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Intro: State space, directed paths and trace space

Problem: How are they related?

Example 1: State space and trace space for a semaphore HDA

CO-

Path space model contained
in torus (9A?)2 —

homotopy equivalent to a
wedge of two circles and a
point: (S'v 8") L *

Analogy in standard algebraic topology
Relation between space X and loop space ().X.
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State space:

a3Dcube B\ F

minus 4 box obstructions
pairwise connected




Intro: State space and trace space

with loops
Example 2: Punctured torus

[ ] [ [ ] [
Path space model:

o o . o Discrete infinite space of
dimension 0 corresponding

X *

to {r,u}*.

® A ° °
Question: Path space for a
punctured torus in higher

(] (] [ (]

dimensions?
Joint work with L. Fajstrup

State space: Punctured torus T
and K. Ziemianski.

X and branch point A:
2D torus 9A? x 9A? with a
rectangle A' x A removed

v
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Motivation: Concurrency

Semaphores: A simple model for mutual exclusion

Mutual exclusion

occurs, when n processes P; compete for m resources A;.

Semantics: A processor has to lock a resource and to
relinquish the lock later on!

Description/abstraction: P;: ... PR;... VR;... (E.W. Dijkstra)
P: probeer; V: verhoog

y
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A geometric model: Schedules in "progress graphs"

Semaphores: The Swiss flag example

T2
an Executions are directed
paths — since time flow is
Vb cesvee irreversible — avoiding a
va %mm forbidden region (shaded).
ﬁ; Dipaths that are dihomotopic
P . (through a 1-parameter
Po e deformation consisting of
dipaths) correspond to
0.0 Pa Pb Vb Va ™ equivalent executions.
Deadlocks, unsafe and
PV-diagram from unreachable regions may
P1 . PanVb Va occur.
P> : PpP3V,V, )
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Simple Higher Dimensional Automata

Semaphore models

The state space

A linear PV-program is modeled as the complement of a
forbidden region F consisting of a number of holes in an
n-cube:

@ Hole = isothetic hyperrectangle
R =]al, bj[x - -- x]ah, bi[c I",1 <i<I
with minimal vertex a’ and maximal vertex b’.
@ State space X = I"\F, F=U/_; R’
X inherits a partial order from /. d-paths are order
preserving.

y

More general concurrent programs ~» HDA

Higher Dimensional Automata (HDA, V. Pratt; 1990):

@ Cubical complexes: like simplicial complexes,
with (partially ordered) hypercubes instead of simplices as
building blocks.

@ d-paths are order preserving.

y
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Spaces of d-paths/traces — up to dihomotopy

Schedules

@ X ad-space, a,b € X.
p: I — X ad-path in X (continuous and
“order-preserving”) from ato b.

@ P(X)(ab)={p:1— X|p(0) = a,p(b) =1, pad-path}.
Trace space 7(X)(a, b) = P(X)(a, b) modulo
increasing reparametrizations.
In most cases: P(X)(a, b) ~ T(X)(a,b).

@ A dihomotopy in P(X)(a, b)isamap H: /x| — X such
that H; € P(X)(a, b), t € I;ie a path in P(X)(a,b).

Description of the homotopy type of P(X)(a, b) as explicit finite
dimensional (prod-)simplicial complex.

In particular: its path components, ie the dihomotopy classes of
d-paths (executions).

v
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Tool: Subspaces of X and of P(X)(0,1)
X=1"\F,F=U_,R:R =[a,b];0,1 the two corners in /".

Q Xj={xeX|x<b =x<a}-
direction j restricted at hole i

© M abinary I x n-matrix: Xy = 1 Xjj =
Which directions are restricted at which hole?

Examples: two holes in 2D one hole in 3D (dark)

M

IR B B

H ' N |
b
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Covers by contractible (or empty) subspaces

Bookkeeping with binary matrices

Binary matrices

M, » poset (<) of binary / x n-matrices
M/:* no row vector is the zero vector —
every hole obstructed in at least one direction

A cover by contractible subspaces

o — —
PX)0.1) = [J P(Xu)(0.1).
MeMmf*

© Every path space ﬁ(XM)(O, 1), M e MB* s

I,n
empty or contractible. Which is which?

