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Algebraic Topology
Homotopy

Homotopy: 1-parameter deformation
Two continuous functions f ,g : X → Y from a topological
space X to another, Y are called homotopic if one can be
"continuously deformed" into the other.
Such a deformation is called a homotopy H : X × I → Y
between the two functions.
Two spaces X ,Y are called homotopy equivalent if there
are continous maps f : X → Y and g : Y → X that are
homotopy inverse to each other, i.e., such that
g ◦ f ' idX and f ◦ g ' idY .
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Algebraic Topology
Invariants

Algebraic topology is the branch of mathematics which
uses tools from abstract algebra to study topological
spaces. The basic goal is to find algebraic invariants that
classify topological spaces up to homeomorphism, though
usually most classify (at best) up to homotopy equivalence.
An outstanding use of homotopy is the definition of
homotopy groups πn(X , ∗), n > 0 – important invariants in
algebraic topology.

Examples
Spheres of different dimensions are not homotopy
equivalent to each other.
Euclidean spaces of different dimensions are not
homeomorphic to each other.
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Path spaces, loop spaces and homotopy groups

Definition
Path space P(X )(x0, x1): the space of all continuous paths

p : I → X starting at x0 and ending at x1
(CO-topology).

Loop space Ω(X )(x0): the space of all all continuous loops
ω : S1 → X starting and ending at x0.

Concatenation: P(X )(x0, x1)× P(X )(x1, x2)→ P(X )(x0, x2);
Ω(X )(x0)×Ω(X )(x0)→ Ω(X )(x0).

Free path space, loop space P(X ),Ω(X ): consists of all
paths/loops; no restriction on end points.

Easy facts
X a reasonable path-connected space, then

P(X )(x0, x1) ' P(X )(x ′0, x
′
1) ' Ω(X )(x0).

πn(X ; x0) ∼= πn−1(ΩX ; x0),n > 0.
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d-paths, d-spaces, d-map, d-homotopy
Marco Grandis

X a topological space.

Definition
~P(X ) ⊂ P(X ) a subspace of d-paths

containing constant paths
closed under concatenation and
subpaths and increasing reparametrizations I → I

p→ X .

(X ,~P(X )) is called a d-space.
A continous map F : X → Y between d-spaces is a d-map
if F (~PX ) ⊆ ~P(Y ).
A homotopy H : X × I → Y is a d-homotopy if each
Ht , 0 ≤ t ≤ 1, is a d-map.

Symmetry breaking

The reverse of a d-path need not be a d-path.
 less structure on algebraic invariants.
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Examples of d-spaces

Simple examples

X = Rn, ~P(Rn) all paths with non-decreasing components.
Y = In, ~P(In) as above.
X = S1, ~P(S1) all paths that rotate counter-clockwise.

Higher Dimensional Automata = cubical complexes

Like simplicial complexes, glued from hypercubes In instead of
simplices; d-paths non-decreasing on every hypercube.

Example
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Homotopic d-paths need not be d-homotopic!

A 3D-cube with two wedges deleted (' S2 ∨ S2)

All dipaths from bottom to top are homotopic.
A dipath through the “hole” is not d-homotopic to a dipath on
the boundary.
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The twist has a price
Neither homogeneity nor cancellation nor group structure

Ordinary topology

Path space = loop space (within each path component).
A loop space is an H-space with concatenation, inversion,
cancellation.

“Birth and death” of
d-homotopy classes

Directed topology
Loops do not tell much;
concatenation ok,
cancellation not!
Replace group
structure by category
structures!
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Why bother: Concurrency
Definition from Wikipedia

Concurrency
In computer science, concurrency is a property of systems
in which several computations are executing
simultaneously, and potentially interacting with each other.
The computations may be executing on multiple cores in
the same chip, preemptively time-shared threads on the
same processor, or executed on physically separated
processors.
A number of mathematical models have been developed
for general concurrent computation including Petri nets,
process calculi, the Parallel Random Access Machine
model, the Actor model and the Reo Coordination
Language.
Specific applications to static program analysis – design of
automated tools to test correctness etc. of a concurrent
program regardless of specific timed execution.
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Alternative geometric/combinatorial models
Semaphores: A simple model for mutual exclusion

Mutual exclusion
occurs, when n processes Pi compete for m resources Rj .

Only k processes can be served at any given time.

