
Matematisk modellering og numeriske metoder

Lektion 14

Morten Grud Rasmussen

13. november 2016

1 Numerical methods for solving differential equations

1.1 Conservation laws
In the following p denotes a point on the line, on the plane or in 3d-space. As the following
considerations are valid in all three cases, we will not specify whether p = x, p = (x, y), or p =
(x, y, z). Regarding terminology, we will use the spatial notions, i.e. “cube” will be used also for
“rectangles” in the plane, and “interval” on the line. Likewise, we will write dV (as in [V]olume)
when we integrate, regardless of which dimension we are dealing with, and dA when we integrate
the “surface” (which in the case of two dimensions is a line integral, and in one dimension reduces
to a sum over the end points).

As you recall from the derivation of the heat equation, we used that the thermal energy was
conserved, so that a temporal change of the temperature in a cube − ∂

∂t

∫
T
u(p, t) dV could be attri-

buted to what passed through the surface area of the cube,
∫
A
f(u) · n dA (where A is the surface

of the cube T , f is the “flux” and n is an outer noral vector of unit length):

∂

∂t

∫
T

u(p, t) dV +

∫
A

f(u) · n dA = 0.

As mentioned, this was under the assumption that the total thermal energy was conserved, and the
equation above is therefore an example of a conservation law. Notice that in the above formulation,
u does not have to be a temperature but can be any kind of quantity from continuum mechanics.
Now what happens if we actually want to model something where thermal energy is added or
subtracted (e.g. if a endo- or exothermal reaction takes place in space)? Now let S denote the
added energy (S could stand for “source”) in a given point in space, where S might also depend
on time t and temperature u. Then the conservation law above should be modified as follows:

∂

∂t

∫
T

u(p, t) dV +

∫
A

f(u) · n dA−
∫
T

S(p, u(p), t) = 0,

1

which again is called a conservation law, as it again builds on conversation principles. Notice again
that the equation above could be a conservation law for any kind of contiuum mechanics quantity.
As in the case with the heat equation, we can now apply Gauss’ divergence theorem and get∫

T

(∂u
∂t

+ div f(u)− S
)

dV = 0.

With this integral we can then argue that since the cube is arbitrarily chosen, the integrant must
be 0, at least if it is continuous:

∂u

∂t
+ div f(u)− S = 0

(try to consider what each of the terms might correspond to physically – and remember that f(u)
is the flux of u, not just u). This is called the strong version of the conversation law. Notice that
this is under the assumption that the integrant is continuous, which means that it doesn’t cover
the so-called generalized solutions. Fear not! This can be avoided. Note that the integral form of
the conservation law doesn’t require contiuity, and hence it is a weaker form (hence the name the
strong version), but we can do away with even less! First, note that∫

T

(∂u
∂t

+ div f(u)− S
)

dV =

∫
Rd

(∂u
∂t

+ div f(u)− S
)

1T dV = 0,

where d is the dimension and 1T is the so-called indicator function of T , given by

1T (p) =

{
1 if (p) ∈ T

0 otherwise
.

The integral form of the conservation law, which should hold for any cubes T , can thus be in-
terpreted as the average of the expression ∂u

∂t
+ div f(u) − S being tested over all possible boxes.

We have of course chosen cubes out of convenience, but we might as well have chosen balls, say.
Now here comes a new idea; we could also use a family of smooth test functions, where “smooth”
means that all partial derivatives of all orders exist, instead of functions of the type 1T ! In that
case, we get the expression ∫

Rd

(∂u
∂t

+ div f(u)− S
)
w dV = 0,

where w is a function of p. Here w stands for “weight” (the function is also called a weight fun-
ction). By applying the spatial version of partial integration1, we get∫

Rd

((∂u
∂t
− S

)
w − f(u) · ∇w

)
dV +

∫
A

f · w dA = 0. (1)

Notice that we have “moved” a spatial derivative from f(u) to w (which is smooth, and this last
expression hence needs less assumptions on f . This means that (1) might hold for all w in a class
of smooth test functions even if the other formulations of the conservation laws are not satisfied
and is therefore called the weak version of the conservation law.

