
AALBORG UNIVERSITY

DOCTORAL SCHOOL

TECHNOLOGY

AND SCIENCE

NONLINEAR DIFFERENTIAL

EQUATIONS AND

DYNAMICAL SYSTEMS

3. day

LISBETH FAJSTRUP

MARTIN RAUSSEN

RAFAEL WISNIEWSKI

MARCH 8, 2008

STABILITY AND LYAPUNOV FUNCTIONS

March 8, 9-11:45
Niels Jernes Vej 14, room 3-119.

Lectures.

Aims and Content. Stability of a dynamical
system can be given (at least) two mean-
ings:

1. An equilibrium point may be sta-
ble, asymptotically stable or unstable. We
saw earlier, that for hyperbolic equilibrium
points is is enough to look at the lineariza-
tion to decide about stability close to this
point. For non-hyperbolic points, one has
to use more sophisticated tools. One such
tool is the use of Lyapunov functions.

Lecturer: Lisbeth Fajstrup

References:

HSD: 8.4, 9.1, 9.2.
Wikipedia: Lyapunov function

Exercises:

HSD pp. 211/212:
Read some of the examples in 9.1;
9.2 and fill in details.
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STABILITY AND BIFURCATIONS

March 8, 12:30 – 15:15

Lectures.

Aims and Content. 2. One may also con-
sider stability of the system as such. What
are the characteristic features of the system
behaving under variation of the parame-
ters describing it? Varying for instance the
setup of an experiment gives rise to a vari-
ation of the parameters in the system, and
hence a family of systems X′ = Fa(X),
where a represents the varying parameter.
A bifurcation occurs at a = a0, if the be-
haviour of the system is significantly dif-
ferent for values a0 − ε and values a0 + ε.

Lecturers: Lisbeth Fajstrup and Martin
Raussen

References:

HSD: 8.5.
Wikipedia: Bifurcation theory

Demos on the internet: Bifurcation diagrams

Exercises: The behaviour of a non-linear
system off and inbetween the equilibrium
points is the theme of this exercise.

(1) The system

x′ = x2 − 1, y′ = −xy

has two saddle points (where?)
Prove that there is a solution curve
which is a stable curve for one sad-
dle point and an unstable curve for

the other. 1

(2) The system

x′ = −2x(x− 1)(2x− 1), y′ = −2y

has three equilibrium points. Clas-
sify the linearization at these three
points and use a plot tool to see how
the solutions behave (at large).

(3) Same question for the system

x′ = y, y′ = −x3 + x.

Here, the unstable curves of the
saddle point turn around and come
back as the stable curves - they are

homoclinic orbits.2

1Hint: It moves along the x-axis.
2Why closed orbits? Consider level curves of the function 2y2 − 2x2 + x4.
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