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1 Analytical methods
1.1 Methods for first order ODE’s

1.1.1 Separation of variables

An ODE which can be written on the form

can be solved by finding the following integrals:

[owav= [ r@az

and isolating y in the expression you get.

1.1.2 Exact ODE’s

An ODE which can be written on the form

M(z,y(x)) + N(z,y(z))y () = 0,

where N and M satisfy

oM ON
a_y(zay) - %(xvy)a

can be solved by finding a function v of two variables which satisfies that

Ou

SUey) = M(zy) and ' (z.) = N(ay)

dy

The function « can be found by first integrating M wrt. the first variable:

foy) = / M(t,y)dt,
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and then defining

o(y) = N(z,y) - g—g@,y),

(note that g turns out only to depend on one variable). Then v is given by

Note that all antiderivatives are functions of an (unnamed) variable, which is represented by a
dot () wherever it appears in a given equation except in the antiderivates.

1.1.3 Integrating factors

Some ODE’s which aren’t exact can be transformed to exact ODE’s by multiplying both sides with
an integrating factor. In some instances, the following result can be used to finding an integrating
factor.

Setning 1.1. If the functions P and () in the ODE

P(z,y(z)) + Qz, y(x))y (x) = 0

satisfy that

R(.T,y) = Q(l’l,y) (g_j(x7y) - 88_2,2(‘7;7y))

is constant as a function of y for fixed x, then

F(z,y) = F(z) = exp /QE R(z1,y)dxy

is an integrating factor. Correspondingly, if

R (x,y) =
is constant as function of x for fixed y, then

Y
F*(z,y) = F*(y) = exp / R* (2, 31) dys

is an integrating factor.

1.1.4 Homogeneous linear ODE’s

For all numbers ¢,
y = Ceffp(m)dx

is a solution to ODE’s which can be written on the form
y'(x) + p(x)y(r) = 0.
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1.1.5 Inhomogeneous linear ODE’s
An ODE which can be written on the form
y'(z) + p(x)y(r) = r(z)

has the following solutions:

y=e" (/ @y (x)de + c), where h = /p(x) dr and ceR.

1.1.6 The Bernoulli equation

An ODE which can be written on the form
y' () + p(a)y() = g(w)y(z)",
where a # 1, can be solved by first finding a solution « to the following linear first order ODE:
u'(z) + (1 = a)p(r)u(z) = (1 - a)g(z),

and then setting

1.2 Methods for second order ODE’s

1.2.1 Homogeneous linear ODE'’s
1.2.1.1 Linearity of solutions/the superpositionprinciple

If y; and 3, are defined on the same interval and both are solutions to the ODE

y'(x) + p(x)y (x) + q(=)y(x) = 0, (1)

then y = ay; + bys is also a solution for all choices of real numbers a,b € R. The solutions y; and
yo are linearly independent if and only if the Wronski determinant W (y;,y2)(z) = 1 (2)yh(x) —
y2(x)y1(x) is different from 0 for one (and hence all) x. If p and ¢ are continuous and y; and ¥, er
linearly independent, then all solutions are of the form y = ay; + by, and an initial value problem

with
y(mo) = K, y/(iUo) =K

has a unique solution.

1.2.1.2 Reduction of order
Assume that y; is a solution to the ODE
y' (@) + p(a)y'(z) + q(x)y(z) = 0.
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then

1
Yo = y1u, where u= /vl(x) dr, and wv; = —Qe_fp(g’;)d“C

N
is also a solution, and y; and y, are linearly independent.
Note that we don’t care about the integration constants, as in one case it just corresponds to
multiplying our solution with a positive number, and in the other case it corresponds to adding a
constant factor of ;.

1.2.1.3 Constant coefficients
The solutions to an ODE which can be written on the form
y'(z) + ay'(x) + by(x) = 0,
depends on the sign of the discriminant a? — 4b.
a® — 4b > 0: all solutions can be written on the form
y(x) = cre™M® + cpe",
where A\, = @ and ¢, ¢ € R.
a® — 4b = 0: all solutions can be written on the form
y(r) = 1™ + come™”,

where \o = —% and ¢;,¢c; € R.

a? — 4b < 0: all solutions can be written on the form

where w = /b — 1a?.

1.2.1.4 Euler-Cauchy equations

y(r) = cre” 2 sin(wx) + cpe” 2 cos(wa),

The solutions to an ODE which can be written on the form
2%y’ (@) + azy'(x) + by(x) = 0,

depends on the sign of the discriminant (@ — 1) — 4b.

(a —1)* — 4b > 0: all solutions can be written on the form

y(x) = eir™ + e

where my = 5%+ /1(a—1)> —band ¢1, ¢, € R.

(a — 1)% — 4b = 0: all solutions can be written on the form
l1—a l1—a
y(xr) =z 2 +coln(|z))z 2 .
(a —1)? — 4b < 0: all solutions can be written on the form

y(x) = cz e sin(wIn(z)) + 2z 2 cos(wIn(x)),

where w = /b — 1(a — 1)2.



1.2.2 Non-homogeneous linear ODE’s
1.2.2.1 Linearity of solutions/the superposition principle

The set of solutions of an ODE which can be written on the form

y' (@) + p(x)y () + q(z)y(x) = r(z) ()

where r # 0, is not linear, but if y, is a solution to (2) (a particular solution), then any solution can
be written on the form

Yg = yp+yh>

where yj, is a solution to the corresponding homogeneous equation

y' (@) + p(x)y () + q(z)y(x) =0, 3)

whose set of solutions is a linear space. Correspondingly, if y, and g, are two solutions to (2), then
Yn = Yp — Yp is a solution to (3).

