Trigonometric identities involving sine and cosine
- The fundamental identity
- cos2(θ)+sin2(θ) = 1
- Symmetry identities
- cos(–θ) = cos(θ)
- sin(–θ) = –sin(θ)
- cos(π+θ) = –cos(θ)
- sin(π+θ) = –sin(θ)
- cos(π–θ) = –cos(θ)
- sin(π–θ) = sin(θ)
- cos(π/2 + θ) = –sin(θ)
- sin(π/2 + θ) = cos(θ)
- cos(π/2 – θ) = sin(θ)
- sin(π/2 – θ) = cos(θ)
- Addition formulas
- cos(α+β) = cos(α)cos(β)–sin(α)sin(β)
- cos(α–β) = cos(α)cos(β)+sin(α)sin(β)
- sin(α+β) = sin(α)cos(β)+cos(α)sin(β)
- sin(α–β) = sin(α)cos(β)–cos(α)sin(β)
- Double-angle formulas
- cos(2θ) = cos2(θ)–sin2(θ) =
1–2sin2(θ) = 2cos2(θ)–1
- sin(2θ) = 2sin(θ)cos(θ)
- Sum and difference formulas
- cos(α)+cos(β) =
2cos(½(α+β))cos(½(α–β))
- cos(α)–cos(β) =
2sin(½(α+β))sin(½(β–α))
- sin(α)+sin(β) =
2sin(½(α+β))cos(½(α–β))
- sin(α)–sin(β) =
2cos(½(α+β))sin(½(α–β))
- Product formulas
- cos(α)cos(β) =
½(cos(α–β)+cos(α+β))
- sin(α)sin(β) =
½(cos(α–β)–cos(α+β))
- sin(α)cos(β) =
½(sin(α–β)+sin(α+β))
Latest update 7. September 2009 by Iver Ottosen