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1 Analytical methods

1.1 Methods for first order ODE’s

1.1.1 Separation of variables

An ODE which can be written on the form

g(y(x))y′(x) = f(x)

can be solved by finding the following integrals:∫
g(y) dy =

∫
f(x) dx+ k,

and isolating y in the expression you get.

1.1.2 Exact ODE’s

An ODE which can be written on the form

M(x, y(x)) +N(x, y(x))y′(x) = 0,

where N and M satisfy
∂M

∂y
(x, y) =

∂N

∂x
(x, y),

can be solved by finding a function u of two variables which satisfies that

∂u

∂x
(x, y) = M(x, y) and

∂u

∂y
(x, y) = N(x, y).

The function u can be found by first integrating M wrt. the first variable:

f(·, y) =

∫
M(t, y) dt,
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and then defining

g(y) = N(x, y)− ∂f

∂y
(x, y),

(note that g turns out only to depend on one variable). Then u is given by

u(x, ·) = f(x, ·) +

∫
g(t) dt.

Note that all antiderivatives are functions of an (unnamed) variable, which is represented by a
dot (·) wherever it appears in a given equation except in the antiderivates.

1.1.3 Integrating factors

Some ODE’s which aren’t exact can be transformed to exact ODE’s by multiplying both sides with
an integrating factor. In some instances, the following result can be used to finding an integrating
factor.

Sætning 1.1. If the functions P and Q in the ODE

P (x, y(x)) +Q(x, y(x))y′(x) = 0

satisfy that

R(x, y) =
1

Q(x, y)

(∂P
∂y

(x, y)− ∂Q

∂x
(x, y)

)
is constant as a function of y for fixed x, then

F (x, y) = F (x) = exp

∫ x

R(x1, y) dx1

is an integrating factor. Correspondingly, if

R∗(x, y) =
1

P (x, y)

(∂Q
∂x

(x, y)− ∂P

∂y
(x, y)

)
is constant as function of x for fixed y, then

F ∗(x, y) = F ∗(y) = exp

∫ y

R∗(x, y1) dy1

is an integrating factor.

1.1.4 Homogeneous linear ODE’s

For all numbers c,
y = ce−

∫
p(x) dx

is a solution to ODE’s which can be written on the form

y′(x) + p(x)y(x) = 0.
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1.1.5 Inhomogeneous linear ODE’s

An ODE which can be written on the form

y′(x) + p(x)y(x) = r(x)

has the following solutions:

y = e−h
(∫

eh(x)r(x) dx+ c
)
, where h =

∫
p(x) dx and c ∈ R.

1.1.6 The Bernoulli equation

An ODE which can be written on the form

y′(x) + p(x)y(x) = g(x)y(x)a,

where a 6= 1, can be solved by first finding a solution u to the following linear first order ODE:

u′(x) + (1− a)p(x)u(x) = (1− a)g(x),

and then setting
y(x) = u(x)

1
1−a .

1.2 Methods for second order ODE’s

1.2.1 Homogeneous linear ODE’s

1.2.1.1 Linearity of solutions/the superpositionprinciple

If y1 and y2 are defined on the same interval and both are solutions to the ODE

y′′(x) + p(x)y′(x) + q(x)y(x) = 0, (1)

then y = ay1 + by2 is also a solution for all choices of real numbers a, b ∈ R. The solutions y1 and
y2 are linearly independent if and only if the Wronski determinant W (y1,y2)(x) = y1(x)y′2(x) −
y2(x)y1(x) is different from 0 for one (and hence all) x. If p and q are continuous and y1 and y2 er
linearly independent, then all solutions are of the form y = ay1 + by2 and an initial value problem
(1) with

y(x0) = K0, y′(x0) = K1

has a unique solution.

1.2.1.2 Reduction of order

Assume that y1 is a solution to the ODE

y′′(x) + p(x)y′(x) + q(x)y(x) = 0.
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then
y2 = y1u, where u =

∫
v1(x) dx, and v1 =

1

y2
1

e−
∫
p(x) dx

is also a solution, and y1 and y2 are linearly independent.
Note that we don’t care about the integration constants, as in one case it just corresponds to

multiplying our solution with a positive number, and in the other case it corresponds to adding a
constant factor of y1.

1.2.1.3 Constant coefficients

The solutions to an ODE which can be written on the form

y′′(x) + ay′(x) + by(x) = 0,

depends on the sign of the discriminant a2 − 4b.

a2 − 4b > 0: all solutions can be written on the form

y(x) = c1e
λ+x + c2e

λ−x,

where λ± = −a±
√
a2−4b

2
and c1, c2 ∈ R.

a2 − 4b = 0: all solutions can be written on the form

y(x) = c1e
λ0x + c2xe

λ0x,

where λ0 = −a
2

and c1, c2 ∈ R.

a2 − 4b < 0: all solutions can be written on the form

y(x) = c1e
−ax

2 sin(ωx) + c2e
−ax

2 cos(ωx),

where ω =
√
b− 1

4
a2.

1.2.1.4 Euler-Cauchy equations

The solutions to an ODE which can be written on the form

x2y′′(x) + axy′(x) + by(x) = 0,

depends on the sign of the discriminant (a− 1)2 − 4b.

(a− 1)2 − 4b > 0: all solutions can be written on the form

y(x) = c1x
m+ + c2x

m− ,

where m± = 1−a
2
±
√

1
4
(a− 1)2 − b and c1, c2 ∈ R.

(a− 1)2 − 4b = 0: all solutions can be written on the form

y(x) = c1x
1−a
2 + c2 ln(|x|)x

1−a
2 .

(a− 1)2 − 4b < 0: all solutions can be written on the form

y(x) = c1x
1−a
2 sin(ω ln(x)) + c2x

1−a
2 cos(ω ln(x)),

where ω =
√
b− 1

4
(a− 1)2.
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1.2.2 Non-homogeneous linear ODE’s

1.2.2.1 Linearity of solutions/the superposition principle

The set of solutions of an ODE which can be written on the form

y′′(x) + p(x)y′(x) + q(x)y(x) = r(x) (2)

where r 6≡ 0, is not linear, but if yp is a solution to (2) (a particular solution), then any solution can
be written on the form

yg = yp + yh,

where yh is a solution to the corresponding homogeneous equation

y′′(x) + p(x)y′(x) + q(x)y(x) = 0, (3)

whose set of solutions is a linear space. Correspondingly, if yp and ỹp are two solutions to (2), then
yh = yp − ỹp is a solution to (3).

