A new short proof of Kneser's conjecture

Joshua E Greene *The American Mathematical Monthly;* Dec 2002; 109, 10; Academic Research Library pg. 918

Thus

$$\left|\varphi - \frac{f_{n+1}}{f_n}\right| = \frac{1}{\sqrt{5} f_n (f_n + \overline{\varphi}^n)},$$

and it follows that, for every $\varepsilon > 0$, the inequality $|\varphi - p/q| < 1/(q^2(\sqrt{5} + \varepsilon))$ has only finitely many rational solutions p/q.

ACKNOWLEDGMENT. During 2000–01, the first author benefited from a study leave funded by the Consejería de Educación, Cultura, Juventud y Deportes of Gobierno de La Rioja.

REFERENCES

- 1. M. Benito and J. J. Escribano, Sucesiones de Brocot, Santos Ochoa, Logroño, 1998.
- 2. A. Brocot, Calcul des rouages par aproximation. nouvelle méthode, *Revue Chronométrique* **6** (1862) 186–194.
- 3. L. Dickson, History of the Theory of Numbers, Chelsea, New York, 1952.
- 4. R. L. Graham, D. E. Knuth, and O. Patashnik, *Concrete Mathematics*, Addison-Wesley, Reading, MA, 1994.
- 5. E. Lucas, Théorie des nombres, Gauthier-Villars, Paris, 1891.
- 6. M. A. Stern, Über eine zahlentheoretische Funktion, J. Reine Angew. Math. 55 (1860) 193–220.

I. Práxedes Mateo Sagasta, Dr. Zubía s/n, 26003 Logroño, Spain mbenit8@palmera.pntic.mec.es

I. Valle del Cidacos, Basconia s/n, 26500 Calahorra, Spain jesbriba@boj.pntic.mec.es

A New Short Proof of Kneser's Conjecture

Joshua E. Greene

In a 1955 paper [4], M. Kneser considered the problem of partitioning the *n*-element subsets of a (2n + k)-element set in such a way that the subsets contained in any fixed class are pairwise intersecting. Kneser observed that such a partition is possible with k + 2 classes; indeed, let 1, 2, ..., 2n + k be the elements of the underlying set, and for each *i* in this set, let K_i denote the collection of all *n*-subsets whose least element is *i*. Then $K_1, K_2, ..., K_{k+1}$, and $K_{k+2} \cup \cdots \cup K_{n+k+1}$ are the classes in a desired partition. Moreover, Kneser conjectured that k + 2 is the least possible number of classes in such a valid partition. This problem remained open for over twenty years until L. Lovász [5] showed, using methods from algebraic topology, that Kneser's conjecture was true. Within weeks of learning of Lovász's proof, I. Bárány [1] produced a very short proof of the conjecture by combining the celebrated result of Lusternik, Schnirelman, and Borsuk (LSB) [2], [6] on sphere covers with D. Gale's theorem [3] concerning the even distribution of points on the sphere. The purpose of this note is to provide a short proof of Kneser's conjecture that does not rely on Gale's result.

Let $S^m = \{x \in \mathbb{R}^{m+1} \mid ||x|| = 1\}$ denote the unit sphere in \mathbb{R}^{m+1} . For any point *a* in S^m and subset *F* of S^m , the *distance* from *a* to *F* is $\inf_{x \in F} d(a, x)$, where *d* denotes the Euclidean metric in \mathbb{R}^{m+1} . Let $H(a) = \{x \in S^m \mid a \cdot x > 0\}$, the open hemisphere

918 © THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 109

centered at *a*, and $S(a) = \{x \in S^m \mid a \cdot x = 0\}$, the boundary of H(a), a great (m - 1)-sphere on S^m . Also, for $\lambda > 0$, let $B(a, \lambda) = \{x \in S^m \mid d(a, x) < \lambda\}$, the open ball of radius λ centered at *a* in S^m .

The LSB-theorem states that, for any covering of S^m with m + 1 or fewer closed sets, one of the sets must contain a pair of antipodes. In order to prove Kneser's conjecture, we will require the following slight generalization of this fact.

Lemma. If S^m is covered with m + 1 sets, each of which is either open or closed, then one of the sets contains a pair of antipodes.