1The spatial version of partial integration is related to Gauss’ divergence theorem!

2

1.2 Numerical considerations – pointwise representation
Many PDE’s cannot be solved exactly, and we are forced to do numerical approximations. To per-
form numerical approximations we need to represent the continuous solution with only finitely
many numbers.

Assume first that we have a continuous function u of one variable x. As u is continuous, u(x) is
close to u(x0) whenever x is close to x0. Using this kind of reasoning, we conclude that we should
get a reasonable representation of u if we pick values xj , j = 0, . . . , J densely along the domain of
definition of u, perhaps evenly spaced (such that xi − xi−1 is fixed) and approximate u from the
value u(xi) of u in these fixed points. We choose uj for j = 0, . . . , J so that uj ≈ u(xj), and try to
describe u using these xj’s and uj’s. We call the xi’s for a grid or a mesh.

1.3 The Finite Difference Method
The simplest (and oldest) numerical method (where |numerical method” means a method of fin-
ding a numerical approximation of the “real” (analytic) solution) is the finite difference method.
It’s building blocks consists of difference approximations of derivatives. The basic idea is that deri-
vatives, ordinary as well as partial and of arbitary order, can be approximated by different kinds
of difference quotients. In a moment, we will go through some of the most basic ones. To ease the
understanding, we will illustrate the concepts with a concrete example. To this end, we consider
our one-dimensional heat equation with c2 = 1, x ∈ [0, 1] (i.e. L = 1), t ∈ [0, T], Dirichlet boundary
conditions and initial condition f :

ut = uxx (the heat equation)
u(0, t) = u(1, t) = 0 (the boundary condition)
u(x, 0) = f(x) (the initial condition)

First, we must choose a grid in both space and time, and these we will pick uniformly, i.e. xj+1 −
xj = h for all j = 0, . . . , J − 1 and tn+1 − tn = k for all n = 0, . . . , N − 1. We choose t0 = 0, tN = T ,
x0 = 0, and xJ = 1, so that the endpoints of our spatial and temporal domain is included in the
mask. The solution u will then be approximated by un

j ≈ u(xj, tn). Notice that the n in un
j doesn’t

mean that uj is raised to a power; it’s just an index denoting the current time step!

Different first order difference quotients

As you know, the heat equation contains a first order time derivative. We will approximate the
time derivative using the un

j ’s (remember that j indicates the spatial position, while the n indicates
the temporal position). The three simplest ways of doing this are the following expressions:

ut(xj, tn) ≈
un+1
j − un

j

k
(forward difference)

ut(xj, tn) ≈
un
j − un−1

j

k
(backward difference)

ut(xj, tn) ≈
un+1
j − un−1

j

2k
(central difference)

each of which have their pros and cons, both when it comes to implementation and precision.
The idea behind the all are, however, the same: the fractions are the slopes between the involved
values of um

j , m ∈ {n− 1, n, n + 1}. 3

The central second order difference quotient

We will now find an approximation of the second order spatial derivative, uxx, which also appears
in the heat equation. This means that we need to find a difference quotient between two difference
quotients, e.g.

uxx(xj, tn) ≈
un
j+1−un

j

h
− un

j −un
j−1

h

h
=

un
j+1 − 2un

j + un
j−1

h2
,

which is called the central second order difference quotient.

An explicit method

We will now describe a so-called explicit finite difference method of numerically solving the heat
equation; the term explicit comes from the fact that – knowing the initial conditions – for every
time step one has an explicit expression for every point in the next time step. The method is
known as the FTCS method, which is short for forward in time, central in space, which should make
sense if one takes a closer look at the following. The idea is as follows: as

ut = uxx, while ut(xj, tn) ≈
un+1
j − un

j

k
and uxx(xj, tn) ≈

un
j+1 − 2un

j + un
j−1

h2
,

then
un+1
j − un

j

k
≈

un
j+1 − 2un

j + un
j−1

h2
, (2)

where the approximation is best for small values of h and very small values of k. If we now re-
member that un

j are just approximations of u(xj, tn), then we can simply define our un
j as the solution

of the equations above for all combinations of the following choices of j and n:

j ∈ {1, . . . , J − 1} and n ∈ {1, . . . , N}.

