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Lectures.

Aims and Content. Besides linear differen-
tial equations there are two classes of dy-
namical systems that are particularly reg-
ular: gradient systems and Hamiltonian
systems. A common feature of these is that
they can be efficiently analyzed by study-
ing an associated function: a Lyapunov
function for the first class and a Hamilton-
ian function for the latter.

In particular, an isolated minimum of a
Lyapunov function is an equilibrium point
for a gradient system. During the lecture
we will introduce the notion of a regular
value of a function. If c is the regular value
of a function V then the gradient vector

field grad(V) is perpendicular to the level
set V−1(c).

Conservative mechanical systems are
described by Hamiltonian systems. A
Hamiltonian function is a constant of mo-
tion - it is constant along every solution of
the system.

Lecturer: Rafael Wisniewski

References:

HSD: ch. 9.3-4.
Wikipedia: Hamiltonian mechanics

[HSD],

Exercises:

Bifurcations: [HSD], p. 185-6, exc. 5.
Gradient/Hamiltonian: [HSD],

p. 213, exc. 10 and 11.
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LIMIT SETS. THE POINCARÉ MAP

March 10, 12:30-15:15
Fredrik Bajers Vej 7D, room 2-109.

Lectures.

Aims and Content. What happens to a dy-
namical system “in the long run”, what do
orbits converge to for t → ±∞? They may
converge to an equilibrium point (sink or
source), but they may also converge to a
closed orbit. And for 2D-dynamical sys-
tems, essentially that’s it; for higher di-
mensional systems, chaotic systems allow
for much more intricate attractors.

The aim of these lectures is to introduce
concepts and tools for an analysis of con-
vergence of orbits. First, we need to know
about α- and ω- limit sets and their prop-
erties (where it all begins/ends!) To anal-
yse the behaviour of orbits in the neigh-
bourhood of a closed orbit, the Poincaré
map on a section perpendicular to the or-
bit is introduced and investigated. It asso-
ciates to a point on this section the “first
return point” on that section. By iterat-
ing the Poincaré map, one may extract in-
formation on the original continuous dy-
namical system from information about

the discrete dynamical system given by the
Poincaré map. In the 2D-case, the size of
the derivative of the Poincaré map allows
(often) to decide whether the closed orbit
is asymptotically stable (or unstable).

Lecturer: Martin Raussen

References:

HSD: ch. 10.1-3.
Wikipedia: Limit set
Wikipedia: Poncaré map

Exercises:

Gradient/Hamiltonian: [HSD],
p. 213, exc. 12-14.

Limit Sets: [HSD], p. 231-2, exc. 1.
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