
Algebraic Topology and Concurrency
Trace Spaces and their Applications

Martin Raussen

Department of Mathematical Sciences
Aalborg University, Denmark

ICAM 6 – Baia Mare, Romania

20.9.2008

Martin Raussen Algebraic Topology and Concurrency



Outline

Outline:

1. Motivations, mainly from Concurrency Theory (Comp.ci.)

2. Directed topology: Algebraic topology with a twist

3. Trace Spaces and their properties

4. A categorical framework (with examples and applications)

Main Collaborators:
◮ Lisbeth Fajstrup (Aalborg), Éric Goubault, Emmanuel
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Motivation: Concurrency
Mutual exclusion

Mutual exclusion occurs, when n processes Pi compete for m
resources Rj .
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Only k processes can be served at any given time.
Semaphores!
Semantics: A processor has to lock a resource and relinquish
the lock later on!
Description/abstraction Pi : . . .PRj . . .VRj . . . (E.W. Dijkstra)
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Schedules in ”progress graphs”
The Swiss flag example
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PV-diagram from
P1 : PaPbVbVa

P2 : PbPaVaVb

Executions are directed
paths – since time flow is
irreversible – avoiding a
forbidden region (shaded).

Dipaths that are
dihomotopic (through
a 1-parameter deforma-
tion consisting of dipaths)
correspond to equivalent
executions.

Deadlocks, unsafe and
unreachable regions may
occur.
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Higher dimensional automata (HDA) 1
Example: Dining philosophers; dimension 3 and beyond

A B

C

a

b

c

A=Pa.Pb.Va.Vb
B=Pb.Pc.Vb.Vc
C=Pc.Pa.Vc.Va

Higher dimen-
sional complex
with a forbidden
region consist-
ing of isothetic
hypercubes
and an unsafe
region.
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Higher dimensional automata (HDA) 2
seen as (geometric realizations of) pre-cubical sets

Vaughan Pratt, Rob van Glabbeek, Eric Goubault...

a b

ab

2 processes, 1 processor

cubical complex

bicomplex

2 processes, 3 processors 3 processes, 3 processors

Squares/cubes/hypercubes are filled in iff actions on boundary
are independent.
Higher dimensional automata are pre-cubical sets:

◮ like simplicial sets, but modelled on (hyper)cubes instead
of simplices; glueing by face maps

◮ additionally: preferred directions – not all paths allowable.
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Discrete versus continuous models
How to handle the state-space explosion problem?

Discrete models for concurrency (transition graph models)
suffer a severe problem if the number of processors and/or the
length of programs grows: The number of states (and the
number of possible schedules) grows exponentially:
This is known as the state space explosion problem.
You need clever ways to find out which of the schedules yield
equivalent results – e.g., to check for correctness – for general
reasons. Then check only one per equivalence class.
Alternative: Infinite continuous models allowing for well-known
equivalence relations on paths (homotopy = 1-parameter
deformations) – but with an important twist!
Analogy: Continuous physics as an approximation to (discrete)
quantum physics.
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Concepts from algebraic topology
Homotopy, fundamental group

Top: the category of topological spaces and continuous maps.
I = [0,1] the unit interval.

Definition

◮ A continuous map H : X × I → Y is called a homotopy.
◮ Continuous maps f ,g : X → Y are called homotopic to

each other if there is a homotopy H with
H(x ,0) = f (x),H(x ,1) = g(x), x ∈ X .

◮ [X ,Y ] the set of homotopy classes of continuous maps
from X to Y .

◮ Variation: pointed continuous maps f : (X , ∗)→ (Y , ∗) and
pointed homotopies H : (X × I, ∗ × I)→ (Y , ∗).

◮ Loops in Y as the special case X = S1 (unit circle).
◮ Fundamental group π1(Y , y)= [(S1, ∗), (Y , y)] with product

arising from concatenation and inverse from reversal.
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A framework for directed topology
d-spaces, M. Grandis (03)

X a topological space. ~P(X ) ⊆ X I = {p : I = [0,1]→ X cont.}
a set of d-paths (”directed” paths↔ executions) satisfying

◮ { constant paths } ⊆ ~P(X )

◮ ϕ ∈ ~P(X )(x , y), ψ ∈ ~P(X )(y , z) ⇒ ϕ ∗ ψ ∈ ~P(X )(x , z)

◮ ϕ ∈ ~P(X ), α ∈ I I a nondecreasing reparametrization
⇒ ϕ ◦ α ∈ ~P(X )

The pair (X , ~P(X )) is called a d-space.
Observe: ~P(X ) is in general not closed under reversal:

α(t) = 1− t , ϕ ∈ ~P(X ) 6⇒ ϕ ◦ α ∈ ~P(X )!