1.2.2.2 The method of undetermined coefficients

This method works by making a qualified guess yp on a solution to an ODE which can be written
on the form

y′′(x) + ay′(x) + by(x) = r(x), (4)

where a and b are constants, while r =
∑

i ri is a sum of functions which can be written in one of
the following ways: keγx, kxn, k sin(ωx), k cos(ωx), keαx sin(ωx), keαx cos(ωx). Here, k, γ, and ω are
real constants, while n ∈ N∪{0}. The qualified guess yp has a term fi per term ri appearing in the
sum r =

∑
i ri, and these terms are chosen according to the following table.

Term ri in r(x) Choice of term fi in yp(x)
keγx Ceγx

kxn (n ∈ N) Knx
n +Kn−1x

n−1 + · · ·+K1x
1 +K0

k sin(ωx)

k cos(ωx)

}
K cos(ωx) +M sin(ωx)

keαx cos(ωx)

keαx sin(ωx)

}
eαx(K cos(ωx) +M sin(ωx))

Here, the constants γ, n, ω, and α are the same as in the corresponding term in r, while C, K,
M , and Kj , j = 0, . . . , n are unknown constants for each term in yp =

∑
fi, and which must be

determined. If a term fi is a solution to the corresponding homogeneous ODE,

y′′(x) + ay′(x) + by(x) = 0, (5)

then fi is replaced by the function f̃i : x 7→ xfi. If also f̃i is a solution to (5), then fi is replaced by
x 7→ x2fi = xf̃i. The guess yp is now plugged into the equation (4) and the unknown constants are
determined.
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1.2.2.3 Disturbed mass-spring systems

Consider the ODE
my′′(t) + cy′(t) + ky(t) = F0 cos(ωt),

where m, k, F0, and ω are positive constants while c is non-negative and let ω0 =
√

k
m

. If c > 0 or
ω 6= ω0, then

yp(t) = a cos(ωt) + b sin(ωt) = C cos(ωt+ δ)

is a solution if a = F0
m(ω2

0 − ω2)

m2(ω2
0 − ω2)2 + ω2c2

and b = F0
ωc

m2(ω2
0 − ω2)2 + ω2c2

or tan(δ) = ωc
m(ω2

0−ω2)

and C = F0√
m2(ω2

0−ω2)2+ω2c2
.

If c = 0 and ω 6= ω0, then it reduces to

yp(t) =
F0

m(ω2
0 − ω2)

cos(ωt)

and ρ = k
F0
a = 1

1−( ω
ω0

)2
is called the resonance factor. Another solution for c = 0 and ω 6= ω0 is

ỹp(t) =
F0

m(ω2
0 − ω2)

sin
(
ω0+ω

2
t
)

sin
(
ω0−ω

2

)
.

If c = 0 and ω = ω0 then

yp(t) =
F0

2mω0

t

is a solution.
If 0 < c2 ≤ 2mk, then the solutions have the biggest amplitude when ω =

√
ω2

0 − c2

2m2 and in
that case, all solutions tend to

yp(t) =
2mF0

c
√

4m2ω2
0 − c2

cos(ωt− δ),

where tan(δ) = 2mω
c

when t→∞.

1.2.2.4 Variation of parameters

An ODE which can be written on the form

y′′(x) + p(x)y′(x) + q(x)y(x) = r(x),

where p, q, and r are continuous functions, has the solution

yp = −y1

∫
y2(x)r(x)

W (x)
dx+ y2

∫
y1(x)r(x)

W (x)
dx,

where y1 and y2 are solutions to the corresponding homogeneous problem,

y′′(x) + p(x)y′(x) + q(x)y(x) = 0,

and W = y1y
′
2 − y′1y2.
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1.3 The Laplace transform

1.3.1 The Laplace transform of certain functions

f(t) 1 t t2 tn
n=0,1,2,...

ta
a≥0

eat

L(f)(s) 1
s

1
s2

2!
s3

n!
sn+1

Γ(a+1)
sa+1

1
s−a

f(t) cos(ωt) sin(ωt) cosh(at) sinh(at) eat cos(ωt) eat sin(ωt)

L(f)(s) s
s2+ω2

ω
s2+ω2

s
s2−a2

a
s2−a2

s−a
(s−a)2+ω2

ω
(s−a)2+ω2

1.3.2 Linearity of the Laplace transform and its inverse

the Laplace transform is linear, i.e. if one knows the Laplace transform L(f) of f and the Laplace
transform L(g) of g, then one can compute the Laplace transform of af + bg, where a and b are
real numbers, in the following way:

L(af + bg) = aL(f) + bL(g).

Likewise, the inverse of the Laplace transform is linear, i.e. if one knows L−1(F ) = f and L−1(G) =
g, then one can compute the inverse Laplace transform of aF+bG, where a and b are real numbers,
in the following way:

L−1(aF + bG) = aL−1(F ) + bL−1(G).

1.3.3 s-shifting

If L(f) = F , and g(t) = eatf(t), then L(g)(s) = L(t 7→ eatf(t))(s) = F (s− a).

1.3.4 the Laplace transform of derivatives

If the Laplace transform F = L(f) of f and the derivative of f exist, then

L(f (n))(s) = snF (s)− sn−1f(0)− sn−2f ′(0)− · · · − s1f (n−2)(0)− f (n−1)(0).

In particular
L(f ′′)(s) = s2F (s)− sf(0)− f ′(0)

and
L(f ′)(s) = sF (s)− f(0).

1.3.5 the Laplace transform of integrals

If the Laplace transform L(f) = F of f and the Laplace transform of the integral of f exist, i.e. if
the Laplace transform G = L(g) of the function g given by g(t) =

∫ t
0
f(x) dx exists, then

G(s) = L(g)(s) = L(t 7→
∫ t

0

f(x) dx)(s) =
1

s
F (s).
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1.3.6 solution of initial value problems

1.3.6.1 initial value problems with t0 = 0

Initial value problems such as

y′′(t) + ay′(t) + by(t) = r(t), y(0) = K0, y′(0) = K1,

where a, b, K0, and K1 are constants, and the function r is sufficiently nice, can be rewritten to an
algebraic problem by taking the Laplace transform on both sides:

L(y′′ + ay′ + by)(s) = L(r)(t)

which in this case can be written as

(s2Y (s)− sy(0)− y′(0)) + a(sY (s)− y(0)) + bY (s) = (s2 + as+ b)Y (s)− (s+ a)K0 −K1 = R(s)

where Y = L(y) and R = L(r). By isolating Y (s) one gets

Y (s) =
(s+ a)K0 +K1 +R(s)

s2 + as+ b
=
(
(s+ a)K0 +K1

)
Q(s) +R(s)Q(s), (6)

where Q(s) = 1
s2+as+b

= 1
(s+ 1

2
a)2+b− 1

4
a2

. We can now solve the initial value problem by taking the
inverse Laplace transform of ((s+ a)K0 +K1)Q(s) +R(s)Q(s).

