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1 Fourier series

[Section 11.2 in the book, p. 483]

1.1 Changing periods in connection with Fourier series

We already saw last time, that if f has period p, then fa given by

fa(x) = f(x
a
)

has period ap. This trick of course also works in connection with Fourier series. In particular, if
we are interested in a period of, say, 2L, the Fourier setup can be translated in the following way:

f(x) = a0 +
∞∑
n=1

(
an cos

(nπ
L
x
)
+ bn sin

(nπ
L
x
))

,

where

a0 =
1

2L

∫ L

−L
f(x) dx

an =
1

L

∫ L

−L
f(x) cos

(nπ
L
x
)
dx

bn =
1

L

∫ L

−L
f(x) sin

(nπ
L
x
)
dx,

for n = 1, 2, 3, . . . . There are several detailed examples on the use of this setup in the book on the
pages 484–486.
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1.2 Simplifications for even and odd functions

Last time, we noted that the odd function f given by

f(x) =

{
−k for − π < x < 0

k for 0 < x < π

had a Fourier series consisting only of sin terms. We also noted that f and all the sin terms are odd
functions, while the a0 and cos terms are even functions (one can in fact consider the a0 a cos term
with n = 0). We recall that an odd function is a function g which satisfies

g(−x) = −g(x)

while an even function h is a function which satisfies

h(−x) = h(x).

The point is of course that an odd function integrates to 0 over [−π, π], and products of two odd
functions or two even functions are even, while the product of an odd and an even function is odd
(just like with sums of even and odd numbers). On top of that, if we know a 2π-periodic function
f on the interval [0, π], and we know that it is even (or odd), then we know it everywhere. Because
of this, it is also enough to integrate over half of the interval when finding Fourier coefficients of
even or odd functions. Put more precisely:

Theorem 1.1 (Summary on page 487 in the book). Let f be a 2π-periodic function whose Fourier series
converges pointwise to f . If f is even (i.e. f(−x) = f(x)), then the Fourier series reduces to

f(x) = a0 +
∞∑
n=1

an cos(nx)

where

a0 =
1

π

∫ π

0

f(x) dx and an =
2

π

∫ π

0

f(x) cos(nx) dx for n = 1, 2, 3, . . . .

If f is odd (i.e. f(−x) = −f(x)), then the Fourier series reduces to

f(x) =
∞∑
n=1

bn sin(nx)

where

bn =
2

π

∫ π

0

f(x) sin(nx) dx.

Since all functions f can be written as a sum of an odd function f1 and an even function f2, the
above theorem can be used in connection with the following theorem, whose proof follows easily
from the linearity of integrals.
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Theorem 1.2 (Theorem 1 in the book on page 487). If we write a0(f), an(f), and bn(f) for the Fourier
coefficients of a function f , then the functionals a0, an, and bn are linear, i.e.

a0(f1 + f2) = a0(f1) + a0(f2), an(f1 + f2) = an(f1) + an(f2), and bn(f1 + f2) = bn(f1) + bn(f2)

and
a0(cf) = ca0(f), an(cf) = can(f), and bn(cf) = cbn(f),

for any functions f1, f2, and f and any real number c. In words, the Fourier coefficients of a sum f1 + f2
is a sum of the Fourier coefficients of f1 and f2, and the Fourier coefficients of cf is c times the Fourier
coefficients of f .

The above theorem also proves useful in situations where the function f one wants to find the
Fourier expansion of is naturally written as a sum.

1.3 Half range expansions
The reduced complexity of odd and even Fourier expansions and their simpler calculations (you
only need to integrate half of the interval) inspires the following idea. Imagine you have a function
which is naturally defined on the finite interval [0, L] but you would like to express it as a Fourier
series (i.e. as a periodic function). Naturally, one could say “well, I just say that my function is
L-periodic and use the trick of Section 1.1 of the present note!” which is of course completely
legal, especially of one notes that the formulas written in that section pertains to functions of
period 2L, not L, and one then adjusts accordingly. However, if we are not really interested in the
periodicity of the function, just on the Fourier expansion, then one may consider the function to
be 2L periodic and even (or odd, depending on what gives the simplest Fourier expansion). Put a
bit more schematically, we get:

1. Denote by f a function on [0, L] we want to get a Fourier expansion of.

2. Let f1 be an even, 2L-periodic extension of f , and likewise, let f2 be an odd, 2L-periodic extension
of f .

3. Pick whichever seems more pratical of f1 and f2 and apply Theorem 1.1 to this function,
after suitable adjustments of the formulas to the 2L case in the spirit of Section 1.1 (i.e. π’s
should be L’s and n’s inside trigonometric functions should be multiplied by π

L
).

4. The result is a 2L-periodic function which agrees with f on [0, L] as long as f is sufficiently
nice (see Theorem 1.5 from the Lecture 8 Notes for sufficient conditions for being sufficiently
nice).

To be more concrete, assume that f2 is the more practical choice. Then the Fourier coefficients of
f2 are a0(f2) = an(f2) = 0 for n = 1, 2, 3, . . . and

bn(f2) =
2

L

∫ L

0

f(x) sin
(nπ
L
x
)
dx.
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