Matematisk modellering og numeriske metoder

Hints to the exercises related to Lecture 8

Morten Grud Rasmussen

October 9, 2013

Section 11.1

Exercise 1

- Just use the definition.
- It can be helpful to sketch the functions.

Exercise 11

- The main idea here is to use partial integration.
- This is something you can only do for yourselves but it is nevertheless important.

Exercise 13

- Look at the sketch or graph from Exercise 9. It should be clear that the integralsfrom $-\pi$ to 0 and from 0 to π in the calculation of a_{0} cancels, leaving $a_{0}=0$.
- Split the integral in the formulas for a_{n} and b_{n} in two; from $-\pi$ to 0 and from 0 to π.
- This is a give-away: an anti-derivative of $x \cos (n x)$ is $\frac{n x \sin (n x)+\cos (n x)}{n^{2}}$.
- The same for $x \sin (n x): \frac{\sin (n x)-n x \cos (n x)}{n^{2}}$
- Remember what sin and cos evaluate to at $n \pi$!
- If you do it right, your b_{n} 's should be $2,0, \frac{2}{3}, 0, \frac{2}{5}$ etc. for $n=1,2,3,4,5$ etc. and your a_{n} 's should be $\frac{4}{\pi}, 0, \frac{4}{9 \pi}, 0, \frac{4}{25 \pi}$ etc. for $n=1,2,3,4,5$ etc.

Exercise 17

- This exercise is much easier after Lecture 9!
- The function is given by

$$
f(x)=\left\{\begin{array}{ll}
\pi+x & \text { for }-\pi<x<0 \\
\pi-x & \text { for } 0<x<\pi
\end{array} .\right.
$$

- The b_{n} 's are all 0 .
- All calculations are similar to calculations found in the hints for Exercise 13.

Exercise 21

- Exactly as above, this is much easier after Lecture 9.
- The function is given by

$$
f(x)= \begin{cases}-\pi-x & \text { for }-\pi<x<0 \\ \pi-x & \text { for } 0<x<\pi\end{cases}
$$

- This time, the a_{n} 's are all 0 .
- Again, all calculations have basically been done when solving Exercise 13.
- The b_{n} 's are given by $b_{n}=\frac{2}{n}$.

Exercise 23

- Since all a_{n} 's are 0 , and all discontinuity points of the function are at x^{\prime} s where $\sin (n x)$ is 0 , the series can be manually evaluated at the discontinuity points!
- Find the value at these points (actually, there is only one...).
- Find the left-hand and right-hand limits at the discontinuity point.

