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1 Fourier series

[Section 11.1 in the book, p. 474]

1.1 Periodic functions
Definition 1.1 (Periodic functions). A periodic function f is a function on R with a period p, i.e. a
number p > 0 such that

f(x) = f(x+ p)

for all x in the domain of f , which should constitute almost all real numbers.

If f(x) = f(x + p) then we also have f(x) = f(x + p) = f((x + p) + p) = f(x + 2p) and, by
induction, we deduce that

f(x) = f(x+ np) for all n ∈ Z, (1)

where Z is the set of integers. In particular, if f has the period p, then it is also periodic with
period np for all n ∈ N. The smallest positive number p such that p is a period of f is called the
fundamental period of f . We note that if two functions f and g are both periodic with period p, then
also af + bg is periodic with period p, for all choices of a and b. That is, the set of functions with
period p is closed under linear combinations (and hence is a vector space).

The last statement in the definition of periodic functions, namely that the domain of f should
constitute almost all real numbers, is in fact (in spite of the loosely sounding formulation) some-
thing which has a very specific mathematical meaning, which requires a lot of theory to introduce.
For our purposes, it is sufficient to note that if the exceptional set, i.e. the set of real numbers which
are not in the domain of f , is countable, then the domain constitue almost all reals. In particular,
if f has period p, then if f is undefined in a finite (or even countable) number of points in the
interval [0, p], then it is defined almost everywhere (i.e. for almost all x ∈ R).
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We already know some periodic functions, in particular cos, sin, tan, and cot. Here tan and
cot are examples of functions defined almost everywhere but not everywhere: tan is undefined in
nπ + π

2
, n ∈ Z, and cot is undefined in nπ, n ∈ Z. They are all functions of period 2π (though two

of them have a smaller fundamental period – which? And what are their fundamental periods?).
Note, however, that they can be considered building blocks of functions with any period, since if
f has period p, then for a > 0, fa given by

fa(x) = f(x
a
)

has period ap:
fa(x+ ap) = f(x+ap

a
) = f(x

a
+ p) = f(x

a
) = fa(x).

This means that we may well concentrate on 2π-periodic functions in what follows, as everything
easily translates to any other period. It also shows that the functions

x 7→ sin(nx) and x 7→ cos(nx), where n ∈ N,

have periods 2π
n

, and in particular, by (1), they have the period 2π. Hence linear combinations
of functions of the form cos(nx) and sin(nx) are also of period 2π. A final function we will be
needing, also with period 2π (to name one) is the constant function f ≡ 1.

Definition 1.2 (Trigonometric system). The functions

1, cos(x), sin(x), cos(2x), sin(2x), cos(3x), . . .

form the trigonometric system.

1.2 Orthogonality of the trigonometric system
We will soon see that we are able to write (more or less) all “natural” 2π-periodic functions as an
“infinite linear combination” of the trigonometric system. Such an “infinite linear combination”
is called a trigonometric series and is written

a0 +
∞∑
n=1

(an cos(nx) + bn sin(nx)) = a0 + a1 cos(x) + b1 sin(x) + a2 cos(2x) + b2 sin(2x) + · · · . (2)

Before doing that, we note that we (obviously) can write any element of the trigonometric system
as such a series (by picking all coefficients an = bn = 0 except for the coefficient in front of the
wanted element, which should be 1).

Think of the trigonometric system as an orthogonal basis of a vector space. If we are in Rn and
the vectors vi, i = 1, . . . , n constitute an orthogonal basis, then any vector v can be written as a
linear combination of the vi:

v =
n∑
i=1

aivi, where ai =
v · vi
‖vi‖2

In particular, if we plug in v = vj , we get

v = vj =
n∑
i=1

vj · vi
‖vi‖2

vi = 0 + · · ·+ 0 +
vj · vj
‖vj‖2

vj + 0 + · · ·+ 0 =
‖vj‖2

‖vj‖2
vj = vj. (3)
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To get something similar in our case, we need something to replace the dot product, which has
similar properties. Most importantly, we should be able to reproduce the coefficients an = bn = 0
except for the coefficient 1 in front some specific function in the trigonometric system, in analogy
with (3).

It turns out that the correct replacement for the dot product is the following1:

(f, g) 7→
∫ π

−π
f(x)g(x) dx.

Since ‖v‖2 = v · v, and
∫ π
−π 1

2 dx = 2π,
∫ π
−π cos

2(nx) dx = π, and
∫ π
−π sin(nx) dx = π, our coefficients

are now:

a0 =
1

2π

∫ π

−π
f(x) dx, (4a)

an =
1

π

∫ π

−π
f(x) cos(nx) dx, and (4b)

bn =
1

π

∫ π

−π
f(x) sin(nx) dx. (4c)

With this definition, we claim that if f is in the trigonometric system, then an = bn = 0 for all n
except for the coefficient 1 corresponding to f itself, in complete analogy with (3).

Indeed, if f is in the trigonometric system, then a0 given by (4a) is non-zero if and only if
f ≡ 1, in which case it is 1, and likewise for an and bn: an = 1 if f(x) = cos(nx), an = 0 otherwise,
and bn = 1 if f(x) = sin(nx), bn = 0 otherwise. (Check for yourself by plugging in f(x) = 1,
f(x) = cos(mx) and f(x) = sin(mx) in the three expressions and see what happens if m = n and
if m 6= n).

It was perhaps no surprise that f could be written as a trigonometric series in the case where
f was in the trigonometric system or that there were easy formulas for finding the coefficients in
that case. We will now try to do the same thing with a somewhat different function than the ones
found in the trigonometric system.

1.3 A concrete example

We now let f be given by

f(x) =

{
−k for − π < x < 0

k for 0 < x < π
, f(x) = f(x+ 2π).

