An Introduction to Pseudospectra and their Applications

Arne Jensen

Department of Mathematical Sciences Aalborg University

Aalborg, September 17, 2009

Definition of Pseudospectra

Definition

Let $A \in \mathcal{B}(\mathcal{H})$ and $\varepsilon > 0$. The ε -pseudospectrum of A is given by

$$\sigma_{\varepsilon}(A) = \sigma(A) \cup \{z \in \mathbb{C} \setminus \sigma(A) \mid ||(A - zI)^{-1}|| > \varepsilon^{-1}\}.$$

Definition of Pseudospectra

Definition

Let $A \in \mathcal{B}(\mathcal{H})$ and $\varepsilon > 0$. The ε -pseudospectrum of A is given by

$$\sigma_{\varepsilon}(A) = \sigma(A) \cup \{z \in \mathbb{C} \setminus \sigma(A) \mid ||(A - zI)^{-1}|| > \varepsilon^{-1}\}.$$

Theorem

Let $A \in \mathcal{B}(\mathcal{H})$ and $\varepsilon > 0$. Then the following three statements are equivalent.

- (i) $z \in \sigma_{\varepsilon}(A)$.
- (ii) There exists $B \in \mathcal{B}(\mathcal{H})$ with $||B|| < \varepsilon$ such that $z \in \sigma(A + B)$.
- (iii) $z \in \sigma(A)$ or there exists $v \in \mathcal{H}$ with ||v|| = 1 such that $||(A zI)v|| < \varepsilon$.

Result on Pseudospectra, Finite Dimension

Let T be an $n \times n$ matrix. The square roots of the eigenvalues of T^*T are called the singular values of T. The smallest singular value is denoted $s_{\min}(T)$.

Theorem

Assume that \mathcal{H} is finite dimensional and $T \in \mathcal{B}(\mathcal{H})$. Let $\varepsilon > 0$. Then $z \in \sigma_{\varepsilon}(T)$ if and only if $s_{\min}(T - zI) < \varepsilon$.

Result on Pseudospectra, Finite Dimension

Let T be an $n \times n$ matrix. The square roots of the eigenvalues of T^*T are called the singular values of T. The smallest singular value is denoted $s_{\min}(T)$.

Theorem

Assume that \mathcal{H} is finite dimensional and $T \in \mathcal{B}(\mathcal{H})$. Let $\varepsilon > 0$. Then $z \in \sigma_{\varepsilon}(T)$ if and only if $s_{\min}(T - zI) < \varepsilon$.

Since the singular values of a matrix can be computed numerically, this result provides a method for plotting the pseudospectra of a given matrix. One chooses a finite grid of points in the complex plane, and evaluates $s_{\min}(T-zI)$ at each point. Plotting level curves for these points provides a picture of the pseudospectra of T.

Properties of $\sigma_{\varepsilon}(A)$

Define $D_{\delta} = \{z \in \mathbb{C} \mid |z| < \delta\}.$

Proposition

Let $A \in \mathcal{B}(\mathcal{H})$. Each $\sigma_{\varepsilon}(A)$ is a bounded open subset of \mathbb{C} . We have $\sigma_{\varepsilon_1}(A) \subset \sigma_{\varepsilon_2}(A)$ for $0 < \varepsilon_1 < \varepsilon_2$. Furthermore, $\cap_{\varepsilon > 0} \sigma_{\varepsilon}(A) = \sigma(A)$. For $\delta > 0$ we have $D_{\delta} + \sigma_{\varepsilon}(A) \subseteq \sigma_{\varepsilon + \delta}(A)$. We have $\sigma_{\varepsilon}(A^*) = \overline{\sigma_{\varepsilon}(A)}$.

Properties of $\sigma_{\varepsilon}(A)$

Define $D_{\delta} = \{z \in \mathbb{C} \mid |z| < \delta\}.$

Proposition

Let $A \in \mathcal{B}(\mathcal{H})$. Each $\sigma_{\varepsilon}(A)$ is a bounded open subset of \mathbb{C} . We have $\sigma_{\varepsilon_1}(A) \subset \sigma_{\varepsilon_2}(A)$ for $0 < \varepsilon_1 < \varepsilon_2$. Furthermore, $\cap_{\varepsilon > 0} \sigma_{\varepsilon}(A) = \sigma(A)$. For $\delta > 0$ we have $D_{\delta} + \sigma_{\varepsilon}(A) \subseteq \sigma_{\varepsilon + \delta}(A)$. We have $\sigma_{\varepsilon}(A^*) = \overline{\sigma_{\varepsilon}(A)}$.

Proposition

Let $A \in \mathcal{B}(\mathcal{H})$ and assume that $V \in \mathcal{B}(\mathcal{H})$ is invertible. Let $\kappa = \operatorname{cond}(V) (= \|V\| \cdot \|V^{-1}\|)$. Let $B = VAV^{-1}$. Then

$$\sigma(B)=\sigma(A),$$

and for $\varepsilon > 0$ we have

$$\sigma_{\varepsilon/\kappa}(A) \subseteq \sigma_{\varepsilon}(B) \subseteq \sigma_{\kappa\varepsilon}(A)$$
.

Properties of $\sigma_{\varepsilon}(A)$

Proposition

Let $A \in \mathcal{B}(\mathcal{H})$ and $\varepsilon > 0$. Then

$$\{z \mid \operatorname{dist}(z, \sigma(A)) < \varepsilon\} \subseteq \sigma_{\varepsilon}(A).$$

If A is normal, then

$$\sigma_{\varepsilon}(A) = \{z \mid \operatorname{dist}(z, \sigma(A)) < \varepsilon\}.$$

Example

A Toeplitz matrix

$$A = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 & 0 \\ 1/4 & 0 & 1 & \cdots & 0 & 0 \\ 0 & 1/4 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & 1 \\ 0 & 0 & 0 & \cdots & 1/4 & 0 \end{bmatrix}$$

We have $A = SDS^{-1}$ with D diagonal.

Example

Example

A+E, E random matrix with $||E||<10^{-10}$. Plot of spectra: blue. Spectrum of A: red.

