16.3 Complex Analysis 737

163 COMPLEX ANALYSIS

, Recall that William Rowan Hamilton had by 1837 developed the theory of complex numbers
as ordered pairs of real numbers, thus giving one answer to the question of what this

; i mysterious square root of —1 really was. But mathematicians had been using complex
numbers since the sixteenth century and even after Hamilton’s work did not generally
y conceive of them in this abstract form. It was the geometrical representation of these

numbers, first published by the Norwegian surveyor Caspar Wessel (1745-1818) in an
) : : essay in 1797, that ultimately became the basis for a new way of thinking about complex
quantities, a way that soon convinced mathematicians that they could use these numbers
without undue worry.

16.3.1 Geometrical Representation of Complex Numbers

Wessel’s aim in his On the Analytical Representation of Direction was not initially related
to complex numbers as such. He felt that certain geometrical concepts could be more
clearly understood if there was a way to represent both the length and the direction of a
: line segment in the plane by a single algebraic expression. Wessel made clear that these
E expressions had to be capable of being manipulated algebraically. In particular, he wanted
a way of algebraically expressing an arbitrary change of direction more general than the

simple use of a negative sign to indicate the opposite direction.
Wessel began by dealing with addition: “Two straight lines are added if we unite them
in such a way that the second line begins where the first one ends and then pass a straight
E line from the first to the last point of the united lines. This line is the sum of the united
- lines.”*S Thus, whatever the algebraic expression of a line segment was to be, the addition
& of two had to satisfy this obvious property drawn from Wessel’s conception of motion. In
3 other words, he conceived of line segments as representing vectors. It was multiplication,
f however, that provided Wessel with the basic answer to his question of the representation
i of direction. To derive this multiplication, he established a number of properties which he
' 1 felt were essential. First, the product of two lines in the plane had to remain in the plane.
Second, the length of the product line had to be the product of the lengths of the two factor
k lines. Finailw}}, if all directions were measured from the positive unit line, which he called
i b 1, the angle of direction of the product was to be the sum of the angles of direction of the
’ two factors. Designating by € the line of unit length perpendicular to the line 1, he easily
% showed that his desired properties implied that €2 = (—€)?> = —lorthate = \/——1 .Aline
B - of unit length making an angle § with the positive unit line could now be designated by
: 3 cos 6 + €sin 6 and, in general, a line of length A and angle @by A(cos# + esin ) = a + eb
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FIGURE 16.6

Wessel’s geometric
interpretation of complex
numbers.

FIGURE 16.7

The Gaussian complex
plane on a German stamp.

where a and b are chosen appropriately (Fig. 16.6). Thus the geometrical interpretation of :
the complex numbers arose from Wessel’s algebraic interpretation of a geometrical Jine

segment. The obvious algebraic rule for addition satisfied Wessel's requirements for that 9

operation, while the multiplication (a + eb)(c + ed) = ac — bd + e(ad + bc) satisfied his
axioms for multiplication. Wessel also easily derived from his definitions the standard rules
for division and root extraction of complex numbers.

cosO+esind

Unfortunately, Wessel’s essay remained unread in most of Europe for many years
after its publication. The same fate awaited the similar geometric interpretation of the
complex numbers put forth by the Swiss bookkeeper Jean-Robert Argand (1768-1822) in
a small book published in 1806. This interpretation gained acceptance in the mathematical
community only because Gauss used the same geometric interpretation of the complex
numbers in his proofs of the fundamental theorem of algebra and in his study of quartic
residues (Fig. 16.7). Gauss was so intrigued with the fundamental theorem—that every
polynomial p(x) with real coefficients has a real or complex root—that he published four
different proofs of it, in 1799, 1815, 1816, and 1848. Each proof used in some form or other
the geometric interpretation of complex numbers, although in the first three proofs Gauss
hid this notion by considering the real and imaginary parts of the numbers separately. Thus,
in his initial proof, Gauss in essence set p(x + iy) = u(x, y) + iv(x, y) and then noted that a
root of p would be an intersection point of the curves # = 0 and v = 0. He therefore made
a detailed study of these curves and, through the use of the intermediate value theorem,
showed that the curves must cross. It was only in his final proof in 1848 that Gauss believed
mathematicians would be comfortable enough with the geometric interpretation of complex
numbers so that he could use it explicitly. In fact, in that proof, similar to his first one, he
even permitted the coefficients of the polynomial to be complex.

