Problem 1 (20 points)

In this problem, we assume that $0<x<\frac{\pi}{2}$.
(a) Write the ODE

$$
\begin{equation*}
\tan (x) y^{\prime}(x)=y(x) \tag{1}
\end{equation*}
$$

in separated form.
(b) Use separation of variables to find an equation for a solution y to (1) which doesn't contain y^{\prime}. You are not required to compute the integrals.
(c) Let y_{1} denote the solution to (1) which satisfies $\mathrm{r} y\left(\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}}$. Find $y_{1}^{\prime}\left(\frac{\pi}{4}\right)$.
(d) The solution y_{1} is also a solution to

$$
\begin{equation*}
y^{\prime \prime}(x)+\tan (x) y^{\prime}(x)+y(x)=\sin (x) \tag{2}
\end{equation*}
$$

Use (1) and (2) to find a different first order linear ODE for which y_{1} is a solution. Hint: isolate y^{\prime} in (1) and find an expression for $y^{\prime \prime}$ by differentiating on both sides of the equation.
(e) Find $y_{1}^{\prime \prime}\left(\frac{\pi}{4}\right)$.
(f) Find y_{1}. Explain how you did.

Problem 2 (20 points)

Let $y_{1}(x)=\sin (x)$ and $y_{2}(x)=\sin (x)(\cos (x)+1)$. One can show that y_{1} and y_{2} are solutions to

$$
\begin{equation*}
y^{\prime \prime}(x)+\sin (x) \cos (x) y^{\prime}(x)+(4-\cos (2 x)) y(x)=\frac{15}{4} \sin (x)-\frac{1}{4} \sin (3 x) . \tag{3}
\end{equation*}
$$

(a) Find a solution $y_{3} \neq 0$ to

$$
\begin{equation*}
y^{\prime \prime}(x)+\sin (x) \cos (x) y^{\prime}(x)+(4-\cos (2 x)) y(x)=0 \tag{4}
\end{equation*}
$$

(b) Find a solution y_{4} to (4) which is linearly independent of y_{3}. It's enough to find an expression for the solution, you are allowed to use y_{1}, y_{2}, and /or y_{3} in the expression, even if you haven't found these, and if the expression contains integrals, you are not required to compute them.
(c) Find the general solution y_{h} to the homogeneous ODE (4). You are allowed to use y_{1}, y_{2}, y_{3}, and/or y_{4} in the expression, even if you haven't found these.
(d) Find the general solution y_{g} to (3). You are allowed to use $y_{1}, y_{2}, y_{3}, y_{4}$, and/or y_{h} in the expression, even if you haven't found these.
(e) Find a solution y_{p} to (3) satisfying $y_{p}(0)=0$ and $y_{p}^{\prime}(0)=2$.
(f) Can you find other solutions \tilde{y}_{p} to (3), which satisfy $\tilde{y}_{p}(0)=0$? Explain.

Problem 3 (20 points)

In this problem the following initial value problem should be solved:

$$
\begin{align*}
y^{\prime \prime}(t)+\frac{444}{23} y^{\prime}(t)+\frac{51400}{529} y(t) & =-10 e^{-\frac{222}{23} t} \sin (3 t) \tag{5}\\
y(0)=0, \quad y^{\prime}(0) & =6 \tag{6}
\end{align*}
$$

(a) Find the general solution y_{h} to the homogeneous problem

$$
\begin{equation*}
y^{\prime \prime}(t)+\frac{444}{23} y^{\prime}(t)+\frac{51400}{529} y(t)=0 . \tag{7}
\end{equation*}
$$

(b) Find a solution y_{1} to (7) satisfying $y_{1}(0)=0$ and $y_{1}^{\prime}(0)=2$.
(c) Is it also true that the function $y_{2}(t)=2 e^{-\frac{22}{23} t} \sin (t) \cos (t)$ is a solution to (7) with $y_{2}(0)=0$ and $y_{2}^{\prime}(0)=2$? Explain.
(d) Is $y_{1}=y_{2}$? Explain.
(e) Use the method of undetermined coefficients to find a particular solution y_{p} to (5).
(f) Find the solution to the initial value problem given by (5) and (6).

Problem $4 \quad$ (20 points)

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be given by $f(x)=\sum_{n=0}^{\infty} \frac{\cos (n x)}{n!}$ which can also be written $f(x)=e^{\cos (x)} \cos (\sin (x)) .{ }^{1}$
(a) Is f periodic? If yes, find the fundamental period for f, i.e. the shortest positive period of f.
(b) Is f even, odd, both or neither? Explain.
(c) Let $u(x, t)=\sum_{n=0}^{\infty} \frac{1}{n!} \cos (n x) e^{-4 n^{2} t}$. Show that u solves the onedimensional heat equation $u_{t}=c^{2} u_{x x}$ on $(x, t) \in[0, \pi] \times \mathbb{R}_{\geq 0}$ for a suitable $c>0$ and determine the correct value of c.
(d) Which boundary condition does $u(x, t)$ satisfy?
(e) Find h, such taht u satisfies the initial value condition $u(x, 0)=h(x)$.
(f) Find the Fourier series for h.

[^0]
Problem 5 (20 point)

Denote the right-hand side in (3) from Problem 2 by f, i.e. $f: \mathbb{R} \rightarrow \mathbb{R}$ is given by $f(x)=\frac{15}{4} \sin (x)-$ $\frac{1}{4} \sin (3 x)$.
(a) Find the Fourier series for f. Explain.
(b) Find a second order polynomial p_{2} which agrees with f at $x=0, x=\frac{\pi}{2}$, and $x=\pi$.
(c) Is f and/or p_{2} periodic? And if, what is the (fundamental) period?
(d) Use Simpson's method with $n=2$ (two subintervals) to estimate $\int_{0}^{\pi} f(x) \mathrm{d} x$.
(e) Estimate the error in the previous result.
(f) Can one find a solution to $f(x)=x$ using fixed point iteration? Explain.

[^0]: ${ }^{1}$ You don't have to worry about why $\sum_{n=0}^{\infty} \frac{\cos (n x)}{n!}=e^{\cos (x)} \cos (\sin (x))$.