1.2.2.2 The method of undetermined coefficients

This method works by making a qualified guess y,, on a solution to an ODE which can be written
on the form

y'(z) + ay'(x) + by(z) = r(x), (4)

where a and b are constants, while » = ). r; is a sum of functions which can be written in one of
the following ways: ke, k", ksin(wx), k cos(wzx), ke** sin(wx), ke** cos(wx). Here, k, v, and w are
real constants, while n € NU {0}. The qualified guess y, has a term f; per term r; appearing in the
sumr = ZZ r;, and these terms are chosen according to the following table.

Term r; in r(z) | Choice of term f; in y,(x)
ker® Ce®
kz™ (n € N) Kpa® + K, 2" ' 4+ K2t + Ky
k si
) ZLI;((Zxx))} K cos(wz) + M sin(wx)
k ax
‘ C?s(wm) e (K cos(wz) + M sin(wz))
ke™® sin(wz)

Here, the constants v, n, w, and « are the same as in the corresponding term in r, while C, K,
M, and K, j = 0,...,n are unknown constants for each term in y, = > f;, and which must be
determined. If a term f; is a solution to the corresponding homogeneous ODE,

y'(x) + ay'(z) + by(x) = 0, (5)

then f; is replficed by the function fi: & — xf;. If also f; is a solution to (B), then f; is replaced by
x +— 22 f; = zf;. The guess y, is now plugged into the equation () and the unknown constants are
determined.



1.2.2.3 Disturbed mass-spring systems

Consider the ODE
my"(t) + cy'(t) + ky(t) = Fy cos(wt),

where m, k, Fj, and w are positive constants while ¢ is non-negative and let wy = \/g dfe>0or

w # wy, then
Yp(t) = acos(wt) + bsin(wt) = C cos(wt + 9)

m(w2 — w?) we

and b = F| we
m2(wg — w?)? + w2c? OmQ(wg — w?)? 4 w?c?

or tan(d) = 5

m(wg—w?)

is a solution if a = Fj

and C = o

\/mz (WE—w?)24w2c? :

If c = 0 and w # wy, then it reduces to

Fy

W COS(OJt)

yp(t> =

and p = Fﬁoa = @ is called the resonance factor. Another solution for ¢ = 0 and w # wy is

~ FO . wo4w : wo—w
Up(t) = m(w? — o?) sin (052¢) sin (£2).
If c = 0 and w = wy then
(t) = o,
Wit = 2muwg

is a solution.
If 0 < ¢® < 2mk, then the solutions have the biggest amplitude when w = /w3 — % and in
that case, all solutions tend to

2mF0

Ypll) =
»lf) c\/4miwi — ¢?

where tan(é) = 22< when t — oo.

cos(wt — 0),

1.2.2.4 Variation of parameters

An ODE which can be written on the form

y'(x) + p(x)y (2) + q(z)y(x) = r(z),

where p, ¢, and r are continuous functions, has the solution

ya(x)r(x) y1(x)r(z)
ypz—y1/de+yg/de,

where y; and y, are solutions to the corresponding homogeneous problem,
y'(@) + p(2)y (z) + g(2)y(x) =0,

and W = y195 — 4192



1.3 The Laplace transform

1.3.1 The Laplace transform of certain functions

2 n a at
f(t) 1 t t n:O%1,2,... atZO €
£(f)(s) ! % 3 T e =
f(t) cos(wt) sin(wt) cosh(at)  sinh(at) e cos(wt) e sin(wt)
L <f> (8) 524-40.12 52—5-Lw2 ﬁ 523(12 (5—2)_2(:-0.)2 (s—cL‘)lé—‘,-(,u2

1.3.2 Linearity of the Laplace transform and its inverse

the Laplace transform is linear, i.e. if one knows the Laplace transform £(f) of f and the Laplace
transform £(g) of g, then one can compute the Laplace transform of af + bg, where a and b are
real numbers, in the following way:

L(af +bg) =aLl(f)+bL(g).

Likewise, the inverse of the Laplace transform is linear, i.e. if one knows £~ (F) = fand £L7!(G) =
g, then one can compute the inverse Laplace transform of a F'+bG, where a and b are real numbers,
in the following way:

LY aF +bG) = al Y (F) + bL7HG).

1.3.3 s-shifting
If £(f) = F,and g(t) = e“ f(t), then L(g)(s) = L(t — e f(t))(s) = F(s — a).

1.3.4 the Laplace transform of derivatives
If the Laplace transform F' = £(f) of f and the derivative of f exist, then
L(f™M)(s) = s"F(s) = s" 1 f(0) = s"2f/(0) — - — s f72(0) — f7D(0).
In particular
L(f")(s) = s"F(s) — sf(0) = f'(0)

and

L(f)(s) = sF(s) = £(0).

1.3.5 the Laplace transform of integrals

If the Laplace transform £(f) = F of f and the Laplace transform of the integral of f exist, i.e. if
the Laplace transform G' = £(g) of the function ¢ given by ¢(¢) = fot f(z) dzx exists, then

G(S)Iﬂ(g)(S)ZL(tH/O f(x)dfv)(S):éF(S)-
9



1.3.6 solution of initial value problems
1.3.6.1 initial value problems with ¢, = 0
Initial value problems such as
y'(8) +ay' () + by(t) = r(t), y(0) = Ko, 4'(0) = K,

where ¢, b, K(, and K are constants, and the function r is sufficiently nice, can be rewritten to an
algebraic problem by taking the Laplace transform on both sides:

L(y" +ay’ + by)(s) = L(r)(t)
which in this case can be written as
(s*Y (s) — sy(0) — ¢ (0)) + a(sY (s) — y(0)) + bY (s) = (s* + as + b)Y (s) — (s + a) Ko — K1 = R(s)
where Y = L(y) and R = £(r). By isolating Y (s) one gets

(s+a)Ko+ Ky + R(s)

v(s) = SR LTS (54 a)Ko + K)QUs) + R(5)Q(), ©
where Q(s) = a5 = ol a)21+b_ e We can now solve the initial value problem by taking the

inverse Laplace transform of ((s + a) Ky + K1)Q(s) + R(s)Q(s).