Subspaces Xy, M € Mﬁ,’,* are closed under Vv = l.u.b. O
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A combinatorial model and its geometric realization

First examples

Topology:
Combinatorics prodsimplicial complex
poset category T(X)(0,1) C (A1)
C(X)(0,1) C M3 € M, Ay =Dmy X+ X A, ©
Me C(X)(0,1) “alive” T(X)(0,1) — one simplex Ap,

for every hole
& P(Xy)(0,1) # @.

Examples of path spaces

H nm T |
n 1 e ° T(X;)(0,1) = (3A1)2
N | N |

H
H = 4x
FH e m
1 0] 1 0 1} D C(X)(0,1)
1

e T(X.)(0,1) = 3%
{1 0 B 0
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Further examples

State spaces, “alive” matrices and path spaces

Q X:7n\jn i t
° C(X)(0.1) = @
MR*\{[ ..... 1]}, ta . t @
T(X )(0 1) =
* aanit o gre. o 0
@ x =1\ (Jpud) i +
e C(X)(0,1) =
MJ:*\ matrices t2 E
W|tha to to
[1,...,1]-row. 100 000
JULINE bol L1
Sh=2 % 82, alive dead )
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I:Iomotopy equivalence between path space
P(X)(0,1) and prodsimplicial complex T(X)(0,1)

Theorem (A variant of the nerve lemma)
P(X)(0,1) ~ T(X)(0,1) ~ AC(X)(0,1).

e Functors D, €, T : C(X)(0,1)°P) — Top:
D(M) = P(Xu)(0,1),
E(M) = Apy,
T(M) = x
@ colim D = P(X)(0,1), colim & = T(X)(0,1),
hocolim 7 = AC(X)(0,1).
@ The trivial natural transformations D = 7, & = T yield:
hocolim D ~ hocolim 7* ~ hocolim 7 ~ hocolim £.
@ Projection lemma:
hocolim D ~ colim D, hocolim £ ~ colim £.

DJ
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From C(X)(0, 1) to properties of path space

Questions answered by homology calculations using T(X)(0, 1)

Questions

@ Is P(X)(0,1) path-connected, i.e., are all (execution)
d-paths dihomotopic (lead to the same result)?

@ Determination of path-components?

@ Are components simply connected?
Other topological properties?

y

@ Implementation of T(X)(0,1) in ALCOOL at CEA/LIX-lab.:
Goubault, Haucourt, Mimram

@ The prodsimplicial structure on C(X)(0,1) +> T(X)(0,1)
leads to an associated chain complex of vector spaces
over a field.

@ Use fast algorithms (eg Mrozek’s CrHom etc) to calculate
the homology groups of these chain complexes even for
quite big complexes: M. Juda (Krakow).

@ Number of path-components: rkHy(T(X)(0,1)).

For path-components alone, there are fast “discrete”
methods, that also yield representatives in each path
component (ALCOOL).
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Open problem: Huge complexes — complexity

Huge prodsimplicial complexes

| obstructions, n processors:
T(X)(0,1) is a subcomplex of (dA" 1)/
potentially a huge high-dimensional complex.

Possible antidotes
@ Smaller models? Make use of partial order among the
obstructions R, and in particular the inherited partial order
among their extensions Ft’]f with respect to C.
@ Work in progress: yields simplicial complex of far smaller
dimension!
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Open problems: Variation of end points

Conncection to MD persistence?

@ So far: T(X)(0,1) - fixed end points.

@ Now: Variation of 7(X)(a, b) of start and end point, giving
rise to filtrations.

@ At which thresholds do homotopy types change?

@ How to cut up X x X into components so that the
homotopy type of trace spaces with end point pair in a
component is invariant?

@ Birth and death of homology classes?

