product density
ρ(n) if this is a non-negative Borel function on Rdn such that for all non-negative
Borel functions k defined on Rdn,

E

6=∑
u1,...,un∈X

k(u1, . . . , un) =

∫
· · ·
∫
k(u1, . . . , un)ρ(n)(u1, . . . , un) du1 · · · dun (2.3)

where the 6= over the summation sign means that u1, . . . , un are pairwise distinct.
Note that ρ = ρ(1).

Throughout this paper except in Section 3.1 we assume that ρ is of the log-linear
form (1.1), where we view θ and z(u) as p-dimensional column vectors.
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As for vectors, transposition of a matrix A is denoted A>. For convenience we
e.g. write (β, θ) when we more precisely mean the (p+1)-dimensional column vector
(β, θ>)>. If A is a square matrix, we write A ≥ 0 if A is positive semi-definite, and
A > 0 if A is (strictly) positive definite. When A and B are square matrices of the
same size, we write A ≥ B if A−B ≥ 0.

For k = 0, 1, . . ., denote Ckd,p the class of k-times continuous differentiable real
p-dimensional functions defined on Rd. For h ∈ C1

d,1, denote its gradient

∇h(u) =

(
∂h

∂u1

(u), . . . ,
∂h

∂ud
(u)

)>
, u = (u1, . . . , ud)

> ∈ Rd,

and define the divergence operator div on C1
d,1 by

div h(u) =
∂h

∂u1

(u) + . . .+
∂h

∂ud
(u), u = (u1, . . . , ud)

> ∈ Rd.

Furthermore, for h = (h1, . . . , hp)
> ∈ C1

d,p, define the divergence operator div on C1
d,p

by
div h(u) = (div h1(u), . . . , div hp(u))> , u ∈ Rd.

If z ∈ C1
d,p then by (1.1)

div log ρ(u) = θ>div z(u) = div z(u)>θ, u ∈ Rd. (2.4)

Finally, we recall the classical definition of mixing coefficients (see e.g. Politis
et al. (1998)): for j, k ∈ N ∪ {∞} and m ≥ 1, define

αj,k(m) = sup{|P (A ∩B)− P (A)P (B)| : A ∈ F(Λ1), B ∈ F(Λ2),

Λ1 ∈ B(Rd), Λ2 ∈ B(Rd), |Λ1| ≤ j, |Λ2| ≤ k, d(Λ1,Λ2) ≥ m}

where F(Λi) is the σ-algebra generated by X ∩Λi, i = 1, 2, d(Λ1,Λ2) is the minimal
distance between the sets Λ1 and Λ2, and B(Rd) denotes the class of Borel sets in
Rd.

3 The variational estimator

Section 3.1 establishes an identity which together with (2.4) is used in Section 3.2
for deriving an unbiased estimating equation which only involves θ, the parameter
of interest, and from which our variational estimator is derived. Section 3.3 discusses
the asymptotic properties of the variational estimator.

3.1 Basic identities

This section establishes some basic identities for a spatial point process X defined
on Rd and having a locally integrable intensity function ρ which is not necessarily of
the log-linear form (1.1). The results will be used later when defining our variational
estimator.
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Consider a real Borel function h defined on Rd and let f(u) = ρ(u)|h(u)|. For
n = 1, 2, . . ., let Ed

n = [−n, n]d and

µn(f) = max{µn,j(f) : j = 1, . . . , d}

with

µn,j(f) =

∫
Ed−1
n

f(u1, . . . , uj−1,−n, uj+1, . . . , ud) du1 . . . duj−1 duj+1 . . . dun

+

∫
Ed−1
n

f(u1, . . . , uj−1, n, uj+1, . . . , ud) du1 . . . duj−1 duj+1 . . . dun

provided the integrals exist. Note that µn(f) depends only on the behaviour of f on
the boundary of Ed

n.

Proposition 3.1. Suppose that h, ρ ∈ C1
d,1 such that limn→∞ µn(ρ|h|) = 0 and for

j = 1, . . . , d, the function h(u)∂ρ(u)/∂uj is absolutely integrable. Then the following
relations hold where the mean values exist and are finite:

E
∑
u∈X

h(u)∇ log(ρ(u)) = −E
∑
u∈X

∇h(u) (3.1)

and
E
∑
u∈X

h(u) div log(ρ(u)) = −E
∑
u∈X

div h(u). (3.2)

Proof. For j = 1, . . . , d and u = (u1, . . . , ud)
> ∈ Rd, Campbell’s theorem (2.2) and

the assumption that h(u)∂ρ(u)/∂uj is absolutely integrable imply that

E

(∑
u∈X

h(u)∇ log(ρ(u))

)
j

=

∫
h(u)

∂ρ

∂uj
(u) du

exist. Thereby,

E

(∑
u∈X

h(u)∇ log(ρ(u))

)
j

= lim
n→∞

∫
Edn

h(u)
∂ρ

∂uj
(u) du

= lim
n→∞

∫
Ed−1
n

(
[ρ(u)h(u)]uj=nuj=−n −

∫ n

−n
ρ(u)

∂h

∂uj
(u) duj

)
du1 . . . duj−1 duj+1 . . . dun

=− lim
n→∞

∫
Edn

∂h

∂uj
(u)ρ(u) du

where the first identity follows from the dominated convergence theorem, the second
from Fubini’s theorem and integration by parts, and the third from Fubini’s theorem
and the assumption that limn→∞ µn(ρ|h|) = 0, since∣∣∣ ∫

Ed−1
n

[ρ(u)h(u)]uj=nuj=−n

∣∣∣ ≤ µn,j(ρ|h|) ≤ µn(ρ|h|).
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Hence, using first the dominated convergence theorem and second Campbell’s the-
orem,

E

(∑
u∈X

h(u)∇ log(ρ(u))

)
j

= −
∫

∂h

∂uj
(u)ρ(u) du = −E

(∑
u∈X

∇h(u)

)
j

whereby (3.1) is verified and the mean values in (3.1) are seen to exist and are finite.
Finally, (3.1) implies (3.2) where the mean values exist and are finite.

Proposition 3.1 becomes useful when ρ is of the log-linear form (1.1): if we omit
the expectation signs in (3.1)-(3.5), we obtain unbiased estimating equations, where
(3.1) gives a linear system of p vectorial equation in dimension d, while (3.5) gives a
linear system of p one-dimensional equations for the estimation of the p-dimensional
parameter θ; the latter system is simply obtained by summing over the d equations
in each vectorial equation. A similar reduction of equations is obtained in Baddeley
and Dereudre (2012).

The conditions and the last result in Proposition 3.1 simplify as follows when h
vanishes outside W .

Corollary 3.2. Suppose that h, ρ ∈ C1
d,1 such that h(u) = 0 whenever u 6∈ W . Then

E
∑
u∈XW

h(u) div log(ρ(u)) = −E
∑
u∈XW

div h(u). (3.3)

3.2 The variational estimator

Henceforth we consider the case of the log-linear intensity function (1.1), assuming
that the parameter space for (β, θ) is R × Rp. We specify below our variational
estimator in terms of a p-dimensional real test function

h = (h1, . . . , hp)
>

defined on Rd. The test function is required not to depend on (β, θ) and to satisfy
certain smoothness conditions. The specific choice of test functions is discussed at
the end of Section 3.2.2.