The remaining cases are determined by the initial and boundary conditions. As for the initial
conditions, an obvious choice is to do the following:

ut0
j = u0

j = f(xj) for j ∈ {0, . . . , J},

while the boundary conditions gives us

un
0 = un

J = 0 for n ∈ {0, . . . , N},

where of course we need to assume that f(0) = f(1) = 0 in order for the initial and boundary
conditions to be consistent, meaning that u0

0 and u0
J are both 0 independent of which of the expres-

sions we use to define them.
That the method is explicit means that we do not have to solve any systems of equations to get

to the next time step, we only need to isolate un+1
j in (2):

un+1
j = (1− 2

k

h2
)un

j +
k

h2
(un

j−1 + un
j+1) = (1− 2r)un

j + r(un
j−1 + un

j+1), where r =
k

h2
,

giving us un+1
j as a function of un

j−1, un
j , and un

j+1, all of which belong to an earlier time step.

4

We will now write it all in matrix form:

u0
0

u0
1

u0
2
...
u0
j
...

u0
J−2

u0
J−1

u0
J

=

f(x0)
f(x1)
f(x2)

...
f(xj)

...
f(xJ−2)
f(xJ−1)
f(xJ)

and

un+1
0

un+1
1

un+1
2
...

un+1
j
...

un+1
J−2

un+1
J−1

un+1
J

=

1 0 · · · 0
r 1− 2r r 0 · · · 0
0 r 1− 2r r 0 · · · 0

...

0 · · · 0 r 1− 2r r 0
0 · · · 0 r 1− 2r r
0 · · · 0 1

un
0

un
1

un
2
...
un
j
...

un
J−2

un
J−1

un
J

for n ≥ 0,

or briefly u0 = f and un = Aun−1 = Anu0 for n ≥ 1, for a suitable definition of un, A, and f .
Clearly, no equations need to be solved, one should just compute matrix products, which is why
it’s called an explicit method. One can show that this method is what is called numerically stable
and convergent whenever r = k

h2 ≤ 1
2
. The numerical errors are at most proportional to the size of

k and the square of h, which one can also write as E = O(k) + O(h2).

An implicit method

We will now describe another method, a so-called implicit method, where one has to solve some
equations after writing down the model in order to get the result. Where the other method was
called the FTCS-method, this method is called the BTCS-method: “backwards in space, central in
space.”

As this name indicates, the main difference between the two methods lies in the fact that one
uses the backward difference approximation

ut(xj, tn) ≈
un
j − un−1

j

k

instead of the forward difference approximation of the time derivative. Using the same arguments
as before, we get the system of linear equations

un+1
j − un

j

k
=

un+1
j+1 − 2un+1

j + un+1
j−1

h2
.

5

Notice that here we cannot find un+1
j just by using information from earlier time steps; the equa-

tion contains un+1
j+1 and un+1

j−1 which are also unknown, and instead we end up with the system of
linear equations:

(1 + 2r)un+1
j − run+1

j−1 − run+1
j+1 = un

j where r =
k

h2
,

or, when we also consider the initial and boundary conditions and write it all up in matrix form:

u0
0

u0
1

u0
2
...
u0
j
...

u0
J−2

u0
J−1

u0
J

=

f(x0)
f(x1)
f(x2)

...
f(xj)

...
f(xJ−2)
f(xJ−1)
f(xJ)

and

1 0 · · · 0
−r 1 + 2r −r 0 · · · 0
0 −r 1 + 2r −r 0 · · · 0

...