1.3.6.2 Shifted data problems

Initial value problems such as

y′′(t) + ay′(t) + by(t) = r(t), y(t0) = K0, y′(t0) = K1,

where a, b,K0, andK1 are constants and t0 6= 0, can be solved by at setting t̃ = t−t0, ỹ(t̃) = y(t̃+t0),
and solving

ỹ′′(t̃) + aỹ′(t̃) + bỹ(t̃) = r(t̃), ỹ(0) = K0, ỹ′(0) = K1,

by finding Ỹ and then ỹ(t̃), then y can be found by using that y(t) = ỹ(t̃) = ỹ(t− t0).

1.3.7 Partial fractions

assume that we have a polynomial fraction on the following form:

P (s)

Q(s)
,

where

Q(s) =
n∏
i=1

(s− ri)
m∏
j=1

(s2 + ajs+ bj), where ri ≤ ri+1, aj ≤ aj+1,

and where s2 + ajs + bj has no real roots for j = 1, . . . ,m, and P (s) is a polynomial of degree
n+ 2m− 1 or degree n+ 2m− 2. If ri 6= ri+1 for all i = 1, . . . , n− 1, and ajs+ bj 6= aj+1s+ bj+1 for
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all j = 1, . . . ,m − 1, and one can find n + 2m constants, Ak, Bl, Cl,∈ R, k = 1, . . . , n, l = 1, . . . ,m,
such that

P (s) =
n∑
k=1

Ak

n∏
i=1
i 6=k

(s− ri)
m∏
j=1

(s2 + aj + bj) +
m∑
l=1

(Bls+ Cl)
n∏
i=1

(s− ri)
m∏
j=1
j 6=l

(s2 + ajs+ bj), (7)

then
P (s)

Q(s)
=

n∑
k=1

Ak
s− rk

+
m∑
l=1

Bks+ Ck
s2 + aks+ bk

,

where we recall that s2 + aks+ bk = (s+ 1
2
ak)

2 + bk − 1
4
a2
k. If in addition we have that m = 0, then

the constants Ak can be found just by plugging rk into (7) and isolating Ak:

Ak =
P (rk)∏n

i=1
i 6=k

(rk − ri)
(if m = 0).

If instead ri = ri+1 (but ri+1 6= ri+2, if i ≤ n − 2) for one or more i ∈ {1, 2, . . . , n − 1}, and
ajs + bj 6= aj+1s + bj+1 for all j = 1, . . . ,m− 1, and one can find n + 2m constants, Ak, Bl, Cl,∈ R,
k = 1, . . . , n, l = 1, . . . ,m, such that

P (s) = A1

n∏
i=2

(s− ri)
m∏
j=1

(s2 + aj + bj) +
n∑
k=2

rk 6=rk−1

Ak

n∏
i=1
i 6=k

(s− ri)
m∏
j=1

(s2 + ajs+ bj)

+
n∑
k=2

rk=rk−1

Ak(s− rk)
n∏
i=1
i 6=k

(s− ri)
m∏
j=1

(s2 + aj + bj)

+
m∑
l=1

(Bls+ Cl)
n∏
i=1

(s− ri)
m∏
j=1
j 6=l

(s2 + aj + bj),

(8)

then
P (s)

Q(s)
=

A1

s− r1

+
n∑
k=2

rk 6=rk−1

Ak
s− rk

+
n∑
k=2

rk=rk−1

Ak
(s− rk)2

+
m∑
l=1

Bks+ Ck
s2 + aks+ bk

. (9)

Similar tricks work also in the case where ri = ri+1 = · · · = ri+k for k ≥ 2 and one (or more)
indices i ∈ {1, . . . , n − 1}, or ajs + bj = aj+1s + bj+1 for some j ∈ {1, . . . ,m − 1}, but the for-
mulas corresponding to (8) and (9) become correspondingly more complicated. In this case, it is
recommended to proceed by trial and error with expressions similar to (9) and from this find an
expression of the form (8) by multiplying with Q(s) on both sides.

1.4 Systems of ODE’s

1.4.1 Conversion of ODE’s of order n to systems of n ODE’s of order 1

An ODE of order n of the form

y(n)(t) = F (t,y(t),y′(t), . . . ,y(n−1)(t))

11



is equivalent with the following system of n ODE’s of first order:

y′1 = y2

y′2 = y3

· · ·
y′n−1 = yn

y′n = F (t,y1,y2, . . . ,yn)

via the identification
y1 = y, y2 = y′, y3 = y′′, · · · yn = y(n−1).

1.4.2 Systems of ODE’s of order 1 with constant coefficient matrices

Et system of n ODE’s of order 1 of the form

y′ = Ay,

where A is a constant coefficient matrix with real eigenvalues λ1, λ2, . . . , λn with corresponding
eigenvectors v1, v2, . . . , vn, has the general solution

c1v1e
λ1 + c2v2e

λ2 + · · ·+ cnvne
λn ,

where c1, c2, . . . , cn are real constants.

1.5 Fourier series

1.5.1 Computation of Fourier coefficients etc.

If f is a 2π-periodic function which is sufficiently nice, then the Fourier coefficients of f are given
by

a0(f) =
1

2π

∫ π

−π
f(x) dx,

an(f) =
1

π

∫ π

−π
f(x) cos(nx) dx and

bn(f) =
1

π

∫ π

−π
f(x) sin(nx) dx

for all n ∈ N and the Fourier series for f is given by

a0(f) +
∞∑
n=1

(
an(f) cos(nx) + bn(f) sin(nx)

)
. (10)

If f is piecewise continuous with left- and right-derivatives everywhere, then it is sufficiently nice
in the above sense and the Fourier series (10) converges pointwise towards f in the continuity
points of f , while it converges towards the average of the left and right limit at discontinuity
points.
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1.5.2 Even and odd functions

If f is 2π-periodic, sufficiently nice and even (i.e. f(−x) = f(x)), then bn(f) = 0 for all n ≥ 1 and
an(f), n ≥ 0, can be computed in the following way:

a0(f) =
1

π

∫ π

0

f(x) dx and an(f) =
2

π

∫ π

0

f(x) cos(nx) dx for n = 1,2,3, . . . .