Proof. We induct on the number t of closed sets in the cover of S^m . The base case t = 0 corresponds to a cover of S^m by open sets U_1, \ldots, U_{m+1} . Select a *Lebesgue number* for this cover, that is, a positive number λ such that for all x in S^m , the closed ball $\overline{B}(x, \lambda)$ is contained in some U_j . By compactness, there exists a finite collection of points $\{x_i\}$ such that the open balls $B(x_i, \lambda)$ cover S^m . For each j, let F_j denote the union of those $\overline{B}(x_i, \lambda)$ contained in U_j . Then F_j is closed, F_j is a subset of U_j for each j, and together the F_j cover S^m . Therefore, the LSB-theorem implies that one of the F_j , and hence one of the U_j , contains a pair of antipodes.

Thus we may assume that 0 < t < m + 1 and the theorem holds for fewer than t closed sets. We now show it holds for t closed sets. Let C be a cover of S^m with m + 1 sets, of which exactly t are closed and the remaining sets are open. Fix a closed set F in C, and suppose that F does not contain a pair of antipodes. Hence its diameter is $2 - \epsilon$ for some $\epsilon > 0$. Let U denote the open set consisting of all points in S^m whose distance from F is less than $\epsilon/2$. Then $(C \setminus \{F\}) \cup \{U\}$ is a cover of S^m with m + 1 sets, of which exactly t - 1 are closed and the remaining sets are open, so by the induction hypothesis some set in this cover contains a pair of antipodes. But by construction U does not contain such a pair, and hence some set in the original cover C must contain a pair of antipodes, as desired. This completes the inductive step.

We are now in position to prove Kneser's conjecture.

Theorem. If the *n*-element subsets of a (2n + k)-element set are partitioned into k + 1 classes, then one of the classes must contain a pair of disjoint subsets.

Proof. Distribute 2n + k points on S^{k+1} in general position; thus no k + 2 points lie on a great k-sphere. Now partition the *n*-element subsets of these points into k + 1 classes A_1, \ldots, A_{k+1} . For $i = 1, \ldots, k + 1$, let U_i denote the set of all points a of S^{k+1} for which H(a) contains an *n*-subset in the class A_i . It is easy to see that the sets U_i are open, hence $F = S^{k+1} \setminus (U_1 \cup \cdots \cup U_{k+1})$ is closed. Together, F and the U_i are k + 2 sets covering S^{k+1} , so by the lemma one of the sets contains a pair of antipodes $\pm a$. Can F contain such a pair? No, for if it did H(a) and H(-a) would each contain fewer than n points from our underlying (2n + k)-element set, which would mean that at least k + 2 points lie on the great k-sphere S(a), contradicting the distribution of these points. Therefore, both a and -a lie in U_i for some i. It follows that both H(a) and H(-a) contain n-element subsets in the class A_i , and these subsets are plainly disjoint.

In Bárány's proof of Kneser's conjecture, Gale's theorem was used to distribute the 2n + k points on S^k in such a way that each open hemisphere contained at least *n* points. This distribution guaranteed that the sets U_i themselves covered S^k , so that the open version of the LSB-theorem on S^k could be applied. By contrast, our proof

December 2002]

NOTES

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

distributes the points on S^{k+1} in less restrictive fashion, avoiding the use of Gale's theorem, and then appeals to our modification of the LSB-theorem.

ACKNOWLEDGMENTS. I would like to thank Anders Berg and Professor András Gyárfás for helpful comments, as well as Professor Francis Su for his help in preparing this note.

REFERENCES

- 1. I. Bárány, A short proof of Kneser's conjecture, J. Combin. Theory Ser. A 25 (1978) 325–326.
- 2. K. Borsuk, Drei Sätze über die n-dimensionale euklidische Sphäre, Fund. Math. 20 (1933) 177-190.
- 3. D. Gale, Neighboring vertices on a convex polyhedron, in *Linear Inequalities and Related Systems*, H. W. Kuhn and A. W. Tucker, eds., Princeton University Press, Princeton, 1956.
- 4. M. Kneser, Aufgabe 300, Jahresber. Deutsch., Math. Verein. 58 (1955) 27.
- 5. L. Lóvász, Kneser's conjecture, chromatic number, and homotopy, J. Combin. Theory Ser. A 25 (1978) 319–324.
- 6. L. Lusternik and L. Schnirelman, *Topological Methods in Variational Calculus*, Issledowatelskii Institut Matematiki i Mechaniki pri O. M. G. U., Moscow, 1930 [Russian].

Department of Mathematics, Harvey Mudd College, Claremont, CA 91711 jgreene@hmc.edu