Problem 1 (40 point)

In this problem we assume that $-1<x<1$.
(a) Rewrite the ODE

$$
\begin{equation*}
\frac{y^{\prime}(x)}{x}-2 y^{2}(x)=0 \tag{1}
\end{equation*}
$$

to separated form.
(b) Solve the ODE (1).
(c) Solve the intial value problem given by (1) and $y(0)=1$ and call the solution y_{1}.
(d) Show that the solution y_{1} from (c) is also a solution to

$$
\begin{equation*}
y^{\prime \prime}(x)+\frac{2 x^{3}+6 x}{x^{4}-1} y^{\prime}(x)=-\frac{2}{x^{4}-1} . \tag{2}
\end{equation*}
$$

(e) Show that $y_{2}(x)=\frac{1}{1-x}$ is also a solution to (2).
(f) Note that $y_{1}(0)=y_{2}(0)=1$. Can you conclude that $y_{2}=y_{1}$? Explain.
(g) Find a solution y_{3} to

$$
\begin{equation*}
y^{\prime \prime}(x)+\frac{2 x^{3}+6 x}{x^{4}-1} y^{\prime}(x)=0 . \tag{3}
\end{equation*}
$$

If possible, you may use y_{1} and/or y_{2} in the expression of y_{3}, even if you haven't solved (c).
(h) Find a solution y_{4} to (3), which is linearly independent of y_{3}. It is enough to find a formula for the solution, you are allowed to use y_{1}, y_{2}, and / or y_{3} in the expression udtrykket, even if you haven't found these, and you are not required to compute possible integrals.
(i) Find the general solution y_{h} to (3). You are allowed to use y_{1}, y_{2}, y_{3}, and/or y_{4} in the expression, even if you haven't found these.
(j) Find the general solution y_{g} to (2). You are allowed to use $y_{1}, y_{2}, y_{3}, y_{4}$, and/or y_{h} in the expression, even if you haven't found these.
(k) Find a solution y_{p} to (2) satisfying $y_{p}(0)=1$ and $y_{p}^{\prime}(0)=1$.
(l) Kan you find other solutions \tilde{y}_{p} to (2) which satisfy $\tilde{y}_{p}(0)=1$ and $\tilde{y}_{p}^{\prime}(0)=1$? Explain.

Problem 2 (20 point)

In this problem we solve the intial value problem

$$
y^{\prime \prime \prime}(t)-\frac{107}{27} y(t)=198 e^{-\frac{t}{3}} \sin (2 t), \quad y(0)=27, \quad y^{\prime}(0)=-9, \quad y^{\prime \prime}(0)=-105
$$

using the Laplace transform.
(a) Find the Laplace transforms $F=\mathcal{L}(f)$ and $G=\mathcal{L}(g)$ of $f(t)=e^{-\frac{t}{3}}$ and $g(t)=\sin (2 t)$, resp.
(b) Let $H=\mathcal{L}(h)$ denote the Laplace transform of $h(t)=e^{-\frac{t}{3}} \sin (2 t)$. Can one compute H by computing the product $F G$?
(c) Compute the Laplace transform $I=\mathcal{L}(i)$ of $i(t)=198 e^{-\frac{t}{3}} \sin (2 t)$.
(d) Find an equation for $Y=\mathcal{L}(y)$, where y is the solution to the intial value problem above and isolate Y in the expression. Hint: remember that $\mathcal{L}\left(y^{\prime \prime \prime}\right)(s)=s^{3} Y(s)-s^{2} y(0)-s y^{\prime}(0)-y^{\prime \prime}(0)$.
(e) Find the inverse Laplace tranform $\mathcal{L}^{-1}(J)$ of $J(s)=\frac{s+\frac{1}{3}}{\left(s+\frac{1}{3}\right)^{2}+2^{2}}$.
(f) Find the solution to the intial value problem.