In the present section, to stress that the expectation of a functional f of X
depends on (β, θ), we write this as Eβ,θf(X). Furthermore, define the p× p matrix

A(XW ) =
∑
u∈XW

h(u) div z(u)>

and the p-dimensional column vector

b(XW ) =
∑
u∈XW

div h(u).
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3.2.1 Estimating equation and definition of the variational estimator

We consider first the case where the test function h vanishes outside W .

Corollary 3.3. Suppose that h, z ∈ C1
d,p such that

h(u) = 0 whenever u 6∈ W . (3.4)

Then, for any (β, θ) ∈ R× Rp,

Eβ,θA(XW ) θ = −Eβ,θb(XW ). (3.5)

Proof. The conditions of Corollary 3.2 are easily seen to be satisfied. Hence combin-
ing (2.4) and (3.3) we obtain (3.5).

Several remarks are in order.
Note that (3.5) is a linear system of p equations for the p-dimensional parame-

ter θ. For example, if h(u) = div z(u), Campbell’s theorem (2.2) gives

Eβ,θA(XW ) =

∫
W

div z(u) div z(u)> exp(β + θ>z(u)) du

and so (3.5) has a unique solution if and only if
∫
W

div z(u) div z(u)> du > 0.
Under the conditions in Corollary 3.3, (3.5) leads to the unbiased estimating

equation
A(XW ) θ = −b(XW ). (3.6)

Theorem 3.5 below establishes that under certain conditions, where we do not neces-
sarily require h to vanish outside W , (3.6) is an asymptotically unbiased estimating
equation as W extends to Rd.

In the sequel we therefore do not necessarily assume (3.4). For instance, when
div z(u) does not vanish outside W , we may consider either h(u) = div z(u) or
h(u) = ηW (u) div z(u), where ηW is a smooth function which vanishes outside W .
In the latter case, (3.6) is an unbiased estimating equation, while in the former case
it is an asymptotically unbiased estimating equation (under the conditions imposed
in Theorem 3.5).

When (3.6) is an (asymptotically) unbiased estimating equation and A(XW ) is
invertible, we define the variational estimator by

θ̂ = −A(XW )−1b(XW ). (3.7)

Theorem 3.5 below establishes under certain conditions the invertibility of A(XW )
and the strong consistency and asymptotic normality of θ̂ as W extends to Rd.

Finally, if h is allowed to depend on θ, (3.6) still provides an unbiased estimating
equation but the closed form expression (3.7) only applies when h is not depending
on θ (as assumed in this paper).
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3.2.2 Choice of test function

The choice of test function should take into consideration the conditions introduced
later in Section 3.3.1. The test functions below are defined in terms of the covariate
function so that it is possible to check these conditions as discussed in Section 3.3.2.

Interesting choices of the test function include

• h(u) = div z(u) and the corresponding modification h(u) = ηW (u)div z(u),

• h(u) = z(u) and the corresponding modification h(u) = ηW (u)z(u).

In the first case, A(XW ) becomes a covariance matrix. For example, if h(u) =
div z(u), then

A(XW ) =
∑
u∈XW

div z(u) div z(u)>

is invertible if and only if A(XW ) > 0, meaning that if XW = {x1, . . . , xn} is
observed, then the p×n matrix with columns div z(x1), . . . , div z(xn) has rank p. In
the latter case, A(XW ) is in general not symmetric and we avoid the calculation of
div div z(u).

3.2.3 Choice of smoothing function

We let henceforth the smoothing function ηW depend on a user-specified parameter
ε > 0 and define it as the convolution

ηW (u) = χW	ε ∗ ϕε(u) =

∫
1(u− v ∈ W	ε)ϕε(v) dv, u ∈ Rd, (3.8)

where the notation means the following:

W	ε = {u ∈ W : b(u, ε) ⊆ W}

is the observation window eroded by the d-dimensional closed ball b(u, r) centered
at u and with radius ε; χW	ε(·) = 1(· ∈ W	ε) is the the indicator function on W	ε;
and

ϕε(u) = ε−dϕ(u/ε), u ∈ Rd,

where
ϕ(u) = c exp

(
− 1

1− ‖u‖2

)
1(‖u‖ ≤ 1), u ∈ Rd,

where c is a normalizing constant such that ϕ is a density function (c ≈ 2.143 when
d = 2). Figure 1 shows the function ηW and its divergence when W = [−1, 1]2,
ε = 0.2, and ε = 0.4. The construction (3.8) is quite standard in distribution theory
when functions are regularized and it can be found, though in a slightly different
form, in Hörmander (2003, Theorem 1.4.1, page 25).
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(a) ηW when ε = 0.2
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(b) ηW when ε = 0.4
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y

(c) div ηW when ε = 0.2
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y

(d) div ηW when ε = 0.4

Figure 1: Plots of the functions ηW = χW ∗ ϕε and div ηW when W = [−1, 1]2 and
ε = 0.2, 0.4.

It is easily checked that ϕε ∈ C∞d,1, and so ηW ∈ C∞d,1. Note that

0 ≤ ηW ≤ 1, ηW (u) = 1 if u ∈ W	2ε, ηW (u) = 0 if u 6∈ W. (3.9)

The following lemma states some properties for test functions of the modified
form h(u) = ηW (u)k(u), where we let κ =

∫
B(0,1)

|divϕ(v)| dv; if d = 2 then κ ≈
1.256.

Lemma 3.4. Let k ∈ C1
d,p and h(u) = ηW (u)k(u) where ηW is given by (3.8). Then

h ∈ C1
d,p and its support is included in W . Further, h respective div h agrees with k

respective div k on W	2ε. Moreover, for any u ∈ W ,

‖h(u)‖ ≤ ‖k(u)‖, ‖div h(u)− div k(u)‖ ≤ ‖div k(u)‖+ ‖k(u)‖κ/ε. (3.10)
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Proof. We have h ∈ C1
d,p since k ∈ C1

d,p and ηW ∈ C∞d,1, and the support of h is
included in W since ηW (u) = 0 if u 6∈ W . From the last two statements of (3.9)
we obtain that div h(u) agrees with div k(u) on W	2ε. The first inequality in (3.10)
follows immediately from the definition of h, since ‖h(u)‖ = ‖ηW (u)k(u)‖ ≤ ‖k(u)‖.
Recall that (f ∗ g)′ = f ∗ g′ if g ∈ C1

d,p has compact support and f is Lebesgue
integrable on Rd, where in our case we let f = χW	ε and g = ϕε. Therefore and
since divϕε = (divϕ)/ε ∈ C∞d,1, for any u ∈ W , we have

div h(u) = ηW (u)div k(u) + k(u)
(
χW	ε ∗ divϕε

)
(u)

= ηW (u)div k(u) +
1

ε
k(u)

(
χW	ε ∗ divϕ

)
(u).

Thereby the second inequality in (3.10) follows from a straightforward calculation
using again the fact that ηW (u) ≤ 1.