If f is 2π-periodic, sufficiently nice and odd (i.e. f(−x) = −f(x)), then an(f) = 0 for all n ≥ 0 and
bn(f), n ≥ 1, can be computed in the following way:

bn(f) =
2

π

∫ π

0

f(x) sin(nx) dx.

1.5.3 Linearity of Fourier coefficients

If f and g have the Fourier coefficients a0(f), an(f), and bn(f) resp. a0(g), an(g), and bn(g), then
the function c1f + c2g, where c1 and c2 are real numbers, has the Fourier coefficients

a0(c1f + c2g) = c1a0(f) + c2a0(g),

an(c1f + c2g) = c1an(f) + c2an(g) and
bn(c1f + c2g) = c1bn(f) + c2bn(g),

where n = 1, 2, 3, . . . .

1.5.4 Change of period

If f is 2L-periodic, then the Fourier series for f is given by

a0(f) +
∞∑
n=1

(
an(f) cos

(nπ
L
x
)

+ bn(f) sin
(nπ
L
x
))

,

where

a0(f) =
1

2L

∫ L

−L
f(x) dx

an(f) =
1

L

∫ L

−L
f(x) cos

(nπ
L
x
)

dx

bn(f) =
1

L

∫ L

−L
f(x) sin

(nπ
L
x
)

dx,

for n = 1, 2, 3, . . . .

1.5.5 Half-range expansions

If f : [0, L]→ R is continuous, then

f(x) = a0(f) +
∞∑
n=1

an(f) cos
(nπ
L
x
)

=
∞∑
n=1

bn(f) sin
(nπ
L
x
)

13



for all x ∈ (0, L), where

a0(f) =
1

L

∫ L

0

f(x) dx

an(f) =
2

L

∫ L

0

f(x) cos
(nπ
L
x
)

dx and

bn(f) =
2

L

∫ L

0

f(x) sin
(nπ
L
x
)

dx.

The functions fl and fu defined for all x ∈ R and given by

fl(x) = a0(f) +
∞∑
n=1

an(f) cos
(nπ
L
x
)

and fu(x) =
∞∑
n=1

bn(f) sin
(nπ
L
x
)

are resp. the even and the odd 2L-periodic expansion of f .

1.6 Methods for second order PDE’s

1.6.1 The one-dimensional wave equation

The one-dimensional wave equation

utt = c2uxx, where c2 =
T

ρ
, (11)

on (x, t) ∈ [0, L]× R≥0 with the boundary condition

u(0, t) = u(L, t) = 0 (12)

and the initial value conditions
u(x, 0) = f(x) (13)

and
ut(x, 0) = g(x), (14)

where f, g : [0, L] → R are two sufficiently nice functions, can be solved as described in the fol-
lowing subsubsections.

1.6.1.1 The Fourier series method

Let λn = cnπ
L

and

u(x, t) =
∞∑
n=1

un(x, t) =
∞∑
n=1

(
bn cos(λnt) + b∗n sin(λnt)

)
sin
(nπ
L
x
)
,

where the bn’s are the Fourier coefficients of the 2L-periodic, odd, half-range expansion of f

bn =
2

L

∫ L

0

f(x) sin
(nπ
L
x
)

dx

14



and

b∗n =
2

cnπ

∫ L

0

g(x) sin
(nπ
L
x
)

dx.

then u is the solution to the wave equation (11) with the boundary condition (12) and the initial
value conditions (13) and (14). The functions un(x, t) =

(
bn cos(λnt) + b∗n sin(λnt)

)
sin
(
nπ
L
x
)

are
called eigenfunctions with eigenvalues λn and have the frequencies λn

2π
. The set {λn | n ∈ N} is called

the spectrum, u1 is called the fundamental mode, while un are called overtones for n ≥ 1.

1.6.1.2 D’Alembert’s solution

Let

u(x, t) =
1

2

(
f(x+ ct) + f(x− ct)

)
+

1

2c

∫ x+ct

x−ct
g(s) ds,

where f and g are assumed to be odd and 2L-periodic. then u is the solution to the wave equation
(11) with the boundary condition (12) and the initial value conditions (13) and (14).

1.6.2 The one-dimensional heat equation

The solution to the one-dimensional heat equation

ut = c2uxx, where c2 =
K

σρ
, (15)

on (x, t) ∈ [0, L]× R≥0 and the initial value condition

u(x, 0) = f(x) (16)

where f : [0, L] → R is a sufficiently nice function, depends on the boundary condition as de-
scribed in the the following subsubsections.

1.6.2.1 The boundary condition u(0, t) = u(L, t) = 0

If both ends are kept at the temperature 0, then the system has the boundary condition

u(0, t) = u(L, t) = 0. (17)

If so,

u(x, t) =
∞∑
n=1

un(x, t) =
∞∑
n=1

bn(f) sin
(nπ
L
x
)
e−λ

2
nt,

where λn = cnπ
L

and

bn(f) =
2

L

∫ L

0

f(x) sin
(nπ
L
x
)

dx,

is the solution to (15) with the initial value condition (16) and the boundary conditions (17). The
coefficients bn(f) are thus the Fourier coefficients of the 2L-periodic, odd, half-range expansion of
f . The functions un(x, t) = sin

(
nπ
L
x
)
e−λ

2
nt are called the eigenfunctions of the problem with eigenval-

ues λn.
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1.6.2.2 Isolated endpoints

If both ends are isolated, then the system has the boundary condition

ux(0, t) = ux(L, t) = 0. (18)

If so,

u(x, t) =
∞∑
n=0

un(x, t) = a0(f) +
∞∑
n=1

an(f) cos
(nπ
L
x
)
e−λ

2
nt,

where λn = cnπ
L

and

a0(f) =
1

L

∫ L

0

f(x) dx and an(f) =
2

L

∫ L

0

f(x) cos
(nπ
L
x
)

dx for n ≥ 1,

is the solution to (15) with the initial value condition (16) and the boundary condition (18). The
coefficients a0(f) and an(f) are thus the Fourier coefficients of the 2L-periodic, even, half-range
expansion of f . The functions un(x, t) = sin

(
nπ
L
x
)
e−λ

2
nt are called the eigenfunctions of the problem

with eigenvalues λn.

2 Numerical methods

2.1 solution of equations

2.1.1 Fixed-point iteration

Assume that we want to find a solution to an equation of the form

g(x) = x.