1.3.6.2 Shifted data problems

Initial value problems such as

y'(t) +ay'(t) +by(t) =r(t), y(to) = Ko, ¥'(te) = K,

where q, b, K, and K are constants and t, # 0, can be solved by at setting t = t—t, () = y(t-+to),
and solving

')+ ay () + by(t) = r(t), §(0) = Ko, §(0) =K,
by finding Y and then (), then y can be found by using that y(t) = §(f) = §(t — to).

1.3.7 Partial fractions

assume that we have a polynomial fraction on the following form:

P(s)
Q(s)’
where . .
Q(s) = H s—r; H s°+ajs+0bj), where r; <riq,a; <ajy,
=1 7=1
and where s* + a;s + b; has no real roots for j = 1,...,m, and P(s) is a polynomial of degree

n+2m —1lordegreen+2m —2.If r; # iy foralli =1,...,n —1,and a;s + b; # a;415 + bj11 for

10



allj=1,...,m —1,and one can find n + 2m constants, A;, B;,C;, e R, k=1,...,n,l=1,...,m,
such that

P(s) :ZAkH(S—rl)H(s +a; +b;) —1—2 (Bis+ C)) H s —r; H s +ajs+b;), (7)
k=1 ;;:éllc Jj=1 =1 =1 ‘;;:é%

then

P A “. Bps+C,
(s) _ Z LI Z ks + Ck
s) = s — T 518 + ags + by’
where we recall that s? + ags + b, = (s + %ak)Q + by, — Zak. If in addition we have that m = 0, then
the constants A;, can be found just by plugging r;, into (7) and isolating A;:

P
i=1\Tk — 75
ke
If instead r; = r; 1 (but 14y # 19, if i < n — 2) for one or more ¢ € {1,2,...,n — 1}, and
ajs +b; #aj1s+ by forallj =1,...,m — 1, and one can find n + 2m constants, Ay, B;, C}, € R,
k=1,...,n,1l=1,...,m,such that
P(s) = A1H(3 —ri)H(s2 +a; +b;) +ZAkH(s ) H (s* + a;s +b;)
i=2 j=1 k=2 =1 j=1
TR#ETR—1  Fk
+ZAkS—Tk HS—H)H(SQ—FG]’—F()J') (8)
Tk "'k 1 7:“% =t
+Z Bis+C) [[(s =) [J(s* +a; + b)),
i=1 =1
i
then
P(S) - “ BkS + Cy
= + + 9
Q(s) s—mr Zs— T ;(s—m l=15 2+ aps + by ©)
7k7£7"k 1 TR=Tk_1
Similar tricks work also in the case where r; = ;.1 = -+ = r;y; for k > 2 and one (or more)
indices i € {1,...,n — 1}, or a;s + b; = a;j415 + bj11 for some j € {1,...,m — 1}, but the for-

mulas corresponding to (8) and () become correspondingly more complicated. In this case, it is
recommended to proceed by trial and error with expressions similar to (9) and from this find an
expression of the form (8) by multiplying with )(s) on both sides.

1.4 Systems of ODE’s

1.4.1 Conversion of ODE’s of order n to systems of n ODE’s of order 1
An ODE of order n of the form

Y™ () = F(ty(t)y'(t),....y" V(@)

11



is equivalent with the following system of n ODE’s of first order:

Y1 = Y2
Yy = Y3

/
ynfl - yn

Yp = F(t7ylay2> s ayn)

via the identification
Bw=y Y=y, ys=y", - y,= y(n—l)'

1.4.2 Systems of ODE’s of order 1 with constant coefficient matrices

Et system of n ODE’s of order 1 of the form

y' = Ay,
where A is a constant coefficient matrix with real eigenvalues A, \s, ..., A\, with corresponding
eigenvectors vy, vs, . . ., Uy, has the general solution

crv1e™M + couge™ + - 4 cnvne’\",

where ¢y, ¢s, . . ., ¢, are real constants.

1.5 Fourier series

1.5.1 Computation of Fourier coefficients etc.

If f is a 2m-periodic function which is sufficiently nice, then the Fourier coefficients of f are given

by
wlf) = 5- [
an(f) = % / f(x) cos(na) dr - and
bl f) = % / 7; F(x) sin(nz) dz
for alln € N and the Fourier series for f is given by
ao(f) + i(an( £) cos(na) + bu(f) sin(nz)). (10)

If f is piecewise continuous with left- and right-derivatives everywhere, then it is sufficiently nice
in the above sense and the Fourier series converges pointwise towards f in the continuity
points of f, while it converges towards the average of the left and right limit at discontinuity
points.

12



1.5.2 Even and odd functions
If f is 2m-periodic, sufficiently nice and even (i.e. f(—z) = f(z)), then b,(f) = 0 foralln > 1 and

an(f), n > 0, can be computed in the following way:

:%/Oﬂf(x)dx and an(f)Z%/OWf(x)cos(nx)dx forn=123,....