Examples:
◮ An HDA with directed execution paths.
◮ A space-time(relativity) with time-like or causal curves.
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d-maps, dihomotopy

A d-map f : X → Y is a continuous map satisfying
◮ f (~P(X )) ⊆ ~P(Y ).

Let ~P(I) = {σ ∈ I I|σ nondecreasing reparametrization},
and~I = (I, ~P(I)). Then

◮ ~P(X ) = set of d-maps from~I to X .

A dihomotopy H : X × I → Y is a continuous map such that
◮ every Ht a d-map

i.e., a 1-parameter deformation of d-maps.
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Dihomotopy is finer than homotopy with fixed
endpoints
Example: Two L-shaped wedges as the forbidden region

All dipaths from minimum to maximum are homotopic.
A dipath through the “hole” is not dihomotopic to a dipath on the
boundary.
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The twist has a price
Neither homogeneity nor cancellation nor group structure

Ordinary topology:
Path space = loop space (within each path component).
A loop space is an H-space with concatenation, inversion,
cancellation.

“Birth and death” of
d-homotopy classes

Directed topology:
Loops do not tell much;
concatenation ok, can-
cellation not!
Replace group struc-
ture by category
structures!
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D-paths, traces and trace categories
Getting rid of reparametrizations

X a (saturated) d-space.
ϕ,ψ ∈ ~P(X )(x , y) are called reparametrization equivalent if
there are α, β ∈ ~P(I) such that ϕ ◦ α = ψ ◦ β (“same oriented
trace”).

Theorem
(Fahrenberg-R., 07): Reparametrization equivalence is an
equivalence relation (transitivity!).
~T (X )(x , y) = ~P(X )(x , y)/≃ makes ~T (X ) into the (topologically
enriched) trace category – composition associative.
A d-map f : X → Y induces a functor ~T (f ) : ~T (X )→ ~T (Y ).
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The two main objectives

◮ Investigation/calculation of the homotopy type of trace
spaces ~T (X )(x , y) for relevant d-spaces X

◮ Investigation of topology change under variation of end
points:

~T (X )(x ′, y)
σ∗

x′x← ~T (X )(x , y)
σyy′∗
−→~T (X )(x , y ′)

Categorical organization, leading to components of end
points

Application: Enough to check one d-path among all paths
through the same components!
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Topology of trace spaces for a pre-cubical complex X

l1 “arc length” parametrization: on each cube, arc length is the
l1-distance of end-points. Additive continuation 
Subspace of arc-length parametrized d-paths ~Pn(X ) ⊂ ~P(X ).
D-homotopic paths in ~Pn(X )(x , y) have the same arc length!
The spaces ~Pn(X ) and ~T (X ) are homeomorphic,
~P(X ) is homotopy equivalent to both.

Theorem
X a pre-cubical set; x , y ∈ X. Then ~T (X )(x , y)

◮ is metrizable, locally contractible and locally compact1.
◮ has the homotopy type of a CW-complex. (using Milnor)

First examples
In the unit cube, ∂In its boundary.

◮ ~T (In; x,y) is contractible for all x � y ∈ In;

◮ ~T (∂In; 0,1) is homotopy equivalent to Sn−2.
1MR, Trace spaces in a pre-cubical complex, Draft
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Aim: Decomposition of trace spaces
Method: Investigation of concatenation maps

Let L ⊂ X denote a (properly chosen) subspace.
Investigate the concatenation map
cL : ~T (X)(x0, L)×L

~T (X)(L, x1)→ ~T (X)(x0, x1), (p0, p1) 7→ p0 ∗ p1

onto? fibres? Topology of the pieces?