0 · · · 0 −r 1 + 2r −r 0
0 · · · 0 −r 1 + 2r −r
0 · · · 0 1

un+1
0

un+1
1

un+1
2
...

un+1
j
...

un+1
J−2

un+1
J−1

un+1
J

=

un
0

un
1

un
2
...
un
j
...

un
J−2

un
J−1

un
J

for n ≥ 0,

or more compactly u0 = f and un = Aun+1 for a suitable definition of un, f , and A. Notice that
as opposed to before, where we had un = Aun−1 = Anu0, we cannot write un+1 directly in an
iterated form; at each time step we have to solve the system of linear equations un = Aun+1. This
makes this method computationally more involved, but the reward is that this method always is
numerically stable (independent of r), and even though the error still behaves as in the explicit
method, E = O(k) + O(h2), the implicit method gives better results, in particular for large time
steps.

1.4 Numerical considerations – element-wise representation
Let us assume that we still want to represent a function using finitely many numbers, but instead
of finding approximations of the function in a given set of points, we subdivide the function in
elements2, where we assume that each element of the function can be approximated by a function
of a simpler type, e.g. a first order polynomial, in a satisfying way.

2The literature disagrees about whether it’s the domain or the function which is subdivided in “elements.” We
remain neutral.

6

Assume first that we have a continuous function u of one variable. As u is continuous, we
also want the approximation to be continuous. We now subdivide the domain of u into a series of
subintervals (“elements”), which can be written as [xi−1, xi] for a suitable choice of xi, i = 0, . . . , N .
On each subinterval we approximate u with a first order polynomial (we could also have chosen
higher order polynomials or some completely different class of functions), but in such a way
that the approximation is still continuous, i.e. the polynomial on [xi−1, xi] should agree with the
polynomial on [xi, xi+1] in the common point xi.

As opposed to earlier, where u was approximated by values in a series of points, we now
approximate u using a function from a certain class V of functions (V is the set of functions which
are continuous on u’s domain and equals a first order polynomial on the subintervals [xi, xi+1]),
which are not differentiable everywhere (they are usually not differentiable in xi), and whose
second order derivative is 0 where it exists (the second derivative of a first order polynomial is 0).

The question now is how one in a sensible way chooses the function v ∈ V such that v is a
good approximation of u. For many reasons, some of which only appear in higher dimensions
than the one dimension we have in the present example, the finite difference method is not op-
timal for this, which should also be intuitively clear since this method makes no use of the fact
that v is an actual function with the same domain as u, and not just a finite collection of values.
If one combines the ideas from the section about conservation laws with the fact that v is not
differentiable everywhere, one should be able to guess that a good solution is to reformulate the
differential equation in a weak form.

1.5 The Finite Element Method
We will now introduce the finite element method by illustrating it with two examples. One
example will be an ODE example which can actually be solved numerically in a more elegant
way, but which can be described in very concretely and which serves the purpose of illustrat-
ing the ideas quite clearly, while the other example is a PDE example, which we will go through
more superficially, and which serves the purpose of illustrating how to use the method on more
complex problems. The two problems are chosen so that they resemble each other and can be
described briefly as Poisson problems with Dirichlet boundary conditions in one and two dimen-
sions, respectively.

Example 1

The first example is the one-dimensional Poisson problem with homogeneous Dirichlet bounda-
ries on [0, 1]:

u′′(x) = f(x) for x ∈ (0, 1), u(0) = u(1) = 0,

where f : (0, 1)→ R is a given function.

Example 2

The second example is the two-dimensional Poisson problem with the homogeneous Dirichlet
boundary conditions on the “sufficiently nice” set Ω whose boundary is denoted by ∂Ω:

uxx(x, y) + uyy(x, y) = f(x, y) for (x, y) ∈ Ω,

u(x, y) = 0 for (x, y) ∈ ∂Ω.

for a given function f : Ω→ R. 7

The weak formulation of the problem

As already hinted at, the first step is to reformulate the problem in the weak form. As discussed
in the first section, the weak formulation of a differential equation is constructed by multiplying
both sides with a test function and integrating. In the case of Example 1 we get:∫ 1

0

u′′(x)v(x) dx =

∫ 1

0

f(x)v(x) dx,

where v is a test function. Because of the boundary conditions u(0) = u(1) = 0, we limit our test
functions to those satisfying:

v(0) = v(1) = 0. (3)

