Mapping properties of some complex functions
We illustrate the mapping properties by mapping a rectangular grid consisting of vertical and horizontal lines. No explanation concerning the Maple programming is given.
> | mymap:=proc(f,z,xmin,xmax,ymin,ymax,N)
local t,hx,hy,L,k; hx:=(xmax-xmin)/N; hy:=(ymax-ymin)/N; L:=[]; for k from 0 to N do L:=[op(L),plot([Re(f(xmin+hx*k+I*t)),Im(f(xmin+k*hx+I*t)),t=ymin..ymax],scaling=constrained,color=red)]; L:=[op(L),plot([Re(f(I*(ymin+hy*k)+t)),Im(f(I*(ymin+hy*k)+t)),t=xmin..xmax],scaling=constrained,color=green)]; end do: L; end proc: |
> |
> | with(plots): |
> | myid:=z->z: |
> | A:=Array(1..2): |
The first function is the square of a complex number:
> | f:=z->z^2; |
![]() |
> | A[1]:=display(mymap(myid,z,-2,2,0,2,16)): |
> | A[2]:=display(mymap(f,z,-2,2,0,2,16)): |
> | display(A); |
|
The next example is for the cosine.
> | gg:=z->cos(z); |
![]() |
> | B:=Array(1..2): |
> | B[2]:=display(mymap(gg,z,-Pi,Pi,0,2,16)): |
> | B[1]:=display(mymap(myid,z,-Pi,Pi,0,2,16)): |
> | display(B); |
|
The exponential function in two different domains.
> | h:=z->exp(z); |
![]() |
> | C:=Array(1..2): |
> | C[1]:=display(mymap(myid,z,-4,4,0,Pi,16)): |
> | C[2]:=display(mymap(h,z,-4,4,0,Pi,16)): |
> | display(C); |
|
> | C[1]:=display(mymap(myid,z,-4,4,0,2*Pi,16)): |
> | C[2]:=display(mymap(h,z,-4,4,0,2*Pi,16)): |
> | display(C); |
|
The natural logarithm function
> | hh:=z->evalc(ln(z)); |
![]() |
> | G:=Array(1..2): |
> | G[1]:=display(mymap(myid,z,0.1,4,0.1,4,16)): |
> | G[2]:=display(mymap(hh,z,0.1,4,0.1,4,16)): |
> | display(G); |
|
A polynomial of degree 3
> | f1:=z->z^3-3*z; |
![]() |
> | H:=Array(1..2): |
> | H[1]:=display(mymap(myid,z,0,2,0,2,16)): |
> | H[2]:=display(mymap(f1,z,0,2,0,2,16)): |
> | display(H); |
|
The inverse, with two different domains.
> | f2:=z->1/z; |
![]() |
> | K:=Array(1..2): |
> | K[1]:=display(mymap(myid,z,0.25,4,0.25,4,16)): |
> | K[2]:=display(mymap(f2,z,0.25,4,0.25,4,16)): |
> | display(K); |
|
> | L:=Array(1..2): |
> | L[1]:=display(mymap(myid,z,-4 ,4,-4,4,17)): |
> | L[2]:=display(mymap(f2,z,-4,4,-4,4,17)): |
> | display(L); |
|
> |