Generalization: L1, · · · ,Lk a sequence of (properly chosen)
subspaces. Investigate the concatenation map on
~T (X )(x0, L1) ×L1 · · · ×Lj

~T (X )(Lj , Lj+1) ×Lj+1 · · · ×Lk
~T (X )(Ln, x1).

onto? fibres? Topology of the pieces?
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Trace spaces and sequences of mutually reachable
points

Reachability. For a given collection L of finitely many disjoint
subsets in X that is unavoidable from x0 to x1, let
RL(Li ,Lj) = {(xi , xj) ∈ Li × Lj | ~PL(xi , xj) 6= ∅} ⊂ X × X .
Theorem. If for all i , j , (xi , xj ) ∈ RL(Li ,Lj) the trace spaces
~TL(X )(xi , xj) are contractible and locally contractible, then
~T (X )(x0, x1) is homotopy equivalent to the disjoint union over
all L-admissible sequences (0, i1, . . . , in,1) of spaces
RL(x0, Li1) ×Li1

· · · ×Lij
RL(Lij , Lij+1) ×Lij+1

· · · ×Lin
RL(Lin , x1) ⊂ X n+1.
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The latter space consists
of sequences of mutually
reachable points in the given
layers.

.
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Examples

1.

A wedge of two directed circles
X = ~S1 ∨x0

~S1:
~T (X )(x0, x0) ≃ {1,2}∗.
(Choose Li = {xi}, i = 1,2 with xi 6= x0

on the two branches).

2.

Y = cube with two wedges deleted:
~T (Y )(0,1) ≃ ∗ ⊔ (S1 ∨ S1).
(Li two vertical cuts through the
wedges; product is homotopy equiva-
lent to torus; reachability 
two components, one of which is con-
tractible, the other a thickening of
S1 ∨ S1 ⊂ S1 × S1.)
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Piecewise linear traces

Let X denote the geometric realization of a finite pre-cubical
complex (�-set) M, i.e., X =

∐
(Mn ×~In)/≃.

X consists of “cells” eα homeomorphic to Inα . A cell is called
maximal if it is not in the image of a boundary map ∂±.
The d-path structure ~P(X ) is inherited from the ~P(~In) by
“pasting”.

Definition
p ∈ ~P(X ) is called PL if: p(t) ∈ eα for t ∈ J ⊆ I ⇒ p|J linear2.
~PPL(X ), ~TPL(X ): subspaces of linear d-paths and traces.

Theorem
For all x0, x1 ∈ X, the inclusion ~TPL(X )(x0, x1) →֒ ~T (X )(x0, x1)
is a homotopy equivalence.

2and close-up on boundaries
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A prodsimplicial structure on ~TPL(X )
Cube paths and the PL-paths in each of them

Definition
A maximal cube path in a pre-cubical set is a sequence
(eα1 , . . . ,eαk ) of maximal cells such that ∂+eαi ∩ ∂

−eαi+1 6= ∅.

The PL-traces within a given maximal cube path (eα1 , . . . ,eαk )
correspond to sequences in {(y1, . . . , yk−1) ∈∏k−1

i=1 (∂+eαi ∩ ∂
−eαi+1) ⊂ X k | ~P(eαi )(yi−1, yi ) 6= ∅,1 < i < k}.

This set carries a natural structure as a
product of simplices

∏
∆jk .

Subsimplices and their products: Some coordinates of d-paths
are minimal, maximal or fixed within one or several cells.
The space ~TPL(X ) of all PL-d-paths in X is the result of pasting
of these products of simplices. It carries thus the structure of a
prodsimplicial complex possibilities for inductive calculations.
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Simple examples

1.

1 2 3

4

5

Two maximal cube paths from 0 to 1,
each of them contributing ∆2 × ∆2.
Empty intersection.
~TPL(X )(0,1) ≃ (∆2×∆2)⊔(∆2×∆2).

2.

X = ∂~In. Maximal cube paths from 0
to 1 have length 2. Every PL-d-path
is determined by an element of
∂±~In ≃ Sn−2.
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Future work
on the algebraic topology of trace spaces

◮ Is there an automatic way to place consecutive “diagonal
cut” layers in complexes corresponding to PV-programs
that allow to compare path spaces to subspaces of the
products of these layers?