3.3 Asymptotic results

In this section, we present asymptotic results for the variational estimator when
considering a sequence of observation windowsW = Wn, n = 1, 2, . . ., which expands
to Rd as n → ∞, and a corresponding sequence of test functions h = h(n), n =
1, 2, . . .. Corresponding to the two cases of test functions considered in Section 3.2.1,
we consider the following two cases:

(A) either h(n) = k does not depend on n,

(B) or h(n)(u) = ηWn(u)k(u), where ηWn is given by (3.8).

3.3.1 Conditions

Our asymptotic results require the following conditions.
We restrict attention to the spatial case d ≥ 2 (this is mainly for technical reasons

as explained in Section 3.3.3). We suppress in the notation that the intensity ρ
and the higher order product densities ρ(2), ρ(3), . . . depend on the ‘true parameters’
(β, θ). Let

Sn =

∫
Wn

h(n)(u) div z(u)>ρ(u) du (3.11)

and

Σn =

∫
Wn

f
(n)
θ (u)f

(n)
θ (u)>ρ(u) du+

∫
W 2
n

f
(n)
θ (u1)f

(n)
θ (u2)>Q2(u1, u2) du1 du2 (3.12)

where Q2(u1, u2) = ρ(2)(u1, u2)− ρ(u1)ρ(u2) (assuming ρ(2) exists) and

f
(n)
θ (u) = h(n)(u) div z(u)>θ + div h(n)(u), u ∈ Rd.

It will follow from the proof of Theorem 3.5 below that under the conditions (i)-(vi)
stated below, with probability one, the integrals in (3.11)-(3.12) exist and are finite
for all sufficiently large n.

We impose the following conditions, where o denotes the origin of Rd:
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(i) For every n ≥ 1, Wn = nA = {na : a ∈ A}, where A ⊂ Rd is convex, compact,
and contains o in its interior.

(ii) The test functions h(n), n = 1, 2, . . ., and the covariate function z are elements
of C1

d,p, and satisfy for some constant K > 0,

‖z‖∞ ≤ K, ‖div z‖∞ ≤ K, sup
n≥1
‖h(n)‖∞ ≤ K, sup

n≥1
‖div h(n)‖∞ ≤ K.

(3.13)

(iii) There exists a p × p matrix I0 such that for all sufficiently large n, we have
Sn/|Wn| ≥ I0 > 0.

(iv) There exists an integer δ ≥ 1 such that for k = 1, . . . , 2+δ, the product density
ρ(k) exists and ρ(k) ≤ K ′, where K ′ <∞ is a a constant.

(v) For the strong mixing coefficients (Section 2), we assume that there exists
some ν > d(2 + δ)/δ such that a2,∞(m) = O(m−ν).

(vi) The second order product density ρ(2) exists, and there exists a p × p matrix
I ′0 such that for all sufficiently large n, Σn/|Wn| ≥ I ′0 > 0.

3.3.2 Discussion of the conditions

Some comments on conditions (i)-(vi) are in order.
In general in applications, the observation window has a non-empty interior. In

(i), the assumption that A contains o in its interior can be made without loss of
generality; if instead u was an interior point of A, then (i) could be modified to that
any ball with centre u and radius r > 0 is contained in Wn = nA for all sufficiently
large n. We could also modify (i) to the case where |A| > 0 and as n → ∞ the
limit of Wn = nA exists and is given by W∞; then in (3.13) we should redefine
‖ · ‖∞ = supu∈Rd ‖k(u)‖ (i.e. as defined in (2.1)) by ‖ · ‖∞ = supu∈W∞ ‖k(u)‖. For
either case, Theorem 3.5 in Section 3.3.3 will remain true, as the proof of the theorem
(given in Appendix A) can easily be modified to cover these cases.

In (ii), for both cases of (A) and (B) and for k(u) = div z(u), (3.13) simplifies to

‖z‖∞ ≤ K, ‖div z‖∞ ≤ K, ‖div div z‖∞ ≤ K. (3.14)

This follows immediately for the case (A), since then h(n) = h does not depend
on n, while in the case (B) where h(n)(u) = ηWn(u)k(u), Lemma 3.4 implies the
equivalence of (3.13) and (3.14).

Note that in (ii) we do not require that h vanishes outside Wn. Thus, in con-
nection with the unbiasedness result in Corollary 3.3, one of the difficulties to prove
Theorem 3.5 below will be to ‘approximate’ h(n) by a function with support Wn, as
detailed in Appendix A.

Conditions (iii)-(iv) are spatial average assumptions like when establishing asymp-
totic normality of ordinary least square estimators for linear models. These con-
ditions must be checked for each choice of covariate function, since they depend
strongly on z.

Condition (iv) is not very restrictive. It is fulfilled for any Gibbs point process
with a Papangelou conditional intensity which is uniformly bounded from above (the

11



so-called local stability condition, see e.g. Møller and Waagepetersen (2004)), and
also for a log-Gaussian Cox process where the mean and covariance functions of the
underlying Gaussian process are uniformly bounded from above (see Møller et al.
(1998) and Møller and Waagepetersen (2007)). Note that the larger we can choose
δ, the weaker becomes condition (v).

Condition (v) combined with (iv) is also considered in Waagepetersen and Guan
(2009), and (iv)-(v) are inspired by a central limit theorem obtained first by Bolthausen
(1982) and later extended to non-stationary random fields in Guyon (1991) and to
triangular arrays of non-stationary random fields (which is the requirement of our
setting) in Karáczony (2006).

Other papers dealing with asymptotics for estimators based on estimating equa-
tions for spatial point processes (e.g. Guan (2006), Guan and Loh (2007), Guan and
Shen (2010), Guan et al. (2011), Prokesová and Jensen (2012)) are assuming mixing
properties expressed in terms of a different definition of mixing coefficient (see e.g.
Equations (5.2)-(5.3) in Prokesová and Jensen (2012)). The mixing conditions in
these papers are related to a central limit theorem by Ibramigov and Linnik (1971)
obtained using blocking techniques, and the mixing conditions may seem slightly
less restrictive than our condition (v). However, rather than our condition (iv), it
is assumed in the papers that the first four reduced cumulants exist and have finite
total variation. In our opinion, this is an awkward assumption in the case of Gibbs
point processes and many other examples of spatial point process models, including
Cox processes where the first four cumulants are not (easily) expressible in a closed
form (one exception being log-Gaussian Cox processes).

Condition (v) is also discussed in (Waagepetersen and Guan, 2009, Section 3.3
and Appendix E) from which we obtain that (v) is satisfied in e.g. the following
cases of a Cox process X.

• An inhomogeneous log-Gaussian Cox process (Møller andWaagepetersen (2007)):
Let Y be a Gaussian process with mean function m(u) = β + θ>z(u)− σ2/2,
u ∈ R2, and a stationary covariance function c(u) = σ2r(u), u ∈ R2, where
σ2 > 0 is the variance and the correlation function r decays at a rate faster
than d+ν. This includes the case of the exponential correlation function which
is considered later in Section 4.1. If X conditional on Y is a Poisson point pro-
cess with intensity function exp(Y), then X is an inhomogeneous log-Gaussian
Cox process.
• An inhomogeneous Neyman-Scott process (Møller and Waagepetersen (2007)):

Let C be a stationary Poisson point process with intensity κ > 0, and fσ a
density function on Rd satisfying

sup
w∈[−m/2,m/2]d

∫
Rd\[−m,m]d

fσ(v − w) dw = O(m−ν).