@ Compare with multidimensional persistence (Carlsson,
Zomorodian).
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Case: d-paths on a punctured torus

Punctured torus and n-space
n-torus 77 = R"/zn.
forbidden region F" = ([}, 3]"+2")/zn C T".
punctured torus Y7 = T"\ F"
punctured n-space 2 Y7 =R"\ ([, 2|7 +2")

with d-paths from quotient map R” | T".

duniversal cover

Aim: Describe the homotopy type of P(Y) =

P(Y) = QY(0,0) ~ disjoint union P(Y) = | g~ P(k)(Y)
with multiindex = multidegree k = (kq, ..., kn) € Z7,
P(k)(Y) = P(Y")(0,k) =: Z(k).
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Path spaces as colimits

Poset category of proper non-empty subsets of [1 : n] with
inclusions as morphisms.

Via characteristic functions isomorphic to the category of
non-identical bit sequences of length n: e = (&1,...€n) € J(N).
BJ(n) = oA"1 = 82,

y

UekK) :={x€R"gj=1=x< k—3or3i: x> k— 3}

Z.(K) ~ Z(k—¢).

Z(k) = coliM¢ 7(n) Ze(K) == hocolimgc 7(p) Ze (k) =~
hocolim,c () Z(k — €).
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An equivalent homotopy colimit construction

Inductive homotopy colimites

Using the category 7 (n) construct for k € 2",k > 0:
@ X(k) = = if [T/ kj = 0;
@ X(k) = hocolim,c 7, X(k — €).

By construction k < 1 = X (k) € X(I); X(1) oA ".

4

Inductive homotopy equivalences
q(k) : Z(k) — X(k):
@ [[{ ki = 0 = Z(k) contractible, X (k) =
@ g(k) = hocolim,c 7, q(k —¢) : Z(k) =
hocolim,c 7(n) Z(k — &) — hocolim,c 7 X(k — &) = X(k).

y
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Homology and cohomology of space Z(k) of d-paths

ol<meZl & <m1<j<n
o O"={(Im)|[l<morm< I} CZ] xZ7.
@ B(k):=27(<k)xZ7(<k)\O".
@ Z(k) :=< Im| (I,m) € B(k) >< Z[Z7 (< k)].

Theorem

Forn > 2, H*(Z(k)) = Z[Z7.(< K)]/ 700 -
H.(Z(k)) = H*(Z(k)) as abelian groups.

Spectral sequence argument, using projectivity of the functor
H.:J(n) — Ab,, k— H.(Z(k))

4
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Interpretation via cube sequences
Betti numbers

Cube sequences

[@]:=[0<a' <a® <. -<a =1eA], ,(I)-ofsize
I € Z7, length r and degree r(n—2).
Al(x) the free abelian group generated by all cube sequences.

AN(S K) := Dk AU(D).
Hr(n-2)(Z(k)) = 7(,772)(3 k) — generated by cube sequences

of length r and size < k.

Betti numbers of Z (k)
n=2: By = (k1;:k2);/3j =0,/>0;
n>2: Bo=1, Bino =I5 (%), B; =0 else.

Corollary

@ Small homological dimension of Z(k): (min; kj)(n — 2).
©Q Duality: Fork = (k, ..., k), Bi(Z(k)) = Bk(n-2)-i(Z(Kk)).
Why?
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To conclude

@ From a (rather compact) state space model (shape of data)
to a finite dimensional trace space model (represent
shape).

@ Calculations of invariants (Betti numbers) of path space
possible for state spaces of a moderate size (measuring
shape).

@ Dimension of trace space model reflects not the size but
the complexity of state space (number of obstructions,
number of processors); still: curse of dimensionality.

@ Challenge: General properties of path spaces for
algorithms solving types of problems in a distributed
manner?

Connections to the work of Herlihy and Rajsbaum
protocol complex etc

@ Challenge: Morphisms between HDA ~~ d-maps between
cubical state spaces ~~ functorial maps between trace
spaces. Properties? Equivalences?

y
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Want to know more?
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Advertisement for ACAT
Thank you!
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w

Thank you for your attention!
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