If f is 2m-periodic, sufficiently nice and odd (i.e. f(—z) = —f(z)), then a,,(f) = 0 foralln > 0 and
bn(f), n > 1, can be computed in the following way:

_ % /0 " f(2) sin(nz) da

1.5.3 Linearity of Fourier coefficients

If f and ¢g have the Fourier coefficients ao(f), a,(f), and b,(f) resp. ao(g), a.(g), and b,(g), then
the function ¢; f 4+ c»g, where ¢; and ¢, are real numbers, has the Fourier coefficients

aop(crLf + cag) = crao(f) + caao(g),
an(crf + cag) = cran(f) + c2a,(g) and
bn(clf + 029) = Clbn(f) + chn(Q%

wheren =1,2,3,....

1.5.4 Change of period

If fis 2L-periodic, then the Fourier series for f is given by

+z(an yeos(S) + bul ) Sm(%x)),

where
1 L
= — d
wlf) =57 [ fla)da
a,(f) = l/L f(z) COS<T$> dz
" L), L
1 [t nmw
bo(f) = — T2 de,
(f) I/, (x)sm( 7 x) x
forn=1,2,3,....
1.5.5 Half-range expansions
If f:]0, L] — R is continuous, then
=ao(f) + an(f)cos = b, (f)sin nl:z:
S (250) - S on(2

13



for all z € (0, L), where

:%/OLf(x)dx
a,(f) = %/OLf(x) cos(%x) dz and

= %/Lf(x) sin(%x) dz
0

The functions f; and f, defined for all z € R and given by

filx —|—Zan cos( :z:) and f,(x Zb sm(

are resp. the even and the odd 2L-periodic expansion of f.

1.6 Methods for second order PDE’s

1.6.1 The one-dimensional wave equation

The one-dimensional wave equation

Uy = C*Uyy, Where @ = —,

0
on (z,t) € [0, L] x R5, with the boundary condition
u(0,t) = u(L,t) =0
and the initial value conditions
u(z,0) = f(z)

and
ut((E,O) = g(:li‘),

’)

(11)

(12)

(13)

(14)

where f,g: [0, L] — R are two sufficiently nice functions, can be solved as described in the fol-

lowing subsubsections.

1.6.1.1 The Fourier series method
Let A\, = %~ and

z,t) = Z U (1) = Z(bn cos(Apt) + b sin(A,t)) sin(%x),
n=1 n=1

where the b,,’s are the Fourier coefficients of the 2L-periodic, odd, half-range expansion of f

/ flo sm )dx
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and .
. 2 . [nm
by =— [ g(x) sm<fx> dz.

" enm J
then v is the solution to the wave equation with the boundary condition and the initial
value conditions and (14). The functions wu,(z,t) = (b, cos(\,t) + b sin(A,t)) sin(2z) are
called eigenfunctions with eigenvalues X, and have the frequencies 3=. The set {), | n € N} is called
the spectrum, u, is called the fundamental mode, while u,, are called overtones for n > 1.

1.6.1.2 D’Alembert’s solution

Let

u(z,t) = %(f(x—i—ct) + f(z — ct)) —l—%/i : g(s)ds,

where f and g are assumed to be odd and 2L-periodic. then u is the solution to the wave equation
with the boundary condition (I2) and the initial value conditions and (14).

1.6.2 The one-dimensional heat equation

The solution to the one-dimensional heat equation
u; = *uy,, where & ="—, (15)

on (z,t) € [0, L] x R>( and the initial value condition

u(z,0) = f(x) (16)

where f: [0, L] — R is a sufficiently nice function, depends on the boundary condition as de-
scribed in the the following subsubsections.

1.6.2.1 The boundary condition u(0,t) = u(L,t) =0

If both ends are kept at the temperature 0, then the system has the boundary condition

u(0,t) = u(L,t) = 0. (17)
If so,
w(t) = un(w,t) = D ba(f) sin(Fw)e,
n=1 n=1
where \, = “* and

bu(f) = %/OL f(x) sin(%x) dz,

is the solution to with the initial value condition (16) and the boundary conditions (17). The
coefficients b, ( f) are thus the Fourier coefficients of the 2L-periodic, odd, half-range expansion of
f. The functions u,(z,t) = sin(%Fz)e ! are called the eigenfunctions of the problem with eigenval-
ues \,.
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1.6.2.2 Isolated endpoints

If both ends are isolated, then the system has the boundary condition

uz(0,t) = ug (L, t) = 0. as)
If so,
u(z,t) = i Un(z,t) = ao(f) + i an(f) Cos(n%;p> ot
n=0 n=1
where )\, = “* and

nmw
—T

1 [* 2 [*
ao(f):z/o f(z)dz and a"(f>:z/0 f(x)cos(L )da: for n>1,

is the solution to with the initial value condition and the boundary condition (18). The
coefficients ay(f) and a,(f) are thus the Fourier coefficients of the 2L-periodic, even, half-range
expansion of f. The functions w,,(z,¢) = sin(%z) e ! are called the eigenfunctions of the problem
with eigenvalues \,,.

2 Numerical methods

2.1 solution of equations

2.1.1 Fixed-point iteration
Assume that we want to find a solution to an equation of the form
g(x) = .
Let 2 be a guess for a solution s to the equation ¢g(z) = x. Now define recursively
vy = g(vo), 2=g(r1), ..., Tpu=g(®), ...,

for all n > 1. In some cases the sequence {z, }22, will now approach the solution s when n grows,
i.e. z, = s for n — oco. A sufficient condition is given in the Theorem below.

Seetning 2.1. Let s be a solution to x = g(x) and assume that g is continuously differentiable in an
interval J around s. If |¢'(z)| < K < 11 J, then the sequence converges {x,}°, towards xo, = s,
whenever xy € J.