Problem 3 (20 point)

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be given by $f(x)=\sum_{n=1}^{\infty} \frac{\sin (n x)}{n!}$, which can also be written $f(x)=e^{\cos (x)} \sin (\sin (x)) .{ }^{1}$
(a) Is f periodic? If yes, find the fundamental period of f.
(b) Is f even, odd, both, or neither? Explain.
(c) Let $u(x, y)=\sum_{n=1}^{\infty} \frac{1}{n!} \cos (2 n t) \sin (n x)$. Show that u solves the one-dimensional wave equation $u_{t t}=c^{2} u_{x x}$ on $(x, t) \in[0, \pi] \times \mathbb{R}_{\geq 0}$ with boundary condition $u(0, t)=u(\pi, t)=0$ for a suitable $c>0$ and determine c.
(d) Find g such that u satisfies the intial value condition $u_{t}(x, 0)=g(x)$.
(e) Find h such that u satisfies the intial value condition $u(x, 0)=h(x)$.
(f) Find the Fourier series of h.

[^0]
Problem 4

(20 POINT)
Consider $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=\sum_{n=1}^{\infty} \frac{\sin (n x)}{n!}$ as in Problem 3.
(a) One can show that $\sum_{n=0}^{\infty} \frac{1}{n!}=e \approx 2.71828$. Argue that $\left|\sum_{n=5}^{\infty} \frac{\sin (n x)}{n!}\right|<0.01$, independently of what x is. Hint: Look at $\left|e-\sum_{n=0}^{4} \frac{1}{n!}\right|$ and remember that $0!=1$, that $\sin (0 \cdot x)=0$, and that $|\sin (x)| \leq 1$.
(b) Let $f_{4}(x)=\sum_{n=1}^{4} \frac{\sin (n x)}{n!}$. According to (a), one only makes a small mistake by using f_{4} instead of f. Use this and the identities $\sin \left(\frac{\pi}{4}\right)=\sin \left(\frac{3 \pi}{4}\right)=\frac{1}{\sqrt{2}}, \sin \left(\frac{\pi}{2}\right)=1$, and $\sin (\pi)=0$ to - without using a calculator - find a sum of (at most ${ }^{2}$) four numbers that approximate $f\left(\frac{\pi}{4}\right)$ with an error less than 0.01 .
(c) It turns out that the sum from (b) is larger than $f\left(\frac{\pi}{4}\right)$, about 0.0074 too big. Explain why $f_{4}(x)$ can get larger than $f(x)$ for some values of x.
From now on, we will focus on $f_{2}(x)=\sum_{n=1}^{2} \frac{\sin (n x)}{n!}=\sin (x)+\frac{\sin (2 x)}{2}$, for simplicity, even though it means that we risk errors with an absolute value as large as $e-2.5 \approx 0.22$.
(d) Let p_{4} denote the fifth order polynomial that agrees with f at $x=0, x=\frac{\pi}{4}, x=\frac{\pi}{2}, x=\frac{3 \pi}{4}$, and $x=\pi$, and let q_{4} denote a fifth order polynomial that agrees with f_{2} at the same points. Remember that $f(x)=e^{\cos (x)} \sin (\sin (x))$. Which values of \sin, cos, and exp do we need to know to compute p_{4}, and which values of sin do we need to know to compute q_{4} ? The answer may be given as a table of values.

The above questions deals with approximating f in diffferent ways.
(e) One can show that f is a solution to the differential equation $y^{\prime}(x)=e^{\cos (x)} \cos (x+\sin (x))$, and it is easy to see that $f(0)=0$. Explain how this information can also be used to approximate f.
(f) Estimate $\int_{0}^{1} f(x) \mathrm{d} x$ using Simpson's rule with $n=1$ subintervals. It is allowed to use a computer and/or calculator.

[^1]
[^0]: ${ }^{1}$ You don't have to worry about why $\sum_{n=1}^{\infty} \frac{\sin (n x)}{n!}=e^{\cos (x)} \sin (\sin (x))$.

[^1]: ${ }^{2}$ The sum can easily be reduced to just two terms