16.3.2 Complex Integration

By the second decade of the century, Gauss, with his clear understanding of the meaning of
complex numbers, began to develop of the theory of complex functions. In a letter of 1811 to
his friend Friedrich Wilhelm Bessel (1784-1846), Gauss not only discussed the geometric
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interpretation of the complex numbers but also discussed the meaning of f: & (x) dx where
the variable x is complex:

We must assume that x passes through infinitely small increments (each of the form o + Bi)
from the value for which the integral is 0 to x = a + bi, and then sum all the ¢ (x)dx. In this
way the meaning is completely established, But the passage can oceur in infinitely many ways;
just as one can think of the entire domain of all real magnitudes as an infinite straight line,
so one can make the entire domain of all magnitudes, real and imaginary, meaningful as an
infinite plane, wherein each point determined by abscissa = a and ordinate = b represents the
magnitude @ + bi as it were. The continuous passage from one value of x to another a + bi
accordingly occurs along a line and is consequently possible in infinitely many ways.’

Gauss went on to assert the “very beautiful theorem™ that as long as ¢(x) is never
infinite within the region enclosed by two different curves connecting the starting and
ending points of this integral, then the value of the integral is the same along both curves.
Although he did not express himself in those terms, Gauss was considering ¢(x) as an
analytic function. In any case, he never published a proof of this result. Such a proof was
published in 1825 by Cauchy, however, so the theorem is generally called Cauchy’s integral
theorem.

Cauchy first considered the question of integration in the complex domain in a memoir
written in 1814 but not published until 1827. In this work he was mainly interested in the
evaluation of definite integrals where one or both of the limits of integration is infinite. To
perform such an evaluation, he attempted to make rigorous various procedures developed
by Euler and Laplace involving moving the paths of integration into the complex plane. In
particular, he used an idea of Euler’s to derive the Cauchy-Riemann equations. Euler, in a
paper written about 1777, asserted that the most important theorem about complex functions
was that every function Z(x + iy) that can be written as the sum M(x,y) + iN(x, y) has the
property that Z(x — iy) = M — iN. In this case it follows that if

V=/Zdz:f(M+iN)(dx+idy)=fde-«Ndy+i/Ndx+Mdy=P~HQ,
then, replacing x + iy by x — iy,
P—iQ=f(M—iN)(dx—idy))=/de~Ndy—idex+Mdy.

Therefore P = [Mdx — Ndy and Q = f Ndx + Mdy, where, as usual for Euler, the
integral signs stand for antidifferentiation. Because P is the integral of the differential
M dx — N dy it follows that

M N

ay ox
Similarly, the expression for Q shows that
oM _ oN

ax ay’

These two equations, the Cauchy-Riemann equations, ultimately became the characteristic
property of complex functions.
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In his 1821 Cours d’analyse, Cauchy dealt with complex quantities, as had Ey
by considering separately the real and imaginary parts. Thus he considered the “symbo
expressions” a + i» and multiplied them together using normal algebraic rules “as if \/—-71
was a real quantity whose square was equal to —1."*® He defined a function of a complex
variable in terms of two real functions of two real variables and showed what is meant _b_‘.y‘
the various standard transcendental functions in the complex domain. He then generalized
most of his results on convergence of series to complex numbers by using the modulug '
V/a* + b? of the quantity z = a + ib as the analogue of the absolute value of a real number.
He also defined continuity for a complex function in terms of the continuity of its twg
constituent functions.