2.1.2 Newton’s method

Assume that we want to find a solution to an equation of the form



where f is a continuously differentiable function. Let z, be a guess for a solution s to the equation
f(z) = 0. Now define recursively

f (o) IQII’Q—f(I1> o a—a AC
(o) f'(z2) P Pa)] ’

for all n > 1. In some cases the sequence {z, }>° , will now approach the solution s, when n grows,
i.e. z, — s for n — oo. The following Theorem gives information about hte rate of convergence.

1 — So —

Seetning 2.2. If f is twice differentiable and f'(s) # 0, where f(s) = 0 is a solution, then Newton’s
method is at least of order 2.

2.1.3 The secant method

Assume that we want to find a solution to an equation of the form

f(z)=0.

Let zy and z; be two different guesses for a solution s to the equation f(z) = 0. Now define
recursively

1 — Zo

fz1) — f(%)a

To — T

f(xa) — f(xl)’

To =T1 — f(l'l) T3 = T2 — f(x2)

Tn — Tp—1

f(qfn) - f(l‘n—1>7

Tp+1 = Tp — f(xn>

for all n > 1. In some cases the sequence {z, }°° , will now approach the solution s, when n grows,
ie.z, — sforn — oo.

2.2 Interpolation polynomials

2.2.1 A polynomial through n + 1 points

Given n + 1 points in the plane, (z;,y;), ¢ = 0,...,n, where z; # x; when i # j, there exists a
unique polynomial p,, of degree (at most) n, such that p,(x;) = v..

2.2.1.1 Lagrange interpolation
Let (z;,v:),1=0,...,nben+ 1 points in the plane where z; # x; for i # j. Let

n

Gi(x) =@ —2:) = (@ = zo) (@ = 21) -+ (& — 25-0) (& — 2540) -+ (2 — )
=

and




then

pu(x) =Y yiLi(x)
i=0
is the polynomial of degree (at most) n, such that p,(x;) = v;.

2.2.1.2 Newton’s divided difference method

Let (x;,v:),7=0,...,n ben + 1 points in the plane where x; # z, for i # j. Let

Ti,. 0,2k — flxo, . oo, X
f[xo,”ka]:f[l k] = flxo kl]j
T — Lo
and
6i(2) = [0 wi)(@ = 20) -+ (@ — 24 1) = flwo,. ., 2] [[ (@ — 25).
j<i

then :

pu() = gi)

i=0

is the polynomial of degree (at most) n, such that p,,(z;) = ;.
2.2.2 Polynomial approximation of functions
If f: A— R, A C Ris a function which we know the values of at x;, i = 0,...,n, where x; #
xj for i # j, ie. if ve know f(z;) for i = 0,...,n, then polynomial p, through (z;, f(z;)), i =
0,...,n,is called a polynomial approximation of f.If x € [min,(x;), max;(x;)], then p,(x) is called the

interpolated value, while p,,(x) is called the ekstrapolated value, if © ¢ [min,(x;), max;(x;)|. If we for a
x € [min,(z;), max;(z;)] use p,(x) instead of f(x), then the error

for some ¢, € [min;(z;), max;(z;)]. We can then find an upper and a lower bound for ¢, by finding
upper and lower bounds for {1,

2.3 Numerical integration

2.3.1 Rectangular rule

Let f: [a,b] = R.Foran € Nwe put h = =% and z = a, z; = 7y + ih fori = 1,... n.. then
Ji=hy flai—15)
=1

is an approximation of fab f(z)dx and if f is sufficiently nice — e.g. if f is continuous — then we
have that J" — fab f(x) dz for n — oo. The rectangular rule has degree of precision 1.
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2.3.2 The trapezoidal rule

Let f: [a, b %R.Foranereputh:b;—“andaco:a,xi:xo—i—z’hforz’:1,...,n.Then
h n—1

=5 (Fl@)+ () +h Y fl)
=1

is an approximation of fab f(z)dz and if f is sufficiently nice — e.g. if f is continuous — then we

have that J., — ff f(z)dx for n — oo. If f is twice differentiable, then there exists a z; € [a, b] such
that )
—a
6; — _ 5 h2f”(l’t>,
where &! = f; f(x)dx — J! is the error in the approximation. If n is an even number, the error can
be approximated via the following formula:

S

(Jh = J4).

W

The trapezoidal rule has degree of precision 1.

2.3.3 Simpson’s rule

Let f: [a,b] = R.Foran € Nwe put h = =% and xy = a, z; = 7y + ih fori = 1,...,n. Then

gy =

n

SU@+I0) + 2D =+ 5 > ()

is an approximation of fab f(z)dz and if f is sufficiently nice — e.g. if f is continuous — then we

have that J5 — ff f(z)dx for n — oco.If f is four times differentiable, then there exists a x5 € [a, b]
then

S (b—a) 4 (4)
=y

b . . o .
where e = [/ f(x) dz — J; is the error in the approximation. If  is an even number, the error can

be approksimated via the following formula:
1
Sn (IS 9,
En ~ 15 (Jn Jg)

Simpson’s rule has degree of precision 3.

2.3.4 Gauss integration

Let f: [a,b] - R.Foran € N, n > 2, we put

b— a — b—a a+b
2 ;wif< y Fit )

for some particular weights w; and points z;. For n between 2 and 5 the weights and points can be
found in the following table.

Iy =
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Number of points n oints z; weights w; degree of precision NV
P P g g P
2 +4 1 3
8
0 9
3 5
3 5
/5 9
+ 3-2¢/2 18+1/30
A 7 36 7
342./8 18—+/30
+ 7 36
128
0 225
1 10 322413170
g /5 -2yF o )
1 10 322—13+/70
:t§ 5+2 i 900

Gauss integration has degree of precision 2n — 1.