Note that this defines f as a function almost everywhere on R: first, we are given the values of f
on [−π, π] (except in the finite set {−π, 0, π}), and then we are told that f is periodic with period
2π, exactly the length of [−π, π], so for any x (which cannot be written as nπ for some integer
n ∈ Z), we can find an m ∈ Z such that x +m2π ∈ [−π, π] and then f(x) must equal f(x +m2π)
because of the periodicity.

1This is only true for real-valued functions.
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Clearly, f is not a member of the trigonometric system: it is discontinuous at nπ for all n ∈ Z,
while all the members of the trigonometric system are continuous. We will now see what happens
if we try to write f as a trigonometric series using the coefficients given by the procedure in (4).

First, we find a0:

a0(f) =
1

2π

∫ π

−π
f(x) dx =

1

2π

(∫ 0

−π
(−k) dx+

∫ π

0

k dx

)
= 0

Next, we find an:

an(f) =
1

π

∫ π

−π
f(x) cos(nx) dx

=
1

π

(∫ 0

−π
(−k) cos(nx) dx+

∫ π

0

k cos(nx) dx

)
=

1

π

(
−k sin(nx)

n

∣∣∣∣0
x=−π

+
sin(nx)

n

∣∣∣∣π
x=0

)
= 0.

And finally, we find bn:

bn(f) =
1

π

∫ π

−π
f(x) sin(nx) dx

=
1

π

(∫
−π0(−k) sin(nx) dx+

∫ π

0

k sin(nx) dx

)
=

1

π

(
k
cos(nx)

n

∣∣∣∣0
x=−π
− cos(nx)

n

∣∣∣∣π
x=0

)
=

k

nπ
(cos(0)− cos(−nπ)− cos(nπ) + cos(0))

=
2k

nπ
(1− cos(nπ))

=
2k

nπ
(1− (−1)n),

so b1 = 4k
π

, b2 = 0, b3 = 4k
3π

, b4 = 0, b5 = 4k
5π

, and so on. This means that the Fourier series is

4k

π

(
sin(x) +

1

3
sin(3x) +

1

5
sin(5x) + · · ·

)
.

This series in fact converges to f . What this means is not made precise in the book, and the
strongest sense in which the series converges is far beyond the scope of this course. For now, we
just note that we have pointwise convergence on the domain of f , i.e. for each x such that f(x) is
defined,

f(x) =
4k

π

∞∑
n=1

1

2n− 1
sin((2n− 1)x).

In particular, f(π
2
) = k = 4k

π
(1− 1

3
+ 1

5
− 1

7
+ 1

9
+ · · · ), implying that

π

4
= 1− 1

3
+

1

5
− 1

7
+

1

9
− · · · ,

which is a non-trivial result. We now turn to the question of when the Fourier series actually
converges.

4



1.4 Convergence of the Fourier series
Before stating the main theorem of this section, which gives sufficient conditions for pointwise
convergence valid in most practical applications, we need to get some new notions defined.

Definition 1.3 (left-hand limit, right-hand limit). Let f be a function which is defined in a neigh-
borhood to the left of x0. If the limit

f(x0 − 0) = lim
h↑0

f(x0 + h)

exists, where h ↑ 0 means that the limit is taken through negative numbers (“to zero from below”),
then f(x0 − 0) is called the left-hand limit of f at x0. Likewise, if f is defined in a neighborhood to
the right of x0, then if

f(x0 + 0) = lim
h↓0

f(x0 + h)

exists, where h ↓ 0 means that the limit is taken through positive numbers, then f(x0+0) is called
the right-hand limit of f at x0.

Of course, the notation f(x0 + 0) is somewhat unfortunate, as it already has a different mean-
ing. However, usually, the meaning can easily be deduced from the circumstances. Having now
established left-hand and right-hand limits, we are fully equipped for the next definition.

Definition 1.4 (left-hand derivative, right-hand derivative). The left-hand derivative of f at x0 (if
it exists) is given by

lim
h↑0

f(x0 + h)− f(x0 − 0)

h
.

The right-hand derivative of f at x0 is correspondingly

lim
h↓0

f(x0 + h)− f(x0 + 0)

h

when it exists.

A few remarks: There is a mistake in the book (a sign error) in the definition of right-hand
derivatives. If f is continuous at x0, then the left- and right-hand limits f(x0 − 0), f(x0 + 0) are
both just f(x0). If f is differentiable at x0, then the left- and right-hand derivatives are equal to
each other and to the ordinary derivative.

We are now ready to state the theorem.

Theorem 1.5. Let f be 2π-periodic and piecewise continuous with left- and right-hand derivatives every-
where. Then the Fourier series (2) with the coefficients given by (4) converges pointwise to f except where
f is discontinuous. At the discontinuity points of f , the Fourier series converges to the left- and right-hand
limits of f at this point.

To illustrate the concepts and the theorem, we consider our previous example,

f(x) =

{
−k for − π < x < 0

k for 0 < x < π
, f(x) = f(x+ 2π).
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This function is, as already noted, 2π-periodic. It is also piecewise continuous, it has left- and
right-hand derivatives everywhere (what are their values at −π, 0, and π?), so if we believe the
theorem above, its Fourier series converges to f pointwise except at nπ, n ∈ Z, at which the series
converges to the average of the left- and right-hand limits of f .

The left-hand limit of f at 2nπ is −k, while the left-hand limit of f at (2n+ 1)π is k, n ∈ Z. The
right-hand limit of f at 2nπ is k, while the right-hand limit of f at (2n+1)π is−k. This means that
whatever n is, the average of the left- and right-hand limit at nπ is always a big fat 0. Does this
agree with what we know about the Fourier series by just plugging in x = nπ?
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