Not until 1825, however, having discovered his new definition of a definite integral,
was Cauchy able to deal with complex functions in their own right. In his Mémoire sur leg
intégrales définies prises entre des limites imaginaires (Memoir on definite integrals taken
between imaginary limits), he explicitly defined the definite complex integral

c+id
fl)dz
a+ib

to be the “limit or one of the limits to which the sum of products of the form
[(x1 —a) + iy = B fla + ib), [(xa — x1) + i(ys™— yOIfGx1 + iy1)s... L [(e — %, 1) +
i(d — Yn—1)1f(xn—1 + iy,—1) converge when each of the two sequences a, x(, xa,.. ., X,_1, ¢
and &, y1,¥2,...,Ya—1,d consist of terms that increase or decrease from the first to the
last and approach one another indefinitely as their number increases without limit.”*
In other words, Cauchy directly generalized his definition of a real definite integral by
simply taking partitions of the two intervals [a, b] and [c, d]. Cauchy realized, however,
as had Gauss, that there were infinitely many different paths of integration beginning at \
a + ib and ending at ¢ + id. It was therefore not clear that this definition made sense. To 4
demonstrate his integral theorem, which in effect stated that the definition did make sense, 3
he began by considering a path determined by the parametric equations x = ¢(t), y = i(t),
where ¢ and ¢ are monotonic differentiable functions of ¢ in the interval [o, 8], with
d(a) = a, $(B) = ¢, Y(a) = b, and Y(B) = d. The two sequences {x;} and {y;} are then
determined by taking a single sequence e, 1,1, .., t,~1, 3 and calculating the values of
this sequence under ¢ and i, respectively. Assuming that the lengths of the various subin-
tervals determined by the #; are small, Cauchy noted that x; — x;_; = (z; — t;-1)'(;)
and y; — yj—1 = (t; — t;-1)¢/'(2). It follows that the definite integral is the limit of sums
of terms of the form (¢; — t;- D[/ (t;) + ib'(t))1f[P(2;) + ih(¢;)] and therefore can be
rewritten in the form

ctid B
F@dz= [ 180 + WOIF160) + o) e,

atib

or, setting x' = ¢/(), y' = ¢'(¢), as

B
/ !+ N + iy)dt. 1

“Now suppose that the function f(x + iy) remains bounded and continuous as long as
x stays between the limits  and ¢, and y between the limits # and 4. In this special case one




s
5
i
%
FIGURE 16.8
- Two integration paths for
f@) = 55 from —2t0 2.
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easily proves that the value of the integral . . . is independent of the nature of the functions
x = @), y = ¥(0)° Cauchy’s proof of this statement, which requires the existence
and continuity of f’(z)—and Cauchy had not explicitly defined what was meant by the
derivative of a complex function—was based on the calculus of variations. Cauchy varied
the curve infinitesimally by replacing the functions ¢ and Y by ¢ + ew,  + ev, where s
“an infinitesimal of the first order,” and u, v both vanish at f = o and ¢t = f3, and expanded
the corresponding change in the integral in a power series in €. Using an integration by
parts, Cauchy demonstrated that the coefficient of € in this series is 0 and therefore that
an infinitesimal change in the path of integration produces an infinitesimal change in the
integral of the order of €2. Cauchy concluded that a finite change in the path, that is, a
change from one path of integration to a second such path, can produce but an infinitesimal
change in the integral, that is, no change at all. The integral theorem was therefore proved
according to Cauchy’s, if not modern, standards,

Cauchy next considered the case where J becomes infinite at some value zi=r+is
intherectanglea < x < ¢, b=y < d. The integrals along two paths that together enclose
z1 are no longer the same. Defining R to be lim,—.,, (z — z1) f(z), Cauchy calculated the
difference in the integrals along two paths infinitely close to each other and to the point z;
to be 2mRi. For example, if f(z) = 1 /(1 + 7%), then J becomes infinite at z = i. Because

