Weighted Reed-Muller codes revisited

Olav Geil (joint with Casper Thomsen)

Aalborg University Denmark

CAACT, EPFL 2011

• 3 > 1

$$T = S_1 \times \cdots \times S_m = \{P_1, \ldots, P_{|T|}\}, \qquad S_1, \ldots, S_m \subseteq \mathbb{F}_q.$$

Monomials:

$$\mathcal{M} \subseteq \{X_1^{i_1} \cdots X_m^{i_m} \mid i_1 < |\mathcal{S}_1|, \dots, i_m < |\mathcal{S}_m|\}$$

Code:

$$E(\mathcal{M}, T) = \operatorname{Span}_{\mathbb{F}_q} \{ (M(P_1), \dots, M(P_{|T|})) \mid M \in \mathcal{M} \}$$

Parameters:

Dimension equals $|\mathcal{M}|$. Minimum distance: apply footprint bound.

伺 とう ほう く きょう

$$T = \mathbb{F}_q \times \cdots \times \mathbb{F}_q$$

Monomials:

$$\mathcal{M} = \{X_1^{i_1} \cdots X_m^{i_m} \mid i_1, \dots, i_m < q, i_1 + \dots + i_m \le s\}$$

Code:

 $E(\mathcal{M}, T) = \mathsf{RM}_q(s, m)$

< ∃ >

$$T = \mathbb{F}_q \times \cdots \times \mathbb{F}_q$$

Monomials:

$$\mathcal{M} = \{X_1^{i_1} \cdots X_m^{i_m} \mid i_1, \dots, i_m < q, i_1 + \dots + i_m \le s\}$$

Code:

 $E(\mathcal{M}, T) = \mathsf{RM}_q(s, m)$

.

< ≣ >

A ■

æ

< ≣ >

q-1

$$T = \mathbb{F}_q \times \cdots \times \mathbb{F}_q$$

Monomials:

$$\mathcal{M} = \{X_1^{i_1} \cdots X_m^{i_m} \mid i_1, \dots, i_m < q, i_1 + \dots + i_m \le s\}$$

Code:

 $E(\mathcal{M}, T) = \mathsf{RM}_q(s, m)$

글 🕨 🛛 글

$$I = \langle X_1^q - X_1, \dots, X_m^q - X_m \rangle$$
$$\vec{c} = (F(P_1), \dots, F(P_n))$$
$$J = I + \langle F(X_1, \dots, X_m) \rangle$$

$$\Delta_{\prec}(J) = \{M \text{ a monomial } | \\ M \text{ is not leading of any polynomial in } J\}$$

Footprintbound: $w_H(\vec{c}) = n - \# \Delta_{\prec}(J)$

Use:
$$X_1^{i_1} \cdots X_m^{i_m} F(X_1, \dots, X_m) \in J$$

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

3

Parameters of $RM_9(4, 2)$:

- ▶ *k* = 15
- ▶ *d* = 45

▲ 御 ▶ → ミ ▶

< ≣⇒

Parameters of $RM_9(4, 2)$:

- ▶ *k* = 15
- ▶ *d* = 45

・回 ・ ・ ヨ ・ ・ ヨ ・

Parameters of $RM_9(4, 2)$:

- ▶ *k* = 15
- ▶ *d* = 45

・ 回 ト ・ ヨ ト ・ ヨ ト

Parameters of $RM_9(4, 2)$:

- ▶ *k* = 15
- ▶ *d* = 45

▲ 御 ▶ → ミ ▶

▲ 문 ▶ 문

Parameters of $RM_9(4, 2)$:

- ▶ *k* = 15
- ▶ *d* = 45

▲ 御 ▶ → ミ ▶

▲ 문 ▶ 문

Parameters of $RM_9(4, 2)$:

- ▶ *k* = 15
- ▶ *d* = 45

▲ □ ► < □ ►</p>

* 注 * 二 注

$$S = \{\alpha_1, \dots, \alpha_{|S|}\} \subsetneq \mathbb{F}_q$$

$$T = S \times \dots \times S$$

$$I = \langle \prod_{j=1}^{|S|} (X_i - \alpha_j), i = 1, \dots, m \rangle$$

$$M = \{X_1^{i_1} \cdots X_m^{i_m} \mid i_k < |S|, \deg(M) \le s\}$$

$$E(\mathcal{M}, T) = \mathsf{RM}_T(s, m)$$

$$|S| - 1$$

・ロン ・雪 ・ ・ ヨ ・ ・ ヨ ・ ・

$$S = \{\alpha_1, \dots, \alpha_{|S|}\} \subsetneq \mathbb{F}_q$$

$$T = S \times \dots \times S$$

$$I = \langle \prod_{j=1}^{|S|} (X_i - \alpha_j), i = 1, \dots, m \rangle$$

$$M = \{X_1^{i_1} \cdots X_m^{i_m} \mid i_k < |S|, \deg(M) \le s\}$$

$$E(\mathcal{M}, T) = \mathsf{RM}_T(s, m)$$

$$|S| - 1$$

・ロン ・雪 ・ ・ ヨ ・ ・ ヨ ・ ・

Add curve equation(s)

Example:

$$I = \left\langle X^4 - Y^3 - Y, X^9 - X, Y^9 - Y \right\rangle$$

- The extra relation lowers the size of footprint.
- Basis is no longer quadratic.