Let x0 be a guess for a solution s to the equation g(x) = x. Now define recursively

x1 = g(x0), x2 = g(x1), . . . , xn+1 = g(xn), . . . ,

for all n ≥ 1. In some cases the sequence {xn}∞n=0 will now approach the solution s when n grows,
i.e. xn → s for n→∞. A sufficient condition is given in the Theorem below.

Sætning 2.1. Let s be a solution to x = g(x) and assume that g is continuously differentiable in an
interval J around s. If |g′(x)| ≤ K < 1 i J , then the sequence converges {xn}∞n=0 towards x∞ = s,
whenever x0 ∈ J .

2.1.2 Newton’s method

Assume that we want to find a solution to an equation of the form

f(x) = 0,
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where f is a continuously differentiable function. Let x0 be a guess for a solution s to the equation
f(x) = 0. Now define recursively

x1 = s0 −
f(x0)

f ′(x0)
, x2 = x2 −

f(x1)

f ′(x2)
, . . . , xn+1 = xn −

f(xn)

f ′(xn)
, . . . ,

for all n ≥ 1. In some cases the sequence {xn}∞n=0 will now approach the solution s, when n grows,
i.e. xn → s for n→∞. The following Theorem gives information about hte rate of convergence.

Sætning 2.2. If f is twice differentiable and f ′(s) 6= 0, where f(s) = 0 is a solution, then Newton’s
method is at least of order 2.

2.1.3 The secant method

Assume that we want to find a solution to an equation of the form

f(x) = 0.

Let x0 and x1 be two different guesses for a solution s to the equation f(x) = 0. Now define
recursively

x2 = x1 − f(x1)
x1 − x0

f(x1)− f(x0)
, x3 = x2 − f(x2)

x2 − x1

f(x2)− f(x1)
,

. . .

xn+1 = xn − f(xn)
xn − xn−1

f(xn)− f(xn−1)
,

. . .

for all n ≥ 1. In some cases the sequence {xn}∞n=0 will now approach the solution s, when n grows,
i.e. xn → s for n→∞.

2.2 Interpolation polynomials

2.2.1 A polynomial through n+ 1 points

Given n + 1 points in the plane, (xi, yi), i = 0, . . . , n, where xi 6= xi when i 6= j, there exists a
unique polynomial pn of degree (at most) n, such that pn(xi) = yi.

2.2.1.1 Lagrange interpolation

Let (xi, yi), i = 0, . . . , n be n+ 1 points in the plane where xi 6= xj for i 6= j. Let

`j(x) =
n∏
i=0
i 6=j

(x− xi) = (x− x0)(x− x1) · · · (x− xj−1)(x− xj+1) · · · (x− xn)

and
Lj(x) =

lj(x)

lj(xj)
.
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then

pn(x) =
n∑
i=0

yiLi(x)

is the polynomial of degree (at most) n, such that pn(xi) = yi.

2.2.1.2 Newton’s divided difference method

Let (xi, yi), i = 0, . . . , n be n+ 1 points in the plane where xi 6= xj for i 6= j. Let

f [xi] = yi,

f [x0, . . . , xk] =
f [x1, . . . , xk]− f [x0, . . . , xk−1]

xk − x0

,

and
gi(x) = f [x0, . . . , xi](x− x0) · · · (x− xi−1) = f [x0, . . . , xi]

∏
j<i

(x− xj).

then

pn(x) =
n∑
i=0

gi(x)

is the polynomial of degree (at most) n, such that pn(xi) = yi.

2.2.2 Polynomial approximation of functions

If f : A → R, A ⊂ R is a function which we know the values of at xi, i = 0, . . . , n, where xi 6=
xj for i 6= j, i.e. if ve know f(xi) for i = 0, . . . , n, then polynomial pn through (xi, f(xi)), i =
0, . . . , n, is called a polynomial approximation of f . If x ∈ [mini(xi),maxi(xi)], then pn(x) is called the
interpolated value, while pn(x) is called the ekstrapolated value, if x /∈ [mini(xi),maxi(xi)]. If we for a
x ∈ [mini(xi),maxi(xi)] use pn(x) instead of f(x), then the error

εn = f(x)− pn(x) = (x− x0)(x− x1) · · · (x− xn)
f (n+1)(tx)

(n+ 1)!

for some tx ∈ [mini(xi),maxi(xi)]. We can then find an upper and a lower bound for εn by finding
upper and lower bounds for f (n+1).

2.3 Numerical integration

2.3.1 Rectangular rule

Let f : [a, b]→ R. For a n ∈ N we put h = b−a
n

and x0 = a, xi = x0 + ih for i = 1, . . . , n.. then

Jmn = h

n∑
i=1

f(xi − h
2
)

is an approximation of
∫ b
a
f(x) dx and if f is sufficiently nice – e.g. if f is continuous – then we

have that Jmn →
∫ b
a
f(x) dx for n→∞. The rectangular rule has degree of precision 1.
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2.3.2 The trapezoidal rule

Let f : [a, b]→ R. For a n ∈ N we put h = b−a
n

and x0 = a, xi = x0 + ih for i = 1, . . . , n. Then

J tn =
h

2

(
f(a) + f(b)

)
+ h

n−1∑
i=1

f(xi)

is an approximation of
∫ b
a
f(x) dx and if f is sufficiently nice – e.g. if f is continuous – then we

have that J tn →
∫ b
a
f(x) dx for n→∞. If f is twice differentiable, then there exists a xt ∈ [a, b] such

that
εtn = −b− a

12
h2f ′′(xt),

where εtn =
∫ b
a
f(x) dx− J tn is the error in the approximation. If n is an even number, the error can

be approximated via the following formula:

εtn ≈
1

3
(J tn − J tn

2
).

The trapezoidal rule has degree of precision 1.

2.3.3 Simpson’s rule

Let f : [a, b]→ R. For a n ∈ N we put h = b−a
n

and x0 = a, xi = x0 + ih for i = 1, . . . , n. Then

JSn =
h

6

(
f(a) + f(b)

)
+

2h

3

n∑
i=1

f(xi − h
2
) +

h

3

n−1∑
i=1

f(xi)

is an approximation of
∫ b
a
f(x) dx and if f is sufficiently nice – e.g. if f is continuous – then we

have that JSn →
∫ b
a
f(x) dx for n→∞. If f is four times differentiable, then there exists a xS ∈ [a, b]

then
εSn = −(b− a)

2880
h4f (4)(xS),

where εSn =
∫ b
a
f(x) dx−JSn is the error in the approximation. If n is an even number, the error can

be approksimated via the following formula:

εSn ≈
1

15
(JSn − JSn

2
).

