Matematisk modellering og numeriske metoder

Vink til opgaverne relateret til lektion 11

Morten Grud Rasmussen

November 8, 2016

Exercise 1

This exercise is straightforward.

Exercise 2

- This exercise is (unreasonably?) difficult, but I assume you have a lot of unsolved exercises from earlier lectures, so I don't suppose you'll be bored, even if this exercise is out of reach for you.
- Try with the product method: Make the Ansatz that the solution has the form $u(x, t)=$ $F(x) G(t)$. You have already seen in Lecture 10 that this implies that
$F(x)=F_{n}(x)=a \cos \left(p_{n} x\right)+b \sin \left(p_{n} x\right) \quad$ and $\quad G(t)=G_{n}(t)=b_{n} \cos \left(c p_{n} t\right)+a_{n} \sin \left(c p_{n} t\right)$ for suitable choices of p.
- Now use the boundary conditions to get $a=0 p_{n}=\frac{(2 n+1) \pi}{2 L}$ (you need both boundary conditions for this).
- Now use (one of the) intial conditions to show that $a_{n}=0$.
- Define $u_{n}(x, t)=F_{n}(x) G_{n}(t)$ and let $u=\sum_{n} u_{n}$. Use the other intial condition to show that $A_{n}=b_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \left(p_{n} x\right) \mathrm{d} x$.