2 2P
=i l+22 iz —Dz+i) 2
it follows that the difference in the values of the integrals of this function over the two paths
Ly and L, from —2 to 2 in Fig. 16.8 is
1

Yy

In a paper written in 1826, Cauchy generalized his integral theorem somewhat. Given
avalue z; for which f(z) is infinite, Cauchy noted that the expansion of f(z; + €) in powers
of € will begin with negative powers. The coefficient of 1/€ in this expansion is what
Cauchy terms the residue of f(z) at z;, denoted by R(f,z1). Thus, if (z — 2,)f(2) = g(2) is
bounded near z;, then

8z te 1
€ €

fla+e= 8(z1) + g'(zy + Be)
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for 6 a number between 0 and 1. It follows that the residue of f(z) at z; is 8(z1), the g
value denoted earlier by R.

Cauchy noted that his theory of residues had applications to such problems as
splitting of rational fractions, the determination of the values of certain definite integrals,
and the solution of certain types of equations. For example, he demonstrated that ;

00
cosx _
2dx=1re 1
b, L T

by extending the interval of integration to a closed path in the complex plane containing
the value i for which the integrand becomes infinite. The central idea in this calculation is
that the integral over the path consisting of a half circle and an interval on the real line can
be calculated by means of residues, but as the radius of the half circle (and the length gf
the interval) get larger, the part of the integral taken over the half circle approaches 0,

16.3.3 Complex Functions and Line Integrals

There are many other standard results in complex function theory for which Cauchy was at
least partially responsible, most being applications.of his integral theorem or his calculus of
residues. But the discussion of his work will be concluded with a brief analysis of a paper
of 1846 which, although it did not mention complex functions at all, led to a new way of
proving the integral theorem and also provided the beginning of some fundamental ideas in
both vector analysis and topology. This short paper, Sur les intégrales qui s’étendent a tous
les points d'une courbe fermée (On the integrals which extend to all the points of a closed
curve) contained the bare statement of several theorems, without proofs. Cauchy promised
to provide the proofs later, but apparently did not do so. The theorems deal with a function
k of several variables x, y,z,... that is to be integrated along the boundary curve I' of a
surface § lying in a space of an unspecified number of dimensions. The most important
results are collected in the following

THEOREM Suppose

dx dy dz
B P LT A e
ds Yds st

where Xdx + Y dy + Zdz + - -+ is an exact differential. (To say that this differential is
exact is to say that 0X/dy = 9Y/dx, 0X/dz = 9Z/dx, 9Y/dz = 8Z/éy,....) Suppose that
the function k is finite and continuous everywhere on S except at finitely many points
PP, P", .. in its interior. If a, B, v,... are closed curves in § surrounding these points

respectively, then
' ]kds=fkds+/kds+/kds+---.
T o B Y

In particular, if there are no such singular points, then

/kdszo.
I

k=X
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In the two-dimensional case, where S is a region of the Plane and k is an arbitrary

differential, then
' X gy
kds = + — — — | dxdy.
/r * /fs(ay ax) —

If k is an exact differential, then o% /3y = 3Y/ox, so the right side, and therefore the left,
vanish.

e
R A e b B T

T T R

The Cauchy integral theorem follows from the last statement. A complex function
f@) = f(x + iy) can be expressed as f(x,y) = u(x, ¥) + iv(x,y) and, therefore, since
dz = dx + i dy,

:'-: /f(z)dz= /(udx—vdy)+i/(vdx+udy).

The Cauchy-Riemann equations then imply that both integrands are exact differentials and
therefore that the integral theorem holds.