24 One-step methods for numerical solution of first order
ODE’s

In numerical one-step methods for solution of first order ODE’s, one finds sequences x,, and y,,,
with z,, < x,,41, such that y(x,) ~ y,, where y,, is found using z,,_; and y,,_;.

2.4.1 The Euler method
Consider the initial value problem

v (x) = f(z,y(x)), where y(zo) = yo.

Let h > 0 be a step length and put z,, = 2y + nh forn = 0,1,2,.... Define y,, n = 0,1,2,...,
recursively by

Yn+1 = Yn + hf(xm yﬂ)

then the local truncation error is O(h?) and the global truncation error is O(h). The Euler method
is thus a first order method.

2.4.2 Heun’s method
Consider the initial value problem

v (x) = f(z,y(x)), where y(zo) = yo.

Let h > 0 be a step length and put z,, = 2y + nh forn = 0,1,2,.... Define y,, n = 0,1,2,...,
recursively by

Unt1 = Yn + hf(l’n, yﬂ)
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and h
Yn+1 = Yn + §(f($n, yn) + f(xn+17 gn+1))'

Heun’s method is a second order method with local truncation error O(h?) and global truncation
error O(h?).

2.4.3 The RK4 method

Consider the initial value problem

v (x) = f(z,y(x)), where y(zo) = yo.

Let h > 0 be a step length and put z,, = zo + nh forn = 0,1,2,.... Define y,, n = 0,1,2,...,
recursively by

Yn+1 =yn+é(k1+2k2+2k3+k4), for n=20,12,...,
where
ki = hf(Tn,Yn),
k‘z—hf(fﬂ Q,yn+%k1),
hf(z, + 2,yn lkz)
(@n

The RK4 method is a fourth order method with local truncation error O(h°) and global truncation
error O(h*). The error 5, = y(x2,) — Yo, can be estimated by

h 1

Eop = 1_5(ygbn - y'erh>

2.4.4 Runge-Kutta-Fehlberg

Consider the initial value problem

y'(z) = f(x,y(x)), where y(xo) = yo.

Let h > 0 be a step length and put z,, = 2y + nh forn = 0,1,2,.... Define y,, n = 0,1,2,...,
recursively by

Ynt1 = Yn +11k1 + - + Yeke

and
Un+1 = Yn +Y1k1 + -+ + Y5k,
where
_ (16 6656 28561 -9 2
(71 T2 V3 V4 s 76)—(ﬁ 0 15835 56130 30 %)
and

(71 Y2 V3 Ya 75)2(% 0 % %81 %1)
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while

(
(xn + ih Yn + lk:l)
ks = hf(zn+ 2h,yn + ki + ko),
(@n + 35 Un + 319751 — Grgeke + Sigrhs),
(@n 4y + Zzlijgkl — 8ky + 3561830k - 481%54k4)
and

= hf(xn+ 5, yn — g5k + 2ke — S35 ks + {03ka — f5ks)-
An estimate of the error ¢,,11 = y(2,+1) — yn41 can be computed in the following way:
Ent1l = Yn+1 — g’n-i—l - 3é0k 4122785 kS 725129470 k:4 + %kf) + %kﬁ

Runge-Kutta-Fehlberg is a fifth order method.

2.4.5 Reverse Euler
Consider the initial value problem

y(2) = flo,y(), where  y(zy) = 1.
assume that f is so simple that y,,.; can be isolated in the expression

Yn+1 = Yn + hf(xn—&—la yn—l—l)-

Let h > 0 be a step length and put z,, = zy + nh forn = 0,1,2,.... Define y,, n = 0,1,2,...,
recursively by isolating v, in the expression above. Reverse Euler is only a first order method,
but has the advantage that it can be used on stiff ODE's.

2.5 Multistep methods for numerical solution of first order

ODE’s
In numerical multistep methods for solution of first order ODE’s, one finds sequences z,, and y,,,
with z,, < x,41 such that y(z,) ~ y,, where y,, is found using z,,_1,...,Zp—m and Y1, ..., Yn—m,
m > 2.

2.5.1 Adams-Bashforth methods

Consider the initial value problem

y'(x) = f(x,y(x)), where y(xo) = vo.

Let h > 0 be a step length and put z,, = 2o + nh forn = 0,1,2,.... Assume that we know vy, v,
and ys. Define y,,, n = 4, 5,6, ..., recursively by

h
Yn+1 = Yn + ﬂ(55fn — 59fn71 + 37fn72 — 9fn73),

where f; = f(z;,y;) foralli =0,1,2,.... This is a Adams-Bashforth method of fourth order.

22



2.5.2 Adams-Moulton methods

Consider the initial value problem

y'(x) = f(z,y(x)), where y(xo) = vo.

Let h > 0 be a step length and put z,, = 2o + nh forn = 0,1,2,.... Assume that we know v, 2,
and y;. Define y,,, n = 4, 5,6, ..., recursively by

~ h
Yn+1 = Yn + ﬂ(55fn — 59fn—1 + 37fn72 - 9fn73)

and h
Yn+1 = Yn + ﬂ(gfnJrl + 19fn - 5fn71 + fn72)a (19)

where f; = f(x;,y;) and f;(x;, g;) foralli = 0,1,2,.... We can estimate the error in the (n + 1)’st

step en1 = Y(Tnt1) — Ynta by ,
Ent1 = 1_5<yn+1 — Unt1)-

If the error is estimated to be unacceptably large, one can repeat the process by replacing 9,1
with Yn+1- Le.