Combining this with partial integrations gives∫ 1

0

f(x)v(x) dx = [u′(x)v(x)]1x=0 −
∫ 1

0

u′(x)v′(x) dx

= u′(1) · 0− u′(0) · 0−
∫ 1

0

u′(x)v′(x) dx

= −
∫ 1

0

u′(x)v′(x) dx. (4)

In exactly the same way we get ∫
Ω

fv ds = −
∫

Ω

∇u · ∇v ds, (5)

in the case of Example 2, where ∇w = ∂w
∂x

+ ∂w
∂y

. For a suitable choice of test functions (4) and
(5) are the weak formulations of the problems. The next topic is what kind of test functions we
should use.

Choice of test functions

One can show that a good choice of test functions is using the same type of functions as the
numerical solution we are looking for. This means that in Example 1, the test functions should be
continuous on [0, 1] and equal a first order polynomial on the subintervals [xi, xi+1], where x0 = 0,
xN = 1, and xi < xi+1 is a subdivision of [0, 1]. We notice that we already have an additional
requirement on the test functions, namely that they should take the value 0 at the endpoints 0 and
1, which is also dictated for the numerical solution by the Dirichlet boundary conditions! We will
denote the set of test functions by V0, i.e.

V0 = {v : [0, 1]→ R | v continouos, v(0) = v(1) = 0, and v|[xi,xi+1](x) = pi(x), i = 0, . . . , N − 1},

where v|[xi,xi+1] denotes the restriction of v to [xi, xi+1] and pi denotes a first order polynomi-
al.Hence, V0 denotes both the set of test functions and the set of functions in which we search
for our numerical solution.

How about Example 2? First we need to generalize what we mean by an element in Example 2.
Where in Example 1, it is only possible to divide the interval in one way, namely subintervals,
the two-dimensional domain of Example 2 can be divided in many more ways. It turns out that

8

there many good ways of doing this. One of the most common ways if doing it is to subdivide the
domain into triangular areas (note that this emphatically does not agree with a finite difference
approach). What about the requirement that the numerical approximations should be first order
polynomials on each triangle? Well, polynomials also exist in higher dimensional version, and a
first order polynomial of to variables is a function of the form

p(x, y) = a1x + a2y + b

(while a second order polynomial of two variables is of the form a11x
2+a12xy+a22y

2+b1x+b2y+c).

Choice of basis for the test functions

Again we begin with Example 1. It is not difficult to see that V0 is a finite-dimensional vector space,
which means that there exist a finite number of functions (N − 1 to be precise) such that all
elements of V0 can be written as a linear combination of these finitely many functions. Such a
set is called a basis. Since v(0) = v(1) = 0 for all V0 and v must be continuous, the same must
hold for the basis functions. As v equals a first order polynomial on each subinterval of the type
[xi, xi+1], we know v on [xi, xi+1] if we know v(xi) and v(xi+1). Using this, one can prove that

vk(x) =

x−xk−1

xk−xk−1
for x ∈ [xk−1, xk]

xk+1−x
xk+1−xk

for x ∈ [xk, xk+1]

0 ellers,

k = 1, . . . , N − 1, constitutes a basis for V0. Hence, a basis function vk takes the value 1 in xk and 0
in every other xi, is continuous and equals a first order polynomial on each subinterval [xi, xi+1].

This description of the vk’s is the key to the description of a basis in Example 2, where we
chose triangular elements. Each triangle can be given by the coordinates of the three corners, and
the set of corners (all triangles included), we can denote by {xk : k ∈ K}, for a suitable index
set K.Let K0 denote those k for which xk 6∈ ∂Ω. The basis functions are then those vk, k ∈ K0,
satisfying that vk(xk) = 1, vk(xj) = 0 for k 6= j ∈ K, and vk restricted to each triangular element
equals some first order polynomial.