• 3 >

A ■

A 3 3

Good curves are difficult to find.

Question:

What can be said from the shape of the basis alone?

$$S_{1} = \{\alpha_{1}, \dots, \alpha_{|S_{1}|}\}$$

$$S_{2} = \{\alpha_{1}, \dots, \alpha_{|S_{2}|}\}$$

$$I = \langle \prod_{i=1}^{|S_{1}|} (X - \alpha_{i}), \prod_{i=1}^{|S_{2}|} (Y - \alpha_{i}) \rangle$$

個 と く ヨ と く ヨ と …

Weighted Reed-Muller codes

$$T = S_1 \times \cdots \times S_m$$

$$\mathcal{M} = \{X_1^{i_1} \cdots X_m^{i_m} \mid i_1 < |S_1|, \dots, i_m < |S_m|, \\ w_1 i_1 + \dots + w_m i_m \le s\}$$

● ▶ < ミ ▶

∢ ≣ ≯

For the case of two variables, the situation falls in three regions.

Optimal choices of weights are such that \mathcal{M} is as in figure.

The effect of flattening

문 문 문

Region I

Relative improvement of k/n when d/n is fixed. A function in $x = |S_2|/|S_1|$.

- Strategy A: Subfield subcode decoding following approach by Pellikaan-Wu and Santhi.
- Strategy B: Direct implementation of Guruswami-Sudan decoding with a preperation step.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ …

2

Subfield subcode decoding

$$t = \max\{\deg(M) \mid M \in \mathcal{M}\}$$

Decoding radius:
$$\left\lceil n(1-\sqrt{\frac{tq^{m-1}+1}{n}}) \right\rceil$$
.

Example: Joyner code. $T = \mathbb{F}_8^* \times \mathbb{F}_8^*$. $\mathcal{M} = \{1\} \cup \{X^i Y^j \mid 1 \le i, j \text{ and } i+j \le 5\}$

Parameters: [49, 11, 28].

Subfield subcode decoding with a trick can correct as follows

(本部)) (本語)) (本語)) (語)

Guruswami-Sudan decoding of RS-codes

$$\mathcal{T} = \{x_1, \ldots, x_n\} \subseteq \mathbb{F}_q, \ \mathcal{M} = \{1, X, \ldots, X^{k-1}\}.$$

Received word $\vec{r} = (r_1, \ldots, r_n)$.

To correct E errors:

Find $Q(X, Y) = Q_0(X) + Q_1(X)Y + \cdots + Q_s(X)Y^s$ such that

- All (x_i, r_i) are zeros of multiplicity $\geq r$.
- Q(X, F(X)) cannot have n − E zeros of multiplicity ≥ r for any F(X) ∈ Span_{F_q}(M).

(日本) (日本) (日本)

 $T = S_1 \times \cdots \times S_m = \{P_1, \dots, P_n\}$. \mathcal{M} is any specified set of monomials.

Find nonzero $Q(X_1, \ldots, X_m, Y)$ such that

- Any (P_i, r_i) is a zero of multiplicity $\geq r$.
- Q(X₁,...,X_m, F(X₁,...,X_m)) cannot have n − E zeros of multiplicity ≥ r for any F(X₁,...,X_m) ∈ Span_{F_a}(M).

・ 同 ト ・ ヨ ト ・ ヨ ト

Monomials are allowed in the support of $Q_i(X_1, \ldots, X_m)$ if of degree lower than some value.

- ▶ Pellikaan Wu: $RM_q(s, m)$. Tool: generalized footprintbound.
- Augot et al.: RM_T(s, m) (improved) and Reed-Solomon product codes. Tool: Schwartz-Zippel bound with multiplicity.

・ 戸 ト ・ ヨ ト ・ ヨ ト ・

Using full information on monomial

Bounds in terms of (i_1, \ldots, i_m) rather than in terms of deg.

G-Matsumoto used this approach for order domain codes, but could not deal with multiplicity.

Order domain codes includes one-point geometric Goppa codes, Weighted Reed-Muller codes and many more.

A closer analysis of Dvir, Kopparty, Saraf and Sudan's proof of the Schwartz-Zippel bound with muliplicity allows for improved information...and thereby improved decoding of $E(\mathcal{M}, T)$

However, strongly non-linear and not even symmetric. A recursive function *D*. Closed formula estimates for two variables.