Simpson’s rule has degree of precision 3.

2.3.4 Gauss integration

Let f : [a, b]→ R. For a n ∈ N, n ≥ 2, we put

JGn =
b− a

2

n∑
i=1

wif
(b− a

2
zi +

a+ b

2

)
,

for some particular weights wi and points zi. For n between 2 and 5 the weights and points can be
found in the following table.
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Number of points n points zi weights wi degree of precision N

2 ±
√

3
3

1 3

3
0

±
√

3
5

8
9

5
9

5

4
±
√

3−2
√

6
5

7

±
√

3+2
√

6
5

7

18+
√

30
36

18−
√

30
36

7

5

0

±1
3

√
5− 2

√
10
7

±1
3

√
5 + 2

√
10
7

128
225

322+13
√

70
900

322−13
√

70
900

9

Gauss integration has degree of precision 2n− 1.

2.4 One-step methods for numerical solution of first order
ODE’s

In numerical one-step methods for solution of first order ODE’s, one finds sequences xn and yn,
with xn < xn+1, such that y(xn) ≈ yn, where yn is found using xn−1 and yn−1.

2.4.1 The Euler method

Consider the initial value problem

y′(x) = f(x, y(x)), where y(x0) = y0.

Let h > 0 be a step length and put xn = x0 + nh for n = 0, 1, 2, . . . . Define yn, n = 0, 1, 2, . . . ,
recursively by

yn+1 = yn + hf(xn, yn).

then the local truncation error is O(h2) and the global truncation error is O(h). The Euler method
is thus a first order method.

2.4.2 Heun’s method

Consider the initial value problem

y′(x) = f(x, y(x)), where y(x0) = y0.

Let h > 0 be a step length and put xn = x0 + nh for n = 0, 1, 2, . . . . Define yn, n = 0, 1, 2, . . . ,
recursively by

ỹn+1 = yn + hf(xn, yn)
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and
yn+1 = yn +

h

2

(
f(xn, yn) + f(xn+1, ỹn+1)

)
.

Heun’s method is a second order method with local truncation error O(h3) and global truncation
error O(h2).

2.4.3 The RK4 method

Consider the initial value problem

y′(x) = f(x, y(x)), where y(x0) = y0.

Let h > 0 be a step length and put xn = x0 + nh for n = 0, 1, 2, . . . . Define yn, n = 0, 1, 2, . . . ,
recursively by

yn+1 = yn +
1

6

(
k1 + 2k2 + 2k3 + k4), for n = 0,1,2, . . . ,

where
k1 = hf(xn, yn),

k2 = hf(xn + h
2
, yn + 1

2
k1),

k3 = hf(xn + h
2
, yn + 1

2
k2),

k4 = hf(xn + h, yn + k3).

The RK4 method is a fourth order method with local truncation error O(h5) and global truncation
error O(h4). The error εh2n = y(x2n)− y2n can be estimated by

εh2n ≈
1

15
(yh2n − y2h

n ).

2.4.4 Runge-Kutta-Fehlberg

Consider the initial value problem

y′(x) = f(x, y(x)), where y(x0) = y0.

Let h > 0 be a step length and put xn = x0 + nh for n = 0, 1, 2, . . . . Define yn, n = 0, 1, 2, . . . ,
recursively by

yn+1 = yn + γ1k1 + · · ·+ γ6k6

and
ỹn+1 = yn + γ̃1k1 + · · ·+ γ̃5k5,

where (
γ1 γ2 γ3 γ4 γ5 γ6

)
=
(

16
135

0 6656
12825

28561
56430

−9
50

2
55

)
and (

γ̃1 γ̃2 γ̃3 γ̃4 γ̃5

)
=
(

25
216

0 1408
2565

2197
4104

−1
5

)
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while

k1 = hf(xn, yn),

k2 = hf(xn + 1
4
h, yn + 1

4
k1),

k3 = hf(xn + 3
8
h, yn + 3

32
k1 + 9

32
k2),

k4 = hf(xn + 12
13
, yn + 1932

2197
k1 − 7200

2197
k2 + 7296

2197
k3),

k5 = hf(xn + h, yn + 439
216
k1 − 8k2 + 3680

513
k3 − 845

4104
k4)

and
k6 = hf(xn + h

2
, yn − 8

27
k1 + 2k2 − 3544

2565
k3 + 1859

4104
k4 − 11

40
k5).

An estimate of the error εn+1 = y(xn+1)− yn+1 can be computed in the following way:

εn+1 ≈ yn+1 − ỹn+1 = 1
360
k1 − 128

4275
k3 − 2197

75240
k4 + 1

50
k5 + 2

55
k6.

Runge-Kutta-Fehlberg is a fifth order method.

2.4.5 Reverse Euler

Consider the initial value problem

y′(x) = f(x, y(x)), where y(x0) = y0.

assume that f is so simple that yn+1 can be isolated in the expression

yn+1 = yn + hf(xn+1, yn+1).

Let h > 0 be a step length and put xn = x0 + nh for n = 0, 1, 2, . . . . Define yn, n = 0, 1, 2, . . . ,
recursively by isolating yn+1 in the expression above. Reverse Euler is only a first order method,
but has the advantage that it can be used on stiff ODE’s.

2.5 Multistep methods for numerical solution of first order
ODE’s

In numerical multistep methods for solution of first order ODE’s, one finds sequences xn and yn,
with xn < xn+1 such that y(xn) ≈ yn, where yn is found using xn−1, . . . , xn−m and yn−1, . . . , yn−m,
m ≥ 2.

2.5.1 Adams-Bashforth methods

Consider the initial value problem

y′(x) = f(x, y(x)), where y(x0) = y0.

Let h > 0 be a step length and put xn = x0 + nh for n = 0, 1, 2, . . . . Assume that we know y1, y2,
and y3. Define yn, n = 4, 5, 6, . . . , recursively by

yn+1 = yn +
h

24
(55fn − 59fn−1 + 37fn−2 − 9fn−3),

where fi = f(xi, yi) for all i = 0, 1, 2, . . . . This is a Adams-Bashforth method of fourth order.
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2.5.2 Adams-Moulton methods

Consider the initial value problem

y′(x) = f(x, y(x)), where y(x0) = y0.