Taking advantage of the small support of the basis vectors

The support of a function f is the smallest closed set S such that f(x) = 0 for x 6∈ S. For the basis
vectors vk in Example 1, the support is thus [xk−1, xk+1]. If N is big, these intervals are typically
small, and vk is said to have small support. The support of a function contains the support of
the derivative of the function, and this means that the following two integrals will be 0 for most
choices of k and j (again assuming that N is big):∫ 1

0

vj(x)vk(x) dx and
∫ 1

0

v′j(x)v′k(x) dx

(concretely, they will be 0 for |k − j| > 1).
Likewise, ∫

Ω

vjvk ds and
∫

Ω

∇vj · ∇vk ds

will be 0, whenever xj and xk are not “neighboring corners.”

9

Matrix formulation of the problem

We now want to show how one finds a numerical solution in the case of Example 1. As we have
a basis for V0, finding a numerical solution to our problem corresponds to finding coefficients to
the basis vectors. Finding coefficients for a basis sounds like a linear algebra problem, and it also
turns out one can formulate it as a matrix problem. We begin by noting that we are looking for a
numerical solution v of the form

v(x) =
N−1∑
i=1

uivi(x),

where the ui are unknown coefficients and the vi are the basis vectors. The weak form of the
problem (4) thus takes the form∫ 1

0

f(x)vj(x) dx = −
∫ 1

0

(N−1∑
k=1

ukv
′
k(x)

)
v′j(x) dx = −

N−1∑
k=1

uk

∫ 1

0

v′k(x)v′j(x) dx,

which must hold for all j = 1, . . . , N − 1. Here the left-hand side can be evaluated numerically,
and the right-hand side is the sum of some unknown coefficients multiplied by some integrals
that can also be evaluated numerically, and which are 0 most of the time anyway (in fact it would
be enough to just sum over k ∈ {j − 1, j, j + 1}). Written in matrix form, we get

−

A1,1 A1,2 · · · AN−1,1

A2,1 A2,2 · · · AN−1,2
...

...
A1,N−1 A2,N−1 · · · AN−1,N−1

u1

u2
...

uN−1

 =

b1

b2
...

bN−1

 ,

or −Au = b for a suitable definition of A, u, and b, where

Aj,k =

∫ 1

0

v′j(x)v′k(x) dx

and

bj =

∫ 1

0

f(x)vj(x) dx.

Here we note that Aj,k is 0 except for |j−k| ≤ 1, or, put in a different way, the A matrix has 0 entries
except on, right above, and right below the diagonal, cf. the discussion about the small support,
which means that there are efficient ways of solving the matrix equation, even for large values of
N . In the case of Example 2, we get something completely analogous, just with A = (Aj,k)j,k∈K0 ,
u = (uk)k∈K0 , and b = (bj)j∈K0 suitably redefined. Again, A is a so-called sparse matrix and hence it
is also possible to solve this matrix equation numerically, even for a very large number of elements
(corresponding to a large set K0).

Final comment concerning the finite element method

It should be stressed that the free choice of “elements” in the finite element method can be used
in very efficient ways. If some area is of particular interest, and precision in this area is important,
one can just increase the resolution locally. Or if a model describes something which consists of

10

several different kinds of material, and the transision between the different materials is of special
importance, one can just increase the resolution in these areas – again locally and hence without
increasing the computational costs too much. A last example is that if a solution behaves in a
fairly simple way in some parts of the domain, while other areas have a more involved behavior,
one can of course again just increase the resolution in these areas. In fact, it is possible to estimate
the local “quality” of the output as a biproduct of the computations, and one can thus automate
such a refinement of the element division.

1.6 Numerical considerations – conservation laws and volumes
So far, we haven’t really taken advantage of the fact that we are dealing with conversation laws.
In many cases, however, this property can mean a lot for the model and be of great help in the
computations. Assume for example that we have some form of chemical solution in a liquid in
some more or less complicated system, and that we are fully satisfied with knowing the average
value of the concentration in so-called control volumes, but interested in that the flow is as correct
as possible, and that possible errors cancel out, such that we for example don’t suddenly have a
larger amount of dissolved material than was originally added to the system. In such cases, one
can use the conservation laws, and it is this idea the finite volume method builds on. In the finite
volume method, the domain of the model of the problem is subdivided into so-called control vo-
lumes, e.g. consisting of tetrahedrons (“three-dimensional triangles”), and the numerical solution
will be the average value in these control volumes.