◮ PL-d-paths come in “rounds” corresponding to the sums of
dimensions of the cells they enter. This gives hope for
inductive calculations (as in the work of Herlihy, Rajsbaum
and others in distributed computing).

◮ Explore the combinatorial algebraic topology of the trace
spaces

◮ with fixed end points and
◮ what happens under variations of end points.

◮ Make this analysis useful for the determination of
components (extend the work of Fajstrup, Goubault,
Haucourt, MR)
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Categorical organization
First tool: The fundamental category

~π1(X ) of a d-space X [Grandis:03, FGHR:04]:
◮ Objects: points in X
◮ Morphisms: d- or dihomotopy classes of d-paths in X
◮ Composition: from concatenation of d-paths

A
B

C D

Property: van Kampen theorem (M. Grandis)
Drawbacks: Infinitely many objects. Calculations?
Question: How much does ~π1(X )(x , y) depend on (x , y)?
Remedy: Localization, component category. [FGHR:04, GH:06]
Problem: This “compression” works only for loopfree categories
(d-spaces)
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Preorder categories
Getting organised with indexing categories

A d-space structure on X induces the preorder �:

x � y ⇔ ~T (X )(x , y) 6= ∅

and an indexing preorder category ~D(X ) with
◮ Objects: (end point) pairs (x , y), x � y
◮ Morphisms:
~D(X )((x , y), (x ′ , y ′)) := ~T (X )(x ′, x)× ~T (X )(y , y ′):

x ′ ))
55 x

� // y ))
55 y ′

◮ Composition: by pairwise contra-, resp. covariant
concatenation.

A d-map f : X → Y induces a functor ~D(f ) : ~D(X )→ ~D(Y ).
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The trace space functor
Preorder categories organise the trace spaces

The preorder category organises X via the
trace space functor ~T X : ~D(X )→ Top

◮ ~T X (x , y) := ~T (X )(x , y)

◮ ~T X (σx , σy ) : ~T (X )(x , y) // ~T (X )(x ′, y ′)

[σ] � / [σx ∗ σ ∗ σy ]

Homotopical variant ~Dπ(X ) with morphisms
~Dπ(X )((x , y), (x ′, y ′)) := ~π1(X )(x ′, x)× ~π1(X )(y , y ′)

and trace space functor ~T X
π : ~Dπ(X )→ Ho − Top (with

homotopy classes as morphisms).
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Sensitivity with respect to variations of end points
Questions from a persistence point of view

◮ How much does (the homotopy type of) ~T X (x , y) depend
on (small) changes of x , y?

◮ Which concatenation maps
~T X (σx , σy ) : ~T X (x , y)→ ~T X (x ′, y ′), [σ] 7→ [σx ∗ σ ∗ σy ]
are homotopy equivalences, induce isos on homotopy,
homology groups etc.?

◮ The persistence point of view: Homology classes etc. are
born (at certain branchings/mergings) and may die
(analogous to the framework of G. Carlsson etal.)

◮ Are there “components” with (homotopically/homologically)
stable dipath spaces (between them)? Are there borders
(“walls”) at which changes occur?
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Examples of component categories
Standard example
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Figure: Standard
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Components A,B,C,D – or rather
AA,AB,AC,AD,BB,BD,CC,CD,DD.

#: diagram commutes.
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Examples of component categories
Oriented circle – with loops!

X = ~S1

6

oriented circle

C : ∆
a

**
∆̄

b
ll

∆ the diagonal, ∆̄ its complement.
C is the free category generated by
a,b.

◮ Remark that the components are no longer products!
◮ It is essential in order to get a discrete component

category to use an indexing category taking care of pairs
(source, target).
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The component category of a wedge of two oriented
circles

X = ~S1 ∨ ~S1
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The component category of an oriented cylinder with a
deleted rectangle

L

M

U
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Concluding remarks

◮ Component categories contain the essential information
given by (algebraic topological invariants of) d-path spaces

◮ Compression via component categories is an antidote to
the state space explosion problem

◮ Some of the ideas (for the fundamental category) are
implemented and have been tested for huge industrial
software from EDF (Éric Goubault & Co., CEA)

◮ Much more theoretical and practical work remains to be
done!

Thanks for your attention!
Questions? Comments?
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