Let h > 0 be a step length and put xn = x0 + nh for n = 0, 1, 2, . . . . Assume that we know y1, y2,
and y3. Define yn, n = 4, 5, 6, . . . , recursively by

ỹn+1 = yn +
h

24
(55fn − 59fn−1 + 37fn−2 − 9fn−3)

and
yn+1 = yn +

h

24
(9f̃n+1 + 19fn − 5fn−1 + fn−2), (19)

where fi = f(xi, yi) and f̃i(xi, ỹi) for all i = 0, 1, 2, . . . . We can estimate the error in the (n + 1)’st
step εn+1 = y(xn+1)− yn+1 by

εn+1 ≈
1

15
(yn+1 − ỹn+1).

If the error is estimated to be unacceptably large, one can repeat the process by replacing ỹn+1

with yn+1. I.e.

ȳn+1 = yn +
h

24
(9fn+1 + 19fn − 5fn−1 + fn−2)

and the new error ε̄n+1 = y(xn+1)− ȳn+1 can be estimated by

ε̄n+1 ≈
1

15
(ȳn+1 − yn+1).

This process can naturally be repeated until one estimates the error to be sufficiently small. This
predictor-corrector method is called the Adams-Moulton method of fourth order. The Adams-
Moulton method is generally much more precise than an Adams-Bashforth method of same order
and is in addition numerically stable.

2.6 Methods for first order systems
In numerical methods for solution of systems of ODE’s, one finds sequences xn and Yn, where
xn < xn+1, such that Y (xn) ≈ Yn.

2.6.1 The Euler-method

Consider the initial value problem

Y ′(x) = F (x, Y (x)), where Y (x0) = Y0,

where Y is an unknown d-dimensional vector function, F is a known d-dimensional function of
d+ 1 variables, Y0 is a known d-dimensional vector and x0 is a known point. Let h > 0 be a step
length and put xn = x0 + nh for n = 0, 1, 2, . . . . Define Yn, n = 0, 1, 2, . . . , recursively by

Yn+1 = Yn + hF (xn, Yn).

then the local truncation error is O(h2) and the global truncation error is O(h). The Euler method
is thus a first order method.
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2.6.2 RK4

Consider the initial value problem

Y ′(x) = F (x, Y (x)), where Y (x0) = Y0,

where Y is an unknown d-dimensional vector function, F is a known d-dimensional function of
d+ 1 variables, Y0 is a known d-dimensional vector and x0 is a known point. Let h > 0 be a step
length and put xn = x0 + nh for n = 0, 1, 2, . . . . Define Yn, n = 0, 1, 2, . . . , recursively by

Yn+1 = Yn + 1
6
(K1 + 2K2 + 2K3 +K4),

where

K1 = hF (xn, Yn),

K2 = hF (xn + 1
2
h, Yn + 1

2
K1),

K3 = hF (xn + 1
2
h, Yn + 1

2
K2)

and
K4 = hF (xn + h, Yn + k3).

The RK4 method is a fourth order method with local truncation error O(h5) and global truncation
error O(h4).

2.6.3 Reverse Euler

Consider the initial value problem

Y ′(x) = F (x, Y (x)), where Y (x0) = Y0.

Assume that F is so simple that Yn+1 can be isolated in the expression

Yn+1 = Yn + hF (xn+1, Yn+1).

Let h > 0 be a step length and put xn = x0 + nh for n = 0, 1, 2, . . . . Define Yn, n = 0, 1, 2, . . . ,
recursively by isolating Yn+1 in the expression above. Reverse Euler is only a first order method,
but has the advantage that it can be used on stiff ODE’s.

2.7 Methods for numerical solution of second order ODE’s
In numerical methods to solution of ODE’s of second order, one finds sequences xn, yn, and y′n,
where xn < xn+1, such that y(xn) ≈ yn and y′(xn) ≈ y′n.

2.7.1 Runge-Kutta-Nyström methods

2.7.1.1 y′′(x) = f(x, y(x), y′(x))

Consider the initial value problem

y′′(x) = f(x, y(x), y′(x)), where y(x0) = y0 and y′(x0) = y′0.
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Let h > 0 be a step length and put xn = x0 + nh for n = 0, 1, 2, . . . . Define yn and y′n for n =
0, 1, 2, . . . , recursively by

yn+1 = yn + h(y′n + 1
3
(k1 + k2 + k3))

and
y′n+1 = y′n + 1

3
(k1 + 2k2 + 2k3 + k4),

where
k1 = 1

2
hf(xn, yn, y

′
n), k = 1

2
h(y′n + 1

2
k1),

k2 = 1
2
hf(xn + 1

2
h, yn + k, y′n + k1),

k3 = 1
2
hf(xn + 1

2
h, yn + k, y′n + k2), l = h(y′n + k3)

and
k4 = 1

2
hf(xn + h, yn + l, y′n + 2k3).

This method is called a Runge-Kutta-Nyström method.

2.7.1.2 y′′(x) = f(x, y(x))

Consider the initial value problem

y′′(x) = f(x, y(x)), where y(x0) = y0 and y′(x0) = y′0.

Let h > 0 be a step length and put xn = x0 + nh for n = 0, 1, 2, . . . . Define yn and y′n for n =
0, 1, 2, . . . , recursively by

k1 = 1
2
hf(xn, yn),

k2 = 1
2
hf(xn + 1

2
h, yn + 1

2
h(y′n + 1

2
k1)) = k3,

k4 = 1
2
hf(xn + h, yn + h(y′n + k2)),

yn+1 = yn + h(y′n + 1
3
(k1 + 2k2))

and
y′n+1 = y′n + 1

3
(k1 + 4k2 + k4).

This method is called a Runge-Kutta-Nyström method.

2.8 Numerical method for the Laplace and Poisson equations in
two dimensions

Let h > 0 be a step length and let xi = x0 + ih and yj = y0 + jh for all i, j ∈ Z, where x0 and y0 are
possibly 0. The the set of points of the form (xi, yj) forms a grid. Assume that the two-dimensional
Laplace equation

∇2u = uxx + uyy = 0

or the two-dimensional Poisson equation

∇2u = uxx + uyy = f(x, y),

has the solution u(x, y) for (x, y) ∈ D, where D is a sufficiently nice subset of R2. If we for those
(i, j) where (xi, yj) ∈ D can find ui,j such that u(xi, yj) ≈ ui,j , then we call the set of these ui,j’er a
numerical solution to the Laplace- or Poisson equation.
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2.8.1 Regular boundary

Denote the boundary of D by ∂D. Assume that we for a suitable choice of x0, y0, and h > 0 have
that every point (xi, yj) ∈ D is either boundary point, (xi, yj) ∈ ∂D, or that the four neighbouring
points, (xi−1, yj), (xi+1, yj), (xi, yj−1), and (xi, yj−1), also lie in D, and that h is small. Then we can
find a numerical solution to the Laplace equation which satisfies the following system of linear
equations:

ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4ui,j = 0, for (i, j) then (xi, yj) ∈ D \ ∂D, (20)

while correspondingly for the Poisson equation, there exists a numerical solution which satisfies
the following system of linear equations:

ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4ui,j = h2f(xi,yj), for (i, j) then (xi, yj) ∈ D \ ∂D. (21)

Note that (20) corresponds to (21) with f ≡ 0.