This includes the case where fσ is the density function of N (0, σ2Id), i.e. the
zero-mean isotropic d-dimensional normal distribution with standard deviation
σ > 0; we consider this case later in Section 4.1. If X conditional on C is a
Poisson point process with intensity function

exp(β + θ>z(u))
∑
c∈C

fσ(u− c)/κ, u ∈ R2, (3.15)

12



then X is an inhomogeneous Neyman-Scott process. When fσ is the density
function of N (0, σ2Id), we refer to X as an inhomogeneous Thomas process.

Note that in any of these cases of Cox processes, ρ(u) = exp(β + θ>z(u)) is indeed
an intensity function of the log-linear form (1.1).

Moreover, for Gibbs point processes, (v) may be checked using results in Heinrich
(1992) and Jensen (1993), where in particular results for pairwise interaction point
processes satisfying a hard-core type condition may apply.

Finally, if X is a Poisson point process many simplifications occur. First, for any
integer k ≥ 1, ρ(k)(u1, . . . , uk) = ρ(u1) · · · ρ(uk), and hence (iv) follows from (ii).
Second, since XΛ1 and XΛ2 are independent whenever Λ1 and Λ2 are disjoint Borel
subsets of Rd, we obtain a2,∞(m) = 0, and so (v) is satisfied. Third, Σn reduces to

Σn =

∫
Wn

f
(n)
θ (u)f

(n)
θ (u)>ρ(u) du

and so (vi) means that for all sufficiently large n, it is required that∫
Wn

f
(n)
θ (u)f

(n)
θ (u)> du ≥ I ′0 > 0.

3.3.3 Main result

We now state our main result concerning the asymptotics for the variational esti-
mator based on XWn , i.e. the estimator

θ̂n = −An(X)−1 bn(X) (3.16)

defined when An(X) = Ŝn given by

Ŝn =
∑

u∈XWn

h(n)(u) div z(u)>

is invertible, and where
bn(X) =

∑
u∈XWn

div h(n)(u).

Denote d−−→ convergence in distribution as n→∞.
Theorem 3.5. For d ≥ 2 and under the conditions (i)-(vi), the variational estimator
θ̂n defined by (3.16) satisfies the following properties.
(a) With probability one, when n is sufficiently large, Ŝn is invertible (and hence θ̂n
exists).
(b) θ̂n is a strongly consistent estimator of θ.
(c) We have

Σ−1/2
n Sn(θ̂n − θ)

d−−→ N (0, Ip) (3.17)

where Σ
−1/2
n is the inverse of Σ

1/2
n , where Σ

1/2
n is any square matrix with Σ

1/2
n (Σ

1/2
n )> =

Σn.
Theorem 3.5 is verified in Appendix A, where e.g. in the proof of Lemma A.3 it

becomes convenient that d ≥ 2. We claim that the results of Theorem 3.5 remain
valid when d = 1, but other conditions and another proof are then needed, and we
omit these technical details.
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4 Simulation study

4.1 Planar results with a modest number of points

In this section, we investigate the finite-sample properties of the variational estima-
tor (vare) for the planar case d = 2 of an inhomogeneous Poisson point process,
for an inhomogeneous log-Gaussian Cox process, and for an inhomogeneous Thomas
process. We compare vare with the maximum first-order composite likelihood es-
timator (mcle) obtained by maximizing the composite log-likelihood (discussed at
the beginning of Section 1) and which is equivalent to the Poisson log-likelihood∑

u∈XW

log ρ(u)−
∫
W

ρ(u) du. (4.1)

In contrast to the variational approach, this provides not only an estimator of θ but
also of β.

It seems fair to compare the vare and the mcle since both estimators are based
only on the parametric model for the log-linear intensity function ρ. Guan and Shen
(2010) and Guan et al. (2011) show that the mcle can be improved if a parametric
model for the second order product density ρ(2) is included when constructing a
second-order composite log-likelihood based on both ρ and ρ(2). We leave it as an
open problem how to improve our variational approach by incorporating a paramet-
ric model for ρ(2).

We consider four different models for the log-linear intensity function given by
(1.1), where p = 1, 2, 1, 3, respectively, and u = (u1, u2) ∈ R2:

• Model 1: θ = −2, z(u) = u2
1u

2
2.

• Model 2: θ = (1, 4)>, z(u) = (sin(4πu1), sin(4πu2))>.

• Model 3: θ = 2, z(u) = sin(4πu1u2).

• Model 4: θ = (−1,−1,−0.5)>, z(u) = (u1, u
2
1, u

3
1)>.

We assume that the covariate function z(u) is known to us for all u ∈ W so that we
can evaluate its first and second derivatives (Section 4.3 considers the case where
z is only known at a finite set of locations). Figure 2 shows the intensity functions
and simulated point patterns under models 1-4 for a Poisson point process within
the region W = [−1, 1]2. The figure illustrates the different types of inhomogeneity
obtained by the different choices of ρ.
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(d) Model 4

Figure 2: Intensity functions and examples of realizations of Poisson point processes
with intensity functions given by models 1-4 (defined in Section 4.1) and generated
on the region [−1, 1]2.

In addition to the Poisson point process, referred to as poisson in the results
to follow, two cases of Cox process models are considered, where we are using the
terminology and notation introduced in Section 3.3.2:

• An inhomogeneous log-Gaussian Cox processX where the underlying Gaussian
process has an exponential covariance function c(u, v) = σ2 exp(−‖u− v‖/α).
We refer then to X as lgcp1 when σ2 = 0.5 and α = 1/15, and as lgcp2
when σ2 = 1.5 and α = 1/30.

• An inhomogeneous Thomas process X where κ is the intensity of the under-
lying Poisson point process C and σ is the standard deviation of the normal
density fσ, see (3.15). We refer then to X as thomas1 when κ = 100 and
σ = 0.05, and as thomas2 when κ = 300 and σ = 0.1.

In addition two observation windows are considered: W = W1 = [−1, 1]2 and
W = W2 = [−2, 2]2. For each choice of model and observation window, we adjusted
the parameter β such that the expected number of points, denoted by µ?, is 200
for the choice W = W1 and 800 for the choice W = W2 (reflecting the fact that
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W2 is four times larger than W1), and then 1000 independent point patterns were
simulated using the spatstat package of R Baddeley and Turner (2005).

For each of such 1000 replications, we computed the mcle, using the ppm()
function of spatstat with a fixed deterministic grid of 80× 80 points to discretize
the integral in (4.1). We also computed the vare considering either the test function
h(u) = div z(u) or its modification h(u) = div z(u)ηW (u) for various values of ε > 0,
where the former case can be viewed as a limiting case of the latter one with ε = 0.
For the other choices of test functions discussed in Section 3.2.2 some preliminary
experiments showed that the present choice of test functions led to estimators with
the smallest variances.