More interesting than the imtegral theorem, however, is the appearance in Cauchy’s
paper both of the concept of a line integral in n-dimensional space (and of the matter-of-fact
occurrence of a space of dimension higher than three) and of the statement (in the next to
the last sentence) of the theorem today generally known as Green’s theorem, In fact, results
somewhat akin to that theorem appear in an 1828 paper of George Green (1793-1841)
dealing with electricity and magnetism, but Cauchy’s version is the first printed statement
of the result so named in today’s textbooks. Finally, the expression of the line integral around
the boundary of the surface as a sum of line integrals around isolated singular points, whose

proof of his 1846 theorem, one can only speculate as to how far he carried all of these new
concepts. It was Riemann, however, who restated Cauchy’s results a few years later, with
full proofs, and extended the result on periods far beyond Cauchy’s conception.

16.3.4 Riemann and Complex Functions

complex variable), began with a discussion of an important distinction between real and
complex functions. Although the definition of function, “to every one of [the] values [of
_ a variable quantity z] there corresponds a single value of the indeterminate quantity w,”5!
; can be applied both to the rea] and the complex case, Riemann realized that in the latter
! case, where z = x + jyandw = y + v, the limit of the ratio dw /dz defining the derivative
could well depend on how dz approaches 0. Because for functions defined algebraically
one could calculate the derivative formally and not have this problem, Riemann decided to
’ make this existence of the derivative the basis for the concept of a complex function: “The
complex variable w is called a function of another complex variable z when its variation is
such that the value of the derivative dw /dz is independent of the value of dz* Cauchy, of
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Biography

GEORG BERNHARD RIEMANN (1826-1866)

Riemann needed his father's permission to switch from
the study of theology and philology to the study of math-
ematics in 1846 when he enrolled at the University of
Gottingen. He had started life in the village of Breselenz,
about 60 miles southeast of Hamburg, and now he would

1851. For two years he researched and prepared his lee-
tures for his Habilitation to qualify to teach at Gottinge

In 1857 he was appointed as an associate professor ang
two years later, on the death of Dirichlet, who had in tt
meantime come to Gottingen, as full professor. His ma@

ematical work was brilliant, but tuberculosis cut his wor]
short when it claimed his life in the summer of 1866 dum&
one of his several trips to Italy to find a cure.

journey to Berlin because mathematics education was not
particularly strong at Géttingen. In Berlin he met Dirichlet,
who became his mentor. He returned to Gottingen a few
years later to study with Gauss and received his Ph.D. in

course, had essentially used this notion in his entire discussion of complex functions but
had only made it explicit toward the end of his career. =

As a first application of this definition, Riemann showed that such a complex function b
considered as a mapping from the z-plane to the w-plane preserves angles. For suppose p’
and p” are infinitely close to the origin P in the z-plane, with their images ¢, ¢” infinitely
close to the image Q of P. Writing the infinitesimal distance from p’ to P both as dx’ + i dy’
and as €’¢’®’, and that from ¢’ to Q as both du’ + i dv’ and 1'e™*’, with similar notations for
the other infinitesimal distances, Riemann noted that his condition on the function implies
that

du' +idv’  du” +idv"
dx’ +idy’ dx'+idy"

or that

dw' +idv ' g o dxiHidy € i gn
=< = gy = o

du’ +idv'

It follows that n'/m"” = €'/€” and that ' — &" = ¢’ — 7, or, in other words, that the
infinitesimal triangles p’Pp” and ¢'Qq" are similar. Such an angle-preserving mapping is
called a conformal mapping. In some sense, both Euler and Gauss knew that analytic
complex functions had this property, but it was Riemann who gave this argument and who,
in addition, was able to demonstrate the Riemann mapping theorem, that any two simply
connected regions in the complex plane can be mapped conformally on each other by means
of a suitably chosen complex function. ' 3
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Riemann next derived the Cauchy-Riemann equations by determining what the exis-
tence of the derivative means in terms of the two functions u and v
du au IiqY av
—dx+ —dy+i| Zgr+ d
aw _du+tidv g o l(d * dy y)

- 34 x
T T e————t . Ry
dz dx +idy dx +idy

dx +idy

If this value is independent of how dz approaches 0, then setting dx and dy in turn equal to
zero and equating the real and imaginary parts of the two resulting expressions shows that
i ou oy v ou

— = — and = e
2 ax  dy dx ay

; Conversely, if those Cauchy-Riemann equations are satisfied, then the desired derivative is
i easily calculated to be du/gx + dv/dx, a value independent of dz. Riemann made these
¥ equations the center of his theory of complex functions, along with the second set of partial
differential equations easily derived from them:

Pu  9u v g%y

—+—==0 d — +— =0.

ax?  gy? an ax2 - gy?