Semaphores
Semantics: A processor has to lock a resource and to
relinquish the lock later on!
Description/abstraction: Pi : . . . PRj . . . VRj . . . (E.W. Dijkstra)
P: probeer; V : verhoog
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A geometric model: Schedules in "progress graphs"

Semaphores: The Swiss flag example
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Unsafe

Un−

reachable

T1

T2

Pa Pb Vb Va

Pb

Pa

Va

Vb

(0,0)

(1,1)

PV-diagram from
P1 : PaPbVbVa
P2 : PbPaVaVb

Executions are directed
paths – since time flow is
irreversible – avoiding a
forbidden region (shaded).
Dipaths that are dihomotopic
(through a 1-parameter
deformation consisting of
dipaths) correspond to
equivalent executions.
Deadlocks, unsafe and
unreachable regions may
occur.
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Simple Higher Dimensional Automata
Semaphore models

The state space
A linear PV-program is modeled as the complement of a
forbidden region F consisting of a number of holes in an
n-cube:
Hole = isothetic hyperrectangle
R i =]ai

1,b
i
1[× · · · ×]ai

n,bi
n[⊂ In,1 ≤ i ≤ l :

with minimal vertex ai and maximal vertex bi .
State space X =~In \ F , F =

⋃l
i=1 R i

X inherits a partial order from~In. d-paths are order preserving.

More general programs:

Cubical complexes: The local partial order giving rise to the
d-space structure models the directed time flow.
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Aims

A list of aims

Structure and determine the d-path spaces ~P(X )(x0, x1)
for reasonable d-spaces X – as ordinary topological
spaces.

Describe the path category ~P(X )
Objects: points
Morphisms: (Homotopy types of) d-path spaces with given
end points

and reason about sensitivity with respect to end points.
Investigate directed coverings as geometric counterparts
for simulations of concurrent systems.
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Simplicial models for spaces of d-paths
The nerve lemma at work

Nerve lemma
Given an open covering U of a space X such that every
non-empty intersection of sets in U is contractible, then
X ' N (U ) – the nerve of the covering:
A simplicial complex with one n-simplex for every non-empty
intersection of n + 1 sets in U .

General idea: HDA without d-loops
Find decomposition of state space into subspaces so that
d-path spaces in each piece – and intersections of such –
are either contractible or empty.
Describe the poset category corresponding to non-empty
intersections using binary matrices.

HDA with d-loops

L1-length yields a homomorphism l : π1(X )→ Z.
The associated length covering X̃ has only trivial d-loops.
~P(X )(x0, x1) '

⊔
n
~P(X )(x̃0, x̃n

1 )
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Example: A 3D-cube with two subcubes deleted
Category of binary matrices describes contractible or empty subspaces

Pa.Va.Pb.Vb | Pa.Va.Pb.Vb | Pa.Va.Pb.Vb

t0

t1

t2 0

1

[
0 0 0
0 0 0

]

state space

t0

t1

t2[
1 0 0
0 0 1

]

alive

t0

t1

t2[
0 0 1
1 0 0

]

alive

t0

t1

t2[
0 0 0
1 1 1

]

dead

Poset category and realization

C(X )(0,1) = {M ∈ M2,3(Z/2)| no row = [0,0,0] or [1,1,1]}.
Associated (prod-)simplicial complex: S1 × S1.
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Example: A 3D-cube with two weges deleted

Example: State space and trace space for a semaphore HDA

State space:
a 3D cube~I3 \ F
minus 4 box obstructions
pairwise connected

Path space model contained
in torus (∂∆2)2 –
homotopy equivalent to a
wedge of two circles and a
point: (S1 ∨ S1) t ∗
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Want to know more?
Tomorrow, 2:30 pm: Mini-symposium Applied and
Computational Algebraic Topology
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Want to know more?
Thank you!

Books
Kozlov, Combinatorial Algebraic Topology, Springer, 2008.
Grandis, Directed Algebraic Topology, Cambridge UP,
2009.

Related articles
Fajstrup, Dicovering Spaces, Homology, Homotopy Appl. 5
(2003), 1 – 17.
Jardine, Path categories and resolutions, Homology,
Homotopy Appl. 12 (2010), 231 – 244.
Krishnan, A convenient category of locally preordered
spaces, Appl. Categ. Struct. 17 (2009), 445 – 446.
Work of Gaucher.

Thank you for your attention!
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