Figure 3 illustrates some general findings for any choice of point process model
and observation window: When the smoothing parameter ε is at least 5% larger than
the side-length of the observation window, the vare is effectively unbiased, and its
variance increases as ε increases. However, when the point process is too much
aggregated on the boundary of the observation window (as e.g. in the case of (b) in
Figure 2), a too small value of ε leads to biased estimates. At the opposite, when
the point process is not too much aggregated on the boundary of the observation
window (see e.g. in the case of (a) in Figure 2), the choice ε = 0 leads to the smallest
variance.

●●
●●

●

●

●●●●●
●

●

●

●

●●

●

●

●

●
●
●
●●

●

●

●
●●●●

●

●

●●●

●

●

●

●

●

●●

●
●●

●

●

●

●
●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●
●

M
C

LE ε=
0

ε=
.1

ε=
.2

ε=
.4

ε=
.6

ε=
.8

ε=
1

ε=
1.

5

ε=
2

0.0

0.5

1.0

1.5

2.0

(a) Estimates of θ1 = 1, model 2
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(b) Estimates of θ1 = −1, model 4

Figure 3: Box plots of mcle and vare for θ1 (the first coordinate of θ) under
models 2 and 4, when using the test function h(u) = div z(u)ηW (u) for different
values of ε, with ε = 0 corresponding to h(u) = div z(u). The plots are based on
simulations from Poisson point processes on the observation window [−2, 2]2, when
the expected number of points is 800. Similar results are obtained for the other cases
of point process models and choice of observation window.

Table 1 concerns the situations with ε = 0, ε = 0.1 when W = W1 = [−1, 1]2,
and ε = 0.2 when W = W2 = [−2, 2]2 (in the latter two cases, the choice of ε > 0
corresponds to 5% of the side-length of W ). The table shows the average of the

16



p empirical mean squared errors (abbreviated as amse) of the estimates for the
coordinates in θ = (θ1, . . . , θp)

> and based on the 1000 replications. In all except a
few cases, the amse is smallest for the mcle, the exception being model 2 when
W = W2. In most cases, the amse is smaller when ε = 0 than if ε > 0, the exception
being some cases of model 3 when W = W2 and all cases of model 4 when W = W2.
For models 1-2, the amse for the vare with ε = 0 is rather close to the amse for
the mcle. For models 3-4, and in particular model 4 with W = W2, the difference
is more pronounced, and the amse for the mcle is the smallest.

W1 = [−1, 1]2 (µ? = 200) W2 = [−2, 2]2 (µ? = 800)
vare mcle vare mcle

ε = 0 ε = 0.1 ε = 0 ε = 0.2

Model 1: θ = −2, z(u) = u2
1u

2
2

poisson 0.109 0.124 0.085 0.027 0.030 0.022
lgcp1 0.152 0.181 0.143 0.035 0.040 0.032
lgcp2 0.170 0.203 0.143 0.035 0.041 0.033

thomas1 0.141 0.163 0.118 0.033 0.037 0.030
thomas2 0.118 0.147 0.095 0.026 0.027 0.025

Model 2: θ = (1, 4)>, z(u) = (sin(4πu1), sin(4πu2))>

poisson 0.104 0.126 0.089 0.028 0.033 0.033
lgcp1 0.131 0.159 0.117 0.041 0.047 0.066
lgcp2 0.180 0.213 0.144 0.055 0.062 0.067

thomas1 0.132 0.158 0.106 0.039 0.046 0.062
thomas2 0.106 0.130 0.098 0.035 0.039 0.061

Model 3: θ = 2, z(u) = sin(4πu1u2)
poisson 0.087 0.105 0.037 0.023 0.026 0.010

lgcp1 0.122 0.137 0.052 0.038 0.036 0.023
lgcp2 0.149 0.174 0.057 0.038 0.038 0.023

thomas1 0.103 0.119 0.048 0.033 0.032 0.021
thomas2 0.096 0.109 0.042 0.034 0.031 0.021

Model 4: θ = (−1,−1,−0.5)>, z(u) = (u1, u
2
1, u

3
1)>

poisson 0.420 0.410 0.216 1.819 0.027 0.010
lgcp1 0.463 0.556 0.332 1.835 0.035 0.015
lgcp2 0.471 0.588 0.327 1.841 0.035 0.016

thomas1 0.456 0.545 0.277 1.836 0.030 0.012
thomas2 0.427 0.445 0.246 1.805 0.026 0.010

Table 1: Average of the p empirical mean squared errors (amse) of the estimates for
the coordinates in θ = (θ1, . . . , θp)

> and based on independent realizations of Pois-
son, inhomogeneous log-Gaussian Cox processes, and inhomogeneous Thomas point
processes with different parameters, intensity functions, and observation windows as
described in Section 4.1.
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4.2 Results with a high number of points and varying
dimension of space

In this section, we investigate the vare and the mcle when the observed number
of points is expected to be very high, when the dimension d varies from 2 to 6, and
when the dimension p of θ scales with d. Specifically, we let p = d and consider a
Poisson point process with

log ρ(u) = β +
d∑
i=1

θi sin(4πui)/d, u = (u1, . . . , ud)
> ∈ Rd,

where θ1 = . . . = θd = 1, d = 2, . . . , 6, and β is chosen such that the expected
number of points in W = [−1, 1]d is µ? = 10000.

For d = 2, . . . , 6, we simulated 1000 independent realizations of such a Poisson
point process within W = [−1, 1]d. For each realization, when calculating the mcle
we used a systematic grid (i.e. a square, cubic, . . . grid when d = 2, 3, . . .) for the
discretization of the integral in (4.1), where the number of dummy points nD is equal
to τµ? with τ = 0.1, 0.5, 1, 2, 4, 10.

Similar to Table 1, Table 2 shows ratios of amse’s for the two types of estimators,
vare and mcle, as the dimension d (and number of parameters) varies and as the
number of the number of dummy points nD varies from 1000 to 100,000. In terms
of the amse, the vare outperforms the mcle for the smaller values of nD, and the
two estimators are only equally good at the largest value of nD in Table 2.

amsemcle/amsevare
τ = 0.1 τ = 0.5 τ = 1 τ = 2 τ = 4 τ = 10

d = 2 11.00 2.71 1.83 1.32 1.08 0.95
d = 3 11.20 2.77 1.88 1.36 1.15 0.99
d = 4 11.35 2.92 1.97 1.41 1.16 0.99
d = 5 11.67 3.00 2.00 1.43 1.21 1.03
d = 6 10.59 2.92 1.92 1.40 1.17 1.02

Table 2: Ratio of the amse of the mcle over the amse of the vare for θ =
(θ1, . . . , θd) ∈ Rd and based on simulations from Poisson point processes as described
in Section 4.2. The rows corresponds to the dimension (and number of parameters)
d, and the columns to the number of dummy points nD = 10000τ used to discretize
the integral of (4.1) when calculating the mcle.

