Problem 1 (20 POINTS)

In this problem, we assume that $0 < x < \frac{\pi}{2}$.

(a) Write the ODE

$$\tan(x)y'(x) = y(x) \tag{1}$$

in separated form.

- (b) Use separation of variables to find an equation for a solution y to (1) which doesn't contain y'. You are not required to compute the integrals.
- (c) Let y_1 denote the solution to (1) which satisfies $r y(\frac{\pi}{4}) = \frac{1}{\sqrt{2}}$. Find $y'_1(\frac{\pi}{4})$.
- (d) The solution y_1 is also a solution to

$$y''(x) + \tan(x)y'(x) + y(x) = \sin(x).$$
(2)

Use (1) and (2) to find a different first order linear ODE for which y_1 is a solution. Hint: isolate y' in (1) and find an expression for y'' by differentiating on both sides of the equation.

- (e) Find $y_1''(\frac{\pi}{4})$.
- (f) Find y_1 . Explain how you did.

Problem 2 (20 POINTS)

Let $y_1(x) = \sin(x)$ and $y_2(x) = \sin(x)(\cos(x) + 1)$. One can show that y_1 and y_2 are solutions to

$$y''(x) + \sin(x)\cos(x)y'(x) + (4 - \cos(2x))y(x) = \frac{15}{4}\sin(x) - \frac{1}{4}\sin(3x).$$
(3)

(a) Find a solution $y_3 \neq 0$ to

$$y''(x) + \sin(x)\cos(x)y'(x) + (4 - \cos(2x))y(x) = 0.$$
(4)

- (b) Find a solution y_4 to (4) which is linearly independent of y_3 . It's enough to find an expression for the solution, you are allowed to use y_1 , y_2 , and/or y_3 in the expression, even if you haven't found these, and if the expression contains integrals, you are not required to compute them.
- (c) Find the general solution y_h to the homogeneous ODE (4). You are allowed to use y_1 , y_2 , y_3 , and/or y_4 in the expression, even if you haven't found these.

- (d) Find the general solution y_g to (3). You are allowed to use y_1 , y_2 , y_3 , y_4 , and/or y_h in the expression, even if you haven't found these.
- (e) Find a solution y_p to (3) satisfying $y_p(0) = 0$ and $y'_p(0) = 2$.
- (f) Can you find other solutions \tilde{y}_p to (3), which satisfy $\tilde{y}_p(0) = 0$? Explain.

Problem 3 (20 POINTS)

In this problem the following initial value problem should be solved:

$$y''(t) + \frac{444}{23}y'(t) + \frac{51400}{529}y(t) = -10e^{-\frac{222}{23}t}\sin(3t),$$

$$y(0) = 0, \quad y'(0) = 6.$$
(5)

(a) Find the general solution y_h to the homogeneous problem

$$y''(t) + \frac{444}{23}y'(t) + \frac{51400}{529}y(t) = 0.$$
(7)

- (b) Find a solution y_1 to (7) satisfying $y_1(0) = 0$ and $y'_1(0) = 2$.
- (c) Is it also true that the function $y_2(t) = 2e^{-\frac{222}{23}t}\sin(t)\cos(t)$ is a solution to (7) with $y_2(0) = 0$ and $y'_2(0) = 2$? Explain.
- (d) Is $y_1 = y_2$? Explain.
- (e) Use the method of undetermined coefficients to find a particular solution y_p to (5).
- (f) Find the solution to the initial value problem given by (5) and (6).

Problem 4 (20 POINTS)

Let $f: \mathbb{R} \to \mathbb{R}$ be given by $f(x) = \sum_{n=0}^{\infty} \frac{\cos(nx)}{n!}$ which can also be written $f(x) = e^{\cos(x)} \cos(\sin(x))$.¹

- (a) Is f periodic? If yes, find the fundamental period for f, i.e. the shortest positive period of f.
- (b) Is *f* even, odd, both or neither? Explain.
- (c) Let $u(x,t) = \sum_{n=0}^{\infty} \frac{1}{n!} \cos(nx) e^{-4n^2t}$. Show that u solves the onedimensional heat equation $u_t = c^2 u_{xx}$ on $(x,t) \in [0,\pi] \times \mathbb{R}_{\geq 0}$ for a suitable c > 0 and determine the correct value of c.
- (d) Which boundary condition does u(x, t) satisfy?
- (e) Find *h*, such that *u* satisfies the initial value condition u(x, 0) = h(x).
- (f) Find the Fourier series for *h*.

¹You don't have to worry about why $\sum_{n=0}^{\infty} \frac{\cos(nx)}{n!} = e^{\cos(x)} \cos(\sin(x)).$

Problem 5 (20 POINT)

Denote the right-hand side in (3) from Problem 2 by f, i.e. $f \colon \mathbb{R} \to \mathbb{R}$ is given by $f(x) = \frac{15}{4} \sin(x) - \frac{1}{4} \sin(3x)$.

- (a) Find the Fourier series for *f*. Explain.
- (b) Find a second order polynomial p_2 which agrees with f at x = 0, $x = \frac{\pi}{2}$, and $x = \pi$.
- (c) Is f and/or p_2 periodic? And if, what is the (fundamental) period?
- (d) Use Simpson's method with n = 2 (two subintervals) to estimate $\int_0^{\pi} f(x) dx$.
- (e) Estimate the error in the previous result.
- (f) Can one find a solution to f(x) = x using fixed point iteration? Explain.