2.8.1.1 Dirichlet boundary conditions

If we have Dirichlet boundary conditions, i.e. if the values of u are given on the boundary, then
we just need to put

ui,j = u(xi, yj) for (i, j) then (xi, yj) ∈ ∂D, (22)

and then solve the system of equations consisting of the equations (20) or (21), and (22).

2.8.1.2 Neumann and mixed boundary conditions

Assume now that we have Neumann boundary conditions on (parts of) the boundary, i.e. we
know

∂u

∂n
(xi, yj) = n1

∂u

∂x
+ n2

∂u

∂y

instead of u(xi, yj) for some (i, j) with (xi, yj) ∈ ∂D, where n = ( n1
n2 ) is a outer normal vector to D.

In those points (xi, yj) where we have Neumann boundary conditions, (22) is then replaced by

∂u

∂n
(xi, yj) = n1

ui+1,j − ui−1,j

2h
+ n2

ui,j+1 − ui,j−1

2h
(23)

and, if it is a Laplace equation,

ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4ui,j = 0, (24)

or

ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4ui,j = h2f(xi, yj), (25)

if it is a Poisson equation. Note that some of these values correspond to points outside ofD. IfD is
sufficiently nice, (23) and (24) or (25), where there are Neumann boundary conditions in the point
(xi, yj), and (22), where there are Dirichlet boundary conditions in the point (xi, yj), together with
(20) or (21), where (xi, yj) ∈ D \ ∂D, will give a system of equations with a unique solution.
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2.8.2 Irregular boundary

If it doesn’t hold that every point (xi, yj) ∈ D is either et boundary point, (xi, yj) ∈ ∂D, or that
the four neighbouring points, (xi−1, yj), (xi+1, yj), (xi, yj−1), and (xi, yj−1), also lie in D, then the
methods obove must be modified.

2.8.2.1 Dirichlet boundary conditions

Assume that (xi, yj) ∈ D is not a boundary point, and that on or more of the neighbouring points
(xi−1, yj), (xi+1, yj), (xi, yj−1), and (xi, yj−1) lie outside D.

• If (xi+1, yj) lies i D, we put a = 1, xA = xi+1 and put uA = ui+1,j . Otherwise we choose a,
0 < a < 1, such that (xA, yj) ∈ ∂D, where xA = xi + ah, and we put uA = u(xA, yj).

• If (xi, yj+1) lies in D, we let b = 1, yB = yj+1 and put uB = ui,j+1. Otherwise we choose b,
0 < b < 1, such that (xi, yB) ∈ ∂D, where yB = yj + bh, and we put uB = (xi, yB).

• If (xi−1, yj) lies in D, we let p = 1, xP = xi−1 and put uP = ui−1,j . Otherwise we choose p,
0 < p < 1, such that (xP , yj) ∈ ∂D, where xP = xi − ph, and we put uP = u(xP , yj).

• If (xi, yj−1) lies in D, we let q = 1, yQ = yj−1 and put uQ = ui,j−1. Otherwise we choose q,
0 < q < 1, such that (xi, yQ) ∈ ∂D, where yQ = yj − qh, and we put uQ = u(xi, yQ).

We can then find a numerical solution which satisfies the following equation:

uA
a(a+ p)

+
uB

b(b+ q)
+

uP
p(p+ a)

+
uQ

q(q + b)
− ap+ bq

abpq
ui,j = 0, (26)

if it is the Laplace equation, and

uA
a(a+ p)

+
uB

b(b+ q)
+

uP
p(p+ a)

+
uQ

q(q + b)
− ap+ bq

abpq
ui,j =

h2

2
f(xi, yj), (27)

if it is a Poisson equation. For all (i, j), where (xi, yj) is not a boundary point, and one or more
of the neighbouring points (xi−1, yj), (xi+1, yj), (xi, yj−1), and (xi, yj−1) lie outside of D, we now
use either the equation (26) or (27), and for alle (i, j), where (xi, yj) is not a boundary point,
and (xi−1, yj), (xi+1, yj), (xi, yj−1), and (xi, yj−1) lie inside of D, we use the equation (20) or (21).
Together with (22) we then get a system of linear equations with a unique solution.

2.8.3 The Gauss-Seidel iterationsmethod

We need to solve a system of linear equations to find the solutions above, possibly with many
(N ) equations and many (N ) unknowns. Write the system of linear equations on the form Ax = b,
where A = (ai,j)

N
i,j=1 is an N × N -matrix, x is a vector consisting of the unknown values, and

b =
(
b1 b2 . . . bN

)
is a known vector. The Gauss-Seidel iterationsmethod finds a numerical

solution to the system of equations Ax = b by means of of the following iterative method.

1. first one makes a guess for a solution, which is called x(0) and n is put to 0.

2. One then finds x(n) =
(
x

(n+1)
1 x

(n+1)
2 . . . x

(n+1)
N

)
in the following way:

• First put x(n+1)
1 = 1

a1,1
(b1 −

∑N
j=2 a1,jx

(n)
j ).
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• Second x
(n+1)
2 = 1

a2,2
(b2 −

∑1
j=1 a2,jx

(n+1)
j −

∑N
j=3 a2,jx

(n)
j ).

• and so on: x(n+1)
i = 1

ai,i
(bi −

∑i−1
j=1 ai,jx

(n+1)
j −

∑N
j=i+1 ai,jx

(n)
j ) for i = 3, . . . , N − 1.

• and lastly x(n+1)
N = 1

aN,N
(bN −

∑N−1
j=1 aN,jx

(n+1)
j ).

3. Now replace n with n+ 1 and repeat the process from step 2.

In many cases (e.g. if A is so-called symmetric positive-definite or diagonally dominant), then the
sequence x(n) will tend to the unique solution for the system of equations Ax = b. In pratice, one
stops the process when x(n+1) is almost equal to x(n).
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