1.7 The Finite Volume Method
As mentioned above, the conservation laws play a great role in the finite volume method. First,
the space is subdivided into some control volumes. The idea is, as already hinted at above, to
use that the integral over divergence terms can be converted into surface integrals via Gauss’
divergence theorem.These surface integrals on each control volume are then evaluated as flux
values on the surface of each control volume. The method is locally conservative, because the
idea is to take advantage of the fact that a flux out of the side of one control volume necessarily
must equal the flux into the side of the neighboring control volume. We will now briefly illustrate
the idea use Example 1 from the finite element section.

Example 1 retold in conservative form

The one-dimensional Poisson problem with homogeneous Dirichlet boundary conditions on [0, 1]
is given by:

u′′(x) = f(x) for x ∈ (0, 1)

u(0) = u(1) = 0,

where f : (0, 1)→ R is a given function.
As we are in one dimension, the divergence is just the x-derivative, and we can thus reformu-

late the problem in the following way:

div u′(x) = f(x) for x ∈ (0, 1). (6)

11

Subdividing the domain

As we need to be able to refer to both midpoints and edges of the control volumes (which are just
intervals, thanks to the one dimension), we need to put a bit more care into our subdivision than
earlier. More precisely we need

0 = x0 = x 1
2
< x1 < x 3

2
< · · · < xi− 1

2
< xi < xi+ 1

2
< · · · < xN < xN+ 1

2
= xN+1 = 1,

and our control volumes are then Ki = (xi− 1
2
, xi+ 1

2
), i = 1, . . . , N . We write ∆xi = xi+ 1

2
− xi− 1

2

and ∆xi+ 1
2

= xi+1 − xi for i = 1, . . . N . The unknowns are now ui, i = 1, . . . , N and should be
interpreted as approximations of the average values of u over Ki.

Matrix formulation of the problem

We integrate (6) over Ki and apply Gauss’ divergens theorem, which in one dimension reduces
to the fundamental theorem of calculus:

u′(xi+ 1
2
)− u′(xi− 1

2
) =

∫
Ki

f(x) dx.

We can now approximate u′ with a difference quotient (central difference):

u(xi+1)− u(xi)

∆xi+ 1
2

− u(xi)− u(xi−1)

∆xi− 1
2

≈
∫
Ki

f(x) dx.

As ui should just approximate u’s average value over Ki, we choose to define the ui’s by the fol-
lowing relation:

ui+1 − ui

∆xi+ 1
2

− ui − ui−1

∆xi− 1
2

=

∫
Ki

f(x) dx,

which is valid for all i = 1, . . . , N , if one puts u0 = uN+1 = 0. This can also be written in matrix
form:

Au = f,

where u =
[
u0 u1 · · · uN uN+1

]T , f =
[
0
∫
K1

f(x) dx · · ·
∫
Ki

f(x) dx · · ·
∫
KN

f(x) dx 0
]T

and A = (Aij)i,j∈{0,1,...,N,N+1} is given by (Au)0 = u0, (Au)N+1 = uN+1, and (Au)i = ui+1−ui

∆x
i+1

2

− ui−ui−1

∆x
i− 1

2

for i = 1, . . . , N .

Final comment concerning the finite volume method

As for the finite element method, it should be stressed that the free choice of control volumes in
the finite volume method can be used efficiently for approximately the same reasons as before
and with approximately the same arguments. In addition, the locally conservative method means
that errors tend to cancel: what one cell loses, the next one gains, so that the overall flow stays
close to being correct.

12

	Numerical methods for solving differential equations
	Conservation laws
	Numerical considerations – pointwise representation
	The Finite Difference Method
	Numerical considerations – element-wise representation
	The Finite Element Method
	Numerical considerations – conservation laws and volumes
	The Finite Volume Method