Table 3 presents the average time in seconds to get one estimate based on the
vare and as a function of d, and also the average time in seconds to get one estimate
based on the mcle and as a function of both d and τ . The table clearly shows how
much faster the calculation of the vare than the mcle is. In particular, when
nD = 100, 000, the average computation time of the mcle is around 1400 (d = 2)
to 560 (d = 6) times slower than that of the vare.
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vare mcle
τ = 0.1 τ = 0.5 τ = 1 τ = 2 τ = 4 τ = 10

d = 2 0.004 0.200 0.347 0.546 0.984 1.929 5.744
d = 3 0.005 0.178 0.298 0.450 0.779 1.483 4.087
d = 4 0.007 0.231 0.374 0.562 0.941 1.740 4.805
d = 5 0.009 0.272 0.432 0.650 1.082 1.994 5.493
d = 6 0.011 0.312 0.494 0.739 1.242 2.367 6.203

Table 3: Average time (in seconds) for the computation of the vare and of the
mcle as considered in Table 2.

4.3 Results when z is known only on a finite set of locations

The calculation of the vare based on a realization XW = x requires the knowledge
of div z(u) (and possibly also div div z(u)) for u ∈ x. In practice, z is often only
known for a finite set of points in W , which is usually given by a systematic grid
imposed on W , and we propose then to approximate div z and div div z using the
finite-difference method. We discuss below some interesting findings when such an
approximation is used.

We focus on the planar case d = 2, and let h(u) = div z(u) for the vare. For the
two choices of observation windows, W = W1 = [−1, 1]2 or W = W2 = [−2, 2]2, we
simulated 1000 realizations of a Poisson point process with log ρ(u) = β+u1 +u2 for
u = (u1, u2) ∈ R2 (i.e. model 2 in Section 4.1 with θ1 = θ2 = 1), where β is chosen
such that the expected number of points is µ? = 200 if W = W1 and µ? = 800
if W = W2. For each replication, we calculated four types of estimators, namely
vare and mcle which correspond to the situation in Table 1 where z is assumed
to be known on W , and two ‘local’ versions vare(loc) and mcle(loc) where only
knowledge about z on a grid is used. In detail:

• Assuming the full information about z onW , vare and mcle were calculated,
where for the mcle the integral in (4.1) is discretized over a quadratic grid G
of n2

D points in W , with nD = 20, 40, 80 if W = W1, and nD = 40, 80, 160 if
W = W2.

• For each simulated point u of a replication, the 3× 3 subgrid whose midpoint
is closest to u was used for approximating div z(u) and div div z(u) by the
finite-difference method. Thereby a subgrid G0 ⊆ G was obtained as illus-
trated in Figure 4. Using only the knowledge about z on G0, vare(loc) as an
approximation of vare was obtained. Furthermore, mcle(loc) was calculated
by discretizing the integral in (4.1) over the grid points in G0.
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W = [−1, 1]2 (µ? = 200) W = [−2, 2]2 (µ? = 800)
20× 20 40× 40 80× 80 40× 40 80× 80 160× 160

vare − 0.023 − − 0.006 −
vare(loc) 0.072 0.029 0.025 0.035 0.008 0.006

mcle 0.014 0.014 0.013 0.004 0.004 0.003
mcle(loc) 0.014 0.166 0.628 0.004 0.164 0.623

Table 4: amse for the four types of estimators vare, vare(loc), mcle, and
mcle(loc) obtained using different grids as described in Section 4.3. The vare is
assuming that the spatial function z is known and is used here as a reference; it does
not depend on the refinement of the grid. The results are based on 1000 independent
realizations of a planar Poisson point process simulated on the observation window
W = [−1, 1]2 or W = [−2, 2]2.
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(b) Grid 40× 40

Figure 4: The crosses represent a realization of the Poisson point process under the
model 2 and within the observation window [−1, 1]2. The empty circles represent the
grid points where the spatial function z is sampled and used to compute vare(loc)
and mcle(loc). The grid points used to compute the mcle correspond to the empty
and filled circles.

Table 4 shows that in terms of the amse, the vare(loc) is effectively as good
as the vare if the grid is sufficiently fine, cf. the results in the case of the 80 × 80
grid for W1 and the 160 × 160 grid for W2. As expected the mcle performs better
than the other estimators, in particular as the grid becomes finer, except for the
coarsest grids (the 20× 20 grid for W1 and the 40× 40 grid for W2) where the amse
is equal for the mcle and the mcle(loc). As the grid gets finer, the amse for the
mcle(loc) increases and becomes much larger than for any of the other estimators—
only for the coarsest grids, the mcle(loc) and the mcle perform equally good. Thus
if the covariates are observed only in a small neighborhood of the location points,
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it becomes advantageous to use the vare as compared to the mcle. This feature
could be of relevance in practice if the covariates are only determined at locations
close to the points of XW .
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A Proofs

This appendix verifies Theorem 3.5 and some accompanying lemmas assuming that
d ≥ 2 and conditions (i)-(vi) in Section 3.3.1 are satisfied.

To simplify the notation, when considering a mean value which possibly depends
on (β, θ), we suppress this and simply write E[· · · ].

We start by showing that we can replace

1. the domain Wn by a more convenient domain W ?
n satisfying |Wn| ∼ |W ?

n | as
n→∞ (meaning that |Wn|/|W ?

n | → 1 as n→∞);

2. the function h(n) by a function h(n)
ε with compact support onW ?

n , where ε = εn
depends on n and should be distinct from the ε used in (3.8).

This will later allow us to apply Corollary 3.3.
Let Ci = i+(−1/2, 1/2]d be the unit box centered at i ∈ Zd. Define In = {i ∈ Zd :

Ci ⊂ Wn}, and let ∂In = {i ∈ Zd \ In : Ci ∩Wn 6= ∅} be the nearest neighbourhood
of In on the integer lattice Zd. Set W∂In = ∪i∈∂InCi and W ?

n = ∪i∈InCi.

Lemma A.1. For any n = 1, 2, . . ., we have W ?
n ⊆ Wn ⊆ W ?

n ∪W∂In. As n → ∞,
then |Wn| = |A|nd ∼ |W ?

n | and |Wn \W ?
n | = O(nd−1). Moreover,

∑
n≥1 |In|−1 <∞.

Proof. The first statement is clearly true. Thus |W ?
n | ≤ |Wn| ≤ |W ?

n |+ |∂In|.
By (i), Wn = nA is convex, so |∂In| ≤ Kdδ(A)d−1nd−1, where δ(A) denotes the

diameter of A and Kd > 0 is a constant. Consequently,

1 ≥ |W
?
n |

|Wn|
≥ 1− |∂In|

|Wn|
≥ 1− δ(A)d−1

n

leading to |Wn| ∼ |W ?
n | as n→∞. Since |Wn\W ?

n |/|Wn| ≤ Kdδ(A)d−1/n = O(1/n),
we obtain |Wn \W ?

n | = O(nd−1), whereby the second statement is verified.
The last statement follows from that |In| = |W ?

n | ∼ |A|nd and d ≥ 2.
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Now, let ε = εn = nα for some given α ∈ [0, 1). Define h(n)
ε as the regularized

function of h(n) as described in Section 3.2 and given by

h(n)
ε (u) = h(n)(u) ηW ?

n
(u) (A.1)

where ηW ?
n
is defined by (3.8) (when W is replaced by W ?

n and the ε in (3.8) is
replaced by the present ε = εn). By Lemma 3.4 and (i)-(ii), we have that h(n)

ε

respective div h
(n)
ε agrees with h(n) respective div h(n) on W ?

n	2ε, the support of h(n)
ε

is included in the bounded set W ?
n , and there exists K <∞ such that

sup
n≥1
‖h(n)

ε ‖∞ ≤ K and sup
n≥1
‖div h(n)

ε − div h(n)‖∞ ≤ K. (A.2)

The following lemma concerns the behavior of variance functionals computed on
Wn or W ?

n .