As an example, Riemann gave adetailed proof of the Cauchy integral theorem following

4 the outline provided by Cauchy in 1846. The important idea was Green’s theorem, which
i Riemann stated in the following form:

THEOREM Let X and Y be two Sunctions of x and Y continuous in a finite region T with
infinitesimal area element designated by dT. Then

] X gy
: —+ — | T = - +
4 ﬁ ( 2 ay) T [S(Xcosf Y cos ) ds

where the latter integral is taken over the boundary curve § ofT, & n designating the angles
the inward pointing normal line to the curve makes with the x- and Y-axis respectively,

Riemann proved this by using the fundamental theorem of calculus to integrate dX /ox
along lines parallel to the X-axis, getting values of X where the lines cross the boundary of
the region. Because dy = cos & ds at each of those points, he could integrate with respect
to y to get

{ ) f{/%m} dy = ~fXdy= ~/Xcos§ds.

The other half of the theorem is proved similarly. Riemann then noted that

e dx _ dy

L —= = Zcos and - =
§ = 3 ds K ds
where the sign depends on whether one gets from the tangent line to the inward normal
line by traveling counterclockwise or clockwise. It follows that Green’s theorem can be
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rewritten as

X gy dy dx
i O - oA
_/T(r?x &y)dT ,/S‘( ds ds) @,

from which the Cauchy integral theorem follows easily.

Much of Riemann’s dissertation involved the introduction of an entirely new concept
in the study of complex functions, the idea of a Riemann surface. In the case of functions
of a real variable, it is possible to picture the function by a curve in two-dimensional space,
Such a representation is no longer possible for complex functions, because the graph would
need to be in a space of four real dimensions. An alternative way of picturing complex
functions, then, is to trace the independent variable z along a curve in one plane and consider
the curve generated by the dependent variable w in another plane. Riemann realized from
the fact that a complex function always had a power series representation that “a function
of x + iy defined in a region of the (x, y) plane can be continued analytically in only one ;
way.” It follows that once one knows the values in a certain region, one can continue the 3
function and even return to the same z value by, say, a continuous curve. There are then two
possibilities. “Depending on the nature of the function to be continued, either this function
will always assume the same value for the same value of [z], no matter how it is continued,
or it will not.”> In the first case, Riemann called the function single-valued, while in the
second it is multiple-valued. As a simple example of the latter, one can take w = 71/2, To
study such functions effectively, it was not possible simply to use two planes as indicated
above, for one would not know which value the function had for a given point on the first
plane. Thus Riemann came up with a new idea, to use a multiple plane, a covering of the
z-plane by as many sheets as the function has values. These sheets are attached along a line,
say the negative real axis, in such a way that whenever one moves in a curve across that
line one changes from one sheet to another. In this way the multiple-valued function has
only one value defined at each point of this Riemann surface. Since it may happen that after
several circuits (two in the example above) one returns to a former value, the top sheet of this
covering must be attached to the bottom one. It follows that it is not in general possible to
construct a physical model of a Riemann surface in three-dimensional space. Nevertheless,
the study of Riemann surfaces, initiated by Riemann to deal with multiple-valued complex
functions, soon led Riemann and others into the realm of what is today called topology.
The connection of topology with integration along curves and surfaces, barely touched by
Cauchy in 1846, was explored in great detail in the second half of the nineteenth century
and the early years of the twentieth.