Ynt1 = Yn + %(gfn—l-l +19f, = 5fu-1 + fu-2)
and the new error ¢, 11 = y(z54+1) — Un+1 can be estimated by
1
15
This process can naturally be repeated until one estimates the error to be sufficiently small. This
predictor-corrector method is called the Adams-Moulton method of fourth order. The Adams-

Moulton method is generally much more precise than an Adams-Bashforth method of same order
and is in addition numerically stable.

Ent1 = —(Unt1 — Ynt1)-

2.6 Methods for first order systems

In numerical methods for solution of systems of ODE'’s, one finds sequences z,, and Y;,, where
Ty < Zpy1, such that Y(z,) = Y,.

2.6.1 The Euler-method
Consider the initial value problem
Y'(z) = F(z,Y (x)), where  Y(xy) =Y,

where Y is an unknown d-dimensional vector function, F' is a known d-dimensional function of
d + 1 variables, Y| is a known d-dimensional vector and z; is a known point. Let 2 > 0 be a step
length and put z,, = xp + nhforn =0,1,2,.... Define Y,,, n = 0,1,2, ..., recursively by

Yoot =Y, + hF(2,,Y,).

then the local truncation error is O(h?) and the global truncation error is O(h). The Euler method
is thus a first order method.
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2.6.2 RK4
Consider the initial value problem
Y'(z) = F(z,Y(x)), where Y (zo) = Yo,

where Y is an unknown d-dimensional vector function, F' is a known d-dimensional function of
d + 1 variables, Y} is a known d-dimensional vector and z, is a known point. Let 2 > 0 be a step
length and put z,, = xp + nhforn =0,1,2,.... Define Y,, n = 0,1,2, ..., recursively by

Vo1 =Y, + (K1 + 2K5 4+ 2K;3 + Ky),

where
K, = hF(xn,Yn),
Ky =hF(z, + %h, Y, + %Kl),
Ky = hF(z, + 3h, Y, + 3 K>)
and

The RK4 method is a fourth order method with local truncation error O(h°) and global truncation

error O(h*).

2.6.3 Reverse Euler

Consider the initial value problem
Y'(z) = F(z,Y(x)), where Y (z9) = Y.
Assume that ' is so simple that Y,,;; can be isolated in the expression
Yoot = Yy + hF (201, Yosr).

Let h > 0 be a step length and put z,, = 2o + nh forn = 0,1,2,.... Define Y,, n = 0,1,2,...,
recursively by isolating Y,,;; in the expression above. Reverse Euler is only a first order method,
but has the advantage that it can be used on stiff ODE's.

2.7 Methods for numerical solution of second order ODE’s

In numerical methods to solution of ODE’s of second order, one finds sequences z,, y,, and v,

where z,, < x,,41, such that y(z,,) =~ y, and ¢/'(x,,) =~ ...

2.7.1 Runge-Kutta-Nystrom methods
2711 y'(z) = f(z,y(x), y'(x))

Consider the initial value problem
y'(z) = f(z,y(2),y/(z)),  where  y(z0) =yo and y'(z0) =y
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Let h > 0 be a step length and put z,, = x¢ + nh for n = 0,1,2,.... Define y,, and y,, for n =
0,1,2,..., recursively by

and
Ynir = Yo+ 3 (k1 + 2ks + 2k3 + k),
where
k= 30 f (T, Yns U), k= 3h(y, + 3k1),
ko = %hf(a:n + %h, Yo + kY + k1),
ks = shf(@n + 5h,yn + k,ys, + ko), I = h(y), + k3)
and

This method is called a Runge-Kutta-Nystrom method.

2712 y'(x) = f(z,y(x))
Consider the initial value problem
y'(x) = f(z,y(x)), where  y(xzo) =y and y'(x0) =y

Let h > 0 be a step length and put z,, = x¢ + nh for n = 0,1,2,.... Define y,, and y,, for n =
0,1,2,..., recursively by

kl - %hf(xn,yn),
ko = 2hf(zn + $h,yn + Sh(y, + k1)) = ks,
ko = shf(zn + h,yn + h(y, + k),

Ynt1 = Yo + Dy, + 5 (k1 + 2k2))
and

Yny1 = Up + %(kl + dky + ky).
This method is called a Runge-Kutta-Nystrom method.

2.8 Numerical method for the Laplace and Poisson equations in
two dimensions

Let h > 0 be a step length and let z; = x¢ + ¢h and y; = yo + jh for all i, j € Z, where 2, and y, are
possibly 0. The the set of points of the form (z;, y;) forms a grid. Assume that the two-dimensional
Laplace equation
Vu = ug, + Uyy = 0
or the two-dimensional Poisson equation
VAU = Ugy + uyy = f(2,9),

has the solution u(z,y) for (z,y) € D, where D is a sufficiently nice subset of R%. If we for those
(1,7) where (z;,y;) € D can find u; ; such that u(x;, y;) = u; j, then we call the set of these u; ;’er a
numerical solution to the Laplace- or Poisson equation.
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2.8.1 Regular boundary

Denote the boundary of D by 0D. Assume that we for a suitable choice of x(, yo, and » > 0 have
that every point (z;,y;) € D is either boundary point, (z;,y,) € 0D, or that the four neighbouring
points, (z;-1,y;), (Ti+1,;), (zi,yj—1), and (z;,y,;-1), also lie in D, and that A is small. Then we can
find a numerical solution to the Laplace equation which satisfies the following system of linear
equations:

Ui41,j + Ui—1,5 + Ui, j+1 + Ui j—1 — 4Ui,j = 0, for (Z,j) then (.731', yj) eD \ (9D, (20)

while correspondingly for the Poisson equation, there exists a numerical solution which satisfies
the following system of linear equations:

uiHJ + ui_Lj + umﬂ + ui,j—l — 411,1'7]‘ = th(.CEi,yj), fOI' (Z,]) then (l‘i, yj) - D \ 8D (21)

Note that (20) corresponds to 1) with f = 0.