Lemma A.2. Let (ψ(n))n≥1 be a sequence of functions in C0
d,1 such that

sup
n≥1
‖ψ(n)‖∞ ≤ C (A.3)

for some constant C <∞, then for W̃n = Wn,W
?
n , the variance

VW̃n
= Var

 ∑
u∈X

W̃n

ψ(n)(u)


is finite and is given by

VW̃n
=

∫
W̃n

ψ(n)(u)2ρ(u) du+

∫
W̃n

∫
W̃n

ψ(n)(u)ψ(n)(v)Q2(u, v) du dv = O(nd). (A.4)

Proof. The finiteness of the variance follows from (iv), and the first identity in (A.4)
is immediately derived from (2.2)-(2.3).

For the second identity, we consider first W̃n = W ?
n . Define Y (n)

i =
∑

u∈Ci ψ
(n)(u)

for i ∈ In. For δ ≥ 1 given in (iv), it is clear that E(|Y (n)
i |2+δ) is bounded by a linear

combination of

s
(n)
k =

∫
Ci

· · ·
∫
Ci

|ψ(n)(u1) · · ·ψ(n)(uk)|ρ(k)(u1, . . . , uk) du1 . . . duk, k = 1, . . . , 2 + δ.

Using (A.3) and (iv), we obtain

sup
n≥1

s
(n)
k ≤ Ck sup

i∈Zd

∫
Ci

· · ·
∫
Ci

ρ(k)(u1, . . . , uk) du1 . . . duk ≤ CkK ′ <∞.

Therefore,
MY := sup

n≥1
sup
i∈In

E
(
|Y (n)
i |2+δ

)
<∞.

Further, we have the following bound for the covariance in terms of the mixing
coefficients of X (see Doukhan (1994) or (Guyon, 1991, remark p.110)),

|Cov(Y
(n)
i , Y

(n)
j )| ≤ 8M2

Y α1,1(|j − i|)
δ

2+δ .
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Furthermore, since for any m ≥ 1, α1,1(m) ≤ α2,∞(m), and since |W ?
n | = |In|, we

obtain

|W ?
n |−1VW ?

n
= |In|−1

∑
i,j∈In

Cov(Y
(n)
i , Y

(n)
j )

≤ 8M2
Y |In|−1

∑
i,j∈In

α2,∞(|j − i|)
δ

2+δ

≤ 8M2
Y

∑
m≥0

∣∣{j ∈ Zd : |j| = m}
∣∣α2,∞(m)

δ
2+δ

≤ cd
∑
m≥1

md−1α2,∞(m)
δ

2+δ

where cd > 0 is a constant depending only on d. Combining this with (v) leads to
|W ?

n |−1VW ?
n

= O(1).
Second, let Jn = In ∪ ∂In. Then

VWn =
∑
i,j∈Jn

Cov
(
Z

(n)
i , Z

(n)
j

)
where for i ∈ Jn, Z

(n)
i =

∑
u∈XCi∩Wn

ψ(n)(u).

Using (A.3), (iv), and similar arguments as above for the case W̃n = Wn, it is clear
that

MZ := sup
n≥1

sup
i∈Jn

E
(
|Z(n)

i |2+δ
)
<∞.

Finally, using (v) and similar arguments as above, we obtain that |Jn|−1VWn = O(1).
This completes the proof, since |Jn| ∼ |In| = O(nd).

Similar to the definitions of An(X) and bn(X) in Section 3.2, we define

A?n(X) =
∑

u∈XW?
n

h(n)
ε (u)div z(u)> and b?n(X) =

∑
u∈XW?

n

div h(n)
ε (u).

We simplify the notation by suppressing the dependence on X for the random ma-
trices An = An(X) and A?n = A?n(X), and for the random vectors bn = bn(X) and
b?n = b?n(X).

Lemma A.3. (I) For Zn = An, A
?
n, bn, b

?
n, we have Zn − EZn

a.s.−−−→ 0 as n→∞.
(II) |Wn|−1E (Anθ + bn) = O(nα−1).
(III) (An − A?n)θ + bn − b?n = oP (|Wn|1/2) = oP (nd/2).
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Proof. (I): We have

An − EAn =

( ∑
u∈XWn

h(n)(u) div z(u)>
)
−
∫
Wn

h(n)(u)div z(u)>ρ(u) du

A?n − EA?n =

( ∑
u∈XW?

n

h(n)
ε (u) div z(u)>

)
−
∫
W ?
n

h(n)
ε (u)div z(u)>ρ(u) du

bn − Ebn =

( ∑
u∈XWn

div h(n)(u)

)
−
∫
Wn

div h(n)(u)ρ(u) du

b?n − Eb?n =

( ∑
u∈XW?

n

div h(n)
ε (u)

)
−
∫
W ?
n

div h(n)
ε (u)ρ(u) du.

Let j, k ∈ {1, . . . , p}. From (ii) and (A.4) we obtain

E
(

(An − EAn)2
jk

)
= O(nd),E

(
(bn − Ebn)2

j

)
= O(nd),

E
(

(A?n − EA?n)2
jk

)
= O(nd),E

(
(b?n − Eb?n)2

j

)
= O(nd).

Hence, for Zn = An, A
?
n, bn, b

?
n, we have (setting k = 1 for Zn = bn, b

?
n)

Var
(
|Wn|−1(Zn)jk

)
= O(n−d)

which together with the Borel-Cantelli lemma and the fact that d ≥ 2 imply the
result of (I).

(II): By Lemma 3.4 and (A.1)-(A.2), we have

An − A?n =
∑

u∈XW?
n\W?

n	2ε

(h(n)(u)− h(n)
ε (u)) div z(u)> +

∑
u∈XWn\W?

n

h(n)(u) div z(u)>

(A.5)

and

bn − b?n =
∑

u∈W ?
n\W ?

n	2ε

(div h(n)(u)− div h(n)
ε (u)) +

∑
u∈Wn\W ?

n

div h(n)(u). (A.6)

We denote by T1 and T2 the two sums of the right-hand side of (A.5) and by T ′1
and T ′2 the two sums of the right-hand side of (A.6). Using (ii), (2.2), and (A.2), we
obtain ET1 = O(|W ?

n \W ?
n	2ε|), ET2 = O(|Wn \W ?

n |), ET ′1 = O(|W ?
n \W ?

n	2ε|), and
ET ′2 = O(|Wn \W ?

n |). By Lemma A.1, |Wn \W ?
n | = O(nd−1) and |W ?

n \W ?
n	2ε| =

O(nd−1+α), since α < 1. Hence

E((An − A?n)θ) = O(nd−1+α) +O(nd−1) = O(nd−1+α) (A.7)

and
E(bn − b?n) = O(nd−1+α) +O(nd−1) = O(nd−1+α). (A.8)
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Since h
(n)
ε has support included in W ?

n , Corollary 3.3 gives
E(A?nθ + b?n) = 0. Combining this with (A.7)-(A.8) gives the result of (II).