Therefore, at preperation step is needed to find optimal *E* and corresponding monomials that are allowed in Q_0 , \ldots , Q_s , \ldots , Q_s , \ldots =

Olav Geil, Aalborg University, Denmark Weighted Reed-Muller codes revisited

m				2				4			
r		2	3	4	5	2	3	4	5	2	3
	2	0.25	0.25	0.25	0.25	0.25	0.375	0.375	0.375	0.312	0.375
	3 4	0.222 0.187	0.222 0.187	0.222 0.187	0.222 0.187	$0.296 \\ 0.281$	$0.296 \\ 0.25$	$0.296 \\ 0.25$	$0.296 \\ 0.265$	$0.296 \\ 0.316$	0.333 0.289
q	$\frac{5}{6}$	$0.24 \\ 0.222$	$0.16 \\ 0.194$	$0.16 \\ 0.166$	$0.2 \\ 0.166$	$0.256 \\ 0.277$	$0.256 \\ 0.25$	0.232 0.231	$0.24 \\ 0.212$	0.307 0.293	0.288 0.287
	7	0.222	0.204	0.160	0.142	0.279	0.244	0.231 0.227	0.212	0.299	0.276
	8	0.234	0.203	0.171	0.140	0.275	0.25	0.214	0.203	0.299	0.275

Table 1: Maximal improvements relative to q^m ; truncated.

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

m				2				4	4		
r		2	3	4	5	2	3	4	5	2	3
	2	0.363	0.273	0.337	0.291	0.301	0.300	0.342	0.307	0.248	0.260
	3	0.217	0.286	0.228	0.236	0.194	0.224	0.213	0.214	0.158	0.177
	4	0.191	0.197	0.232	0.195	0.158	0.169	0.180	0.172	0.125	0.135
q	5	0.155	0.167	0.174	0.197	0.139	0.145	0.148	0.153	0.110	0.116
	6	0.148	0.160	0.156	0.154	0.128	0.132	0.132	0.131	0.100	0.105
	7	0.128	0.137	0.138	0.138	0.119	0.122	0.121	0.119	0.093	0.098
	8	0.126	0.127	0.134	0.126	0.114	0.115	0.113	0.111	0.089	0.093

Table 1: The mean value of relative improvements; truncated.

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

coucu	when of	- 0	and o_2	· · ·	1.								
	s/d	3	488	4	480	7	456	15	392	16	384	20	352
r	Bound	W	Н	W	Н	W	Н	W	Н	W	Η	W	Н
	S 267		243		191		103	95	95	87	67	59	
2	\mathbf{C}	286		266		219		131	128	122	119	97	94
	D	298		277		228		135	131	121	119	99	95
_	S 287		263		213		130	122	122	117	95	90	
3	\mathbf{C}	301		279		234		149	145	138	135	113	109
	D	319		298		255		177	175	161	160	139	135
	S	295		273		225		145	139	139	131	111	105
4	\mathbf{C}	307		286		242		159	155	147	145	123	118
	D	328		311		269		196	195	181	181	160	159
	S	312		292		2	47	173	166	166	159	140	134
9	\mathbf{C}	3	18	299		2	55	178	173	169	166	144	139
	S	3	20	5	801	2	58	185	178	178	171	153	147
20	\mathbf{C}	3	23	5	804	2	62	188	182	180	175	155	149
	Sub	1	198 149			33 0)	0		0		
	$\lfloor \frac{d-1}{2} \rfloor$ 243		2	239	2	27	195		191		175		
	Dim		4		5		8	24	25	27	28	39	41

Table 1: Error correction abilities of weighted Reed-Muller codes and hyperbolic codes when $s_1 = 8$ and $s_2 = 64$.

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

		-		~ 4									
	s/d	5	4016	8	3968	15	3856	31	3600	36	3620	55	3216
r	Bound	W	Н	W	Н	W	Н	W	Н	W	Н	W	Н
2	S	S 259		2335			1927	1359	1335	1231	1207	839	791
	С	2680		2456		2112		1565	1557	1392	1391	1022	1003
	D	2729		2504		2153		1589	1583	1411	1408	1035	1015
3	S	2714		2479 2579			2106	1578	1551	1455	1434	1082	1034
	C 2790		790			2240		1695	1684	1552	1547	1190	1167
	D	D 2861			2651	51 2326		1859	1855	1707	1706	1359	1351
4	S	2	779		2555		2195	1691	1667	1575	1551	1211	1163
	\mathbf{C}	2843		2635		:	2305	1782	1767	1638	1632	1284	1260
	S	2894		2689			2362	1895	1871	1784	1763	1443	1367
9	\mathbf{C}	2928			2730 2		2415	1935	1919	1811	1804	1469	1442
	S	2	947		2751		2439	1988	1966	1882	1862	1551	1506
20	\mathbf{C}	2	964		2772	1	2464	2007	1989	1894	1884	1562	1529
	Sub	$\frac{1806}{2007}$			$\frac{1199}{1983}$		130	$\frac{0}{1799}$		0		0	
	$\lfloor \frac{d-1}{2} \rfloor$						1927			1759		1607	
	Dim		4		5		8	24	25	27	28	39	41

Table 1: Error correction abilities of weighted Reed-Muller codes and hyperbolic codes when $s_1 = 16$ and $s_2 = 256$.

(ロ) (四) (E) (E) (E)