2.8.1.1 Dirichlet boundary conditions

If we have Dirichlet boundary conditions, i.e. if the values of u are given on the boundary, then
we just need to put

U5 = u(mi, yj) fOI‘ (Z,j) then (l’i, yj) € @D, (22)
and then solve the system of equations consisting of the equations or (21)), and (22).

2.8.1.2 Neumann and mixed boundary conditions

Assume now that we have Neumann boundary conditions on (parts of) the boundary, i.e. we

know
op T Yi) = g 283/

instead of u(z;, y,) for some (i, j) with (z;,y;) € 0D, where n = (7; ) is a outer normal vector to D.
In those points (z;, y;) where we have Neumann boundary conditions, is then replaced by

ou Ui41,5 — Ui—1,5 Ui j41 — U1
—(x;,y;) =n G ’ +n ’ : 23
8n( y]) 1 2h 2 2h ( )
and, if it is a Laplace equation,
Uit1,j + Uim1,j + W1 + w1 — 4w, 5 =0, (24)
or
i1+ Uim1g + Wi + gy — duiy = h2 f2,y;), (25)

if it is a Poisson equation. Note that some of these values correspond to points outside of D. If D is
sufficiently nice, and or (25), where there are Neumann boundary conditions in the point
(x4,y;), and (22), where there are Dirichlet boundary conditions in the point (z;, y;), together with
or (21), where (z;,y;) € D\ 9D, will give a system of equations with a unique solution.
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2.8.2 Irregular boundary

If it doesn’t hold that every point (z;,y;) € D is either et boundary point, (z;,y;) € 0D, or that
the four neighbouring points, (z;_1,y;), (it+1,9;), (x;,yj—1), and (z;,y;_1), also lie in D, then the
methods obove must be modified.

2.8.2.1 Dirichlet boundary conditions

Assume that (z;,y,) € D is not a boundary point, and that on or more of the neighbouring points
(.’L’z‘,l, yj), (Ii+1, yj>/ (l’i, yj71>/ and (IZ', yjfl) lie outside D.
o If (i11,y;) liesi D, weputa = 1, 4 = z;4; and put us = ;11 ;. Otherwise we choose q,
0 < a < 1,such that (z4,y;) € 0D, where x4 = ; + ah, and we put uy = u(x4,y;).

o If (z;,y;+1) liesin D, we let b = 1, yp = y;4+1 and put up = u; j11. Otherwise we choose b,
0 < b < 1, such that (z;,yp) € 0D, where yp = y; + bh, and we put ug = (z;,yn).

o If (z;_1,y;) liesin D, weletp = 1, xp = z;_; and put up = u;_; ;. Otherwise we choose p,
0 < p < 1,such that (zp,y;) € 0D, where xp = z; — ph, and we put up = u(zp, y;).

o If (z;,y;-1) liesin D, welet ¢ = 1, yg = y;—1 and put ug = u;;—1. Otherwise we choose g,
0 < g < 1, such that (z;,yg) € 0D, where yg = y; — ¢h, and we put ug = u(x;, yg).

We can then find a numerical solution which satisfies the following equation:

Ua up up uQ ap + bg
+ + + — u; ;= 0, 26
ala+p)  bb+q) plp+a) qlg+b)  abpg z)

if it is the Laplace equation, and

Ug up up uQ ap + bq h?
T + + - Uij = _f Tiy Yj), (27
ala+p)  bb+q) plp+a) qlg+d) abpg 7 2 (i ;) )

if it is a Poisson equation. For all (7, j), where (z;, y;) is not a boundary point, and one or more
of the neighbouring points (z;_1,;), (zi+1,9;), (zi,y;-1), and (x;,y;_1) lie outside of D, we now
use either the equation or (27), and for alle (i, j), where (z;,y;) is not a boundary point,
and (2;-1,9;), (Tiy1,v;), (25,y;-1), and (z;,y;-1) lie inside of D, we use the equation or (21).
Together with we then get a system of linear equations with a unique solution.

2.8.3 The Gauss-Seidel iterationsmethod

We need to solve a system of linear equations to find the solutions above, possibly with many
(N) equations and many (/V) unknowns. Write the system of linear equations on the form Az = b,
where A = (ai,j)fszl is an N x N-matrix, x is a vector consisting of the unknown values, and
b= (by by ... by) isaknown vector. The Gauss-Seidel iterationsmethod finds a numerical
solution to the system of equations Az = b by means of of the following iterative method.

1. first one makes a guess for a solution, which is called z(%) and n is put to 0.

2. One then finds ™ = (z{""" 2D 2(*Y) in the following way:

e First put 2" = L (p, — ZL alvjxgl”)).

ai
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* Second :anﬂ) - $<62 N 2;1 a27j5’7§‘n+1) - Z;V::z a2,j$§'n)).

[ ] and SO On: .I,E"’L—l-l) = i(bz - Z;;ll a,L"jI‘g‘”-‘—l) _ Z;V:i_‘—l alﬂ‘r‘gn)) fOI‘Z — 37 o ,N B 1.
e and lastly :1:%‘“) = ﬁ(bN _ Zj\;l aN’jxgnH)).

3. Now replace n with n + 1 and repeat the process from step 2.

In many cases (e.g. if A is so-called symmetric positive-definite or diagonally dominant), then the
sequence 2™ will tend to the unique solution for the system of equations Az = b. In pratice, one
stops the process when z("*1 is almost equal to z(™.
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