(III): From Lemmas A.1-A.2, (ii), and (A.2), we get

VarT1 = O
(
|W ?

n \W ?
n	2ε|

)
= O(nd−1+α)

and
VarT2 = O (|Wn \W ?

n |) = O(nd−1)

which leads to

Var
(
|Wn|−1/2(An − A?n)θ

)
= O

(
nd−1+α

nd

)
= O

(
nα−1

)
. (A.9)

In the same way, we derive

VarT ′1 = O
(
|W ?

n \W ?
n	2ε|

)
= O(nd−1+α)

and
VarT ′2 = O (|Wn \W ?

n |) = O(nd−1)

which leads to
Var

(
|Wn|−1/2(bn − b?n)

)
= O

(
nα−1

)
. (A.10)

Combining (A.9)-(A.10) with Chebyshev’s inequality completes the proof of (III).

Finally, we turn to the proof of (a)-(c) in Theorem 3.5.
(a): With probability one, by (I) in Lemma A.3, |Wn|−1(An−Sn) ≥ −|Wn|−1Sn/2

for all sufficiently large n, and so by (iii),

An
|Wn|

≥ Sn
2|Wn|

≥ I0

2
(A.11)

for all sufficiently large n. Thereby (a) is obtained.
(b): With probability one, for n large enough, we can write |Wn|−1An(θ̂n − θ) =

−|Wn|−1(Anθ + bn), and by (A.11), ‖(|Wn|−1An)−1‖ ≤ 2/µmin where µmin is the
smallest eigenvalue of I0. Combining this with (a) in Theorem 3.5, with probability
one, for n large enough, we obtain

‖θ̂n − θ‖ =
∥∥(|Wn|−1An

)−1|Wn|−1(Anθ + bn)
∥∥

≤ 2

µmin

∥∥|Wn|−1(Anθ + bn)
∥∥.

The right-hand side of this inequality converges almost surely to zero, cf. Lemma A.3.
Thereby (b) follows.

(c): For a function ψ : Rd → R and a bounded Borel set ∆ ⊂ Rd, define

V∆(ψ) =

∫
∆

ψ(u)ψ(u)>ρ(u) du+

∫
∆

∫
∆

ψ(u1)ψ(u2)>Q2(u1, u2) du1 du2 (A.12)
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provided the integrals exist (are finite). Observe that Σn = VWn(f
(n)
θ ) and Σ?

n =

VW ?
n
(f

(n)
θ,ε ) where

f
(n)
θ,ε (u) = h(n)

ε (u) div z(u)>θ + div h(n)
ε (u).

We decompose the proof of (c) into three steps.
Step 1. Assuming Σ?

n ≥ I0 > 0 for some positive definite matrix I0 and for all n
large enough, we prove that

Σ?
n
−1/2(A?nθ + b?n)

d−→ N (0, Ip) as n→∞. (A.13)

We have
A?nθ + b?n =

∑
i∈In

Y
(n)
i with Y

(n)
i =

∑
u∈XCi

f
(n)
θ,ε (u).

For any n ≥ 1 and any i ∈ In, Y (n)
i has zero mean, and by (iv),

sup
n≥1

sup
i∈In

E
(∥∥Y (n)

i

∥∥2+δ)
= O(1).

This combined with (v) and the assumption on Σ?
n, allows us to invoke Karáczony

(2006, Theorem 4), which is a central limit theorem for a triangular array of random
fields, which in turn is based on Guyon (1991, Theorem 3.3.1). Thereby (A.13) is
obtained.

Step 2. We prove that

|Wn|−1(Σn − Σ?
n)→ 0 as n→∞. (A.14)

Using the notation (A.12), we have

Σn − Σ?
n = VW ?

n	2ε
(ζ(n)) + VWn\W ?

n	2ε
(ζ(n)) (A.15)

where

ζ(n)(u1, u2) = f
(n)
θ (u1)f

(n)
θ (u2)> − f (n)

θ,ε (u1)f
(n)
θ,ε (u2)>, u1, u2 ∈ Rd. (A.16)

By (ii) and (A.2), every entry of ζ(n)(u1, u2) vanishes if u1, u2 ∈ W ?
n	2ε, and its

numeric value is bounded by a constant if u1, u2 ∈ Wn. Therefore we can apply
similar arguments as used in the proof of Lemma A.2 to conclude that

|Wn|−1|(Σn − Σ?
n)jk| = |Wn|−1

(
VWn\W ?

n	2ε
(ζ(n))

)
jk

= O
( |W ?

n \W ?
n	2ε|

|Wn|

)
= O(nα−1)

which leads to the verification of (A.14).
Step 3. From (vi) and (A.14) we see that with probability one, Σ?

n is invertible
for all sufficiently large n, which allows us to write

Σ−1/2
n Sn(θ̂n − θ) =− Σ−1/2

n (Anθ + bn)

=− Σ−1/2
n ((An − A?n)θ + bn − b?n) (A.17)

+
(
Σ−1/2
n − (Σ?

n)−1/2
)

(A?nθ + b?n) (A.18)

+ (Σ?
n)−1/2(A?nθ + b?n).
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From (A.13) and Slutsky’s lemma we obtain that (3.17) will be true if we manage
to prove that the two terms (A.17) and (A.18) converge towards zero in probabil-
ity as n → ∞. Let U1 and U2 denote these two terms. Let Mn = Σ?

n/|Wn|. For
n large enough, we have ‖M−1

n ‖ ≤ 2/λmin, so ‖M−1/2
n ‖ ≤ 2/

√
λmin, where λmin

is the smallest eigenvalue of I ′0 in (vi), and there exists a constant C such that
max(‖M1/2

n ‖, ‖Mn‖) ≤ C. On the first hand, we note that

‖U1‖ ≤
2√
λmin

∥∥∥∥|Wn|1/2
(
(An − A?n)θ + bn − b?n

)∥∥∥∥
which from (III) in Lemma A.3 leads to U1

P−−→ 0 as n → ∞. On the other hand,
we have

U2 =
(
Σ−1/2
n (Σ?

n)1/2 − Ip
)

(Σ?
n)−1/2(A?nθ + b?n). (A.19)

Since ‖(Σn/|Wn|)−1‖ is bounded, we derive from (A.14) that(
Σn

|Wn|

)−1(
Σn − Σ?

n

|Wn|

)
= Ip − Σ−1

n Σ?
n → 0

which also leads to Σ
−1/2
n (Σ?

n)1/2 → Ip. Combining (A.13) and (A.19) with Slutsky’s
lemma, convergence in probability to zero of U2 is deduced. The proof of Theorem 3.5
is thereby completed.
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