Matematisk modellering og numeriske metoder

Vink til opgaverne relateret til lektion 11

Morten Grud Rasmussen

November 8, 2016

Exercise 1

This exercise is straightforward.

Exercise 2

- This exercise is (unreasonably?) difficult, but I assume you have a lot of unsolved exercises from earlier lectures, so I don't suppose you'll be bored, even if this exercise is out of reach for you.
- Try with the product method: Make the Ansatz that the solution has the form u(x,t) = F(x)G(t). You have already seen in Lecture 10 that this implies that

 $F(x) = F_n(x) = a\cos(p_n x) + b\sin(p_n x)$ and $G(t) = G_n(t) = b_n\cos(cp_n t) + a_n\sin(cp_n t)$

for suitable choices of p.

- Now use the boundary conditions to get a = 0 $p_n = \frac{(2n+1)\pi}{2L}$ (you need both boundary conditions for this).
- Now use (one of the) initial conditions to show that $a_n = 0$.
- Define $u_n(x,t) = F_n(x)G_n(t)$ and let $u = \sum_n u_n$. Use the other initial condition to show that $A_n = b_n = \frac{2}{L} \int_0^L f(x) \sin(p_n x) dx$.