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Intro: State space, directed paths and trace space

Problem: How are they related?

Example 1: State space and trace space for a semaphore HDA

CO-

Path space model contained
in torus (9A?)2 —

homotopy equivalent to a
wedge of two circles and a
point: (S'v 8") L *

Analogy in standard algebraic topology
Relation between space X and loop space ().X.

Martin Raussen Spaces of directed paths as simplicial complexes

State space:

a3Dcube B\ F

minus 4 box obstructions
pairwise connected




Intro: State space and trace space

with loops
Example 2: Punctured torus

[ ] [ [ ] [
Path space model:

o o . o Discrete infinite space of
dimension 0 corresponding

X *

to {r,u}*.

® A ° °
Question: Path space for a
punctured torus in higher

(] (] [ (]

dimensions?
Joint work with

State space: Punctured torus S e
K. Ziemianski.

X and branch point A:
2D torus 9A? x 9A? with a
rectangle A' x A removed

v
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Why bother? Concurrency

Definition from Wikipedia

Concurrency

@ In computer science, concurrency is a property of systems
in which several computations are executing
simultaneously, and potentially interacting with each other.

@ The computations may be executing on multiple cores in
the same chip, preemptively time-shared threads on the
same processor, or executed on physically separated
processors.

@ A number of mathematical models have been developed
for general concurrent computation including Petri nets,
process calculi, the Parallel Random Access Machine
model, the Actor model and the Reo Coordination
Language.

@ Specific applications to static program analysis — design of
automated tools to test correctness etc. of a concurrent
program regardless of specific timed execution.

v
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Mutual exclusion
Semaphores

Mutual exclusion

occurs, when n processes P; compete for m resources A;.

[t
Only k processes can be served at any given time.

Semantics: A processor has to lock a resource and to
relinquish the lock later on!

Description/abstraction: P;: ... PR;... VR;... (E.W. Dijkstra)
P: prolaag; V: verhogen

y
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A geometric model: Schedules in "progress graphs"

Semaphores: The Swiss flag example

T2
an Executions are directed
paths — since time flow is
Vb cesvee irreversible — avoiding a
va %mm forbidden region (shaded).
ﬁ; Dipaths that are dihomotopic
P . (through a 1-parameter
Po e deformation consisting of
dipaths) correspond to
0.0 Pa Pb Vb Va ™ equivalent executions.
Deadlocks, unsafe and
PV-diagram from unreachable regions may
P1 . PanVb Va occur.
P> : PpP3V,V, )
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Simple Higher Dimensional Automata

Semaphore models

The state space

A linear PV-program is modeled as the complement of a
forbidden region F consisting of a number of holes in an

n-cube:
@ Hole = isothetic hyperrectangle
R =]a}, bi[x - - x]ah, by[C "1 < i< I:

with minimal vertex a’ and maximal vertex b'.
@ Statespace X ="\ F, F =, R’

X inherits a partial order from I

d-paths are order preserving.

More general concurrent programs ~» HDA
Higher Dimensional Automata (HDA, V. Pratt; 1990):
@ Cubical complexes: like simplicial complexes,
with (partially ordered) hypercubes instead of simplices as
building blocks?
@ d-paths are order preserving.

| \

aWe tacitly suppress labels

y

Martin Raussen Spaces of directed paths as simplicial complexes




Spaces of d-paths/traces — up to dihomotopy

A general framework. Aims.

@ X ad-space, a,b € X.
p: I — X ad-path in X (continuous and
“order-preserving”) from ato b.

@ P(X)(ab)={p:1— X|p(0) = a,p(b) =1, pad-path}.
Trace space 7(X)(a, b) = P(X)(a, b) modulo
increasing reparametrizations.
In most cases: P(X)(a, b) ~ T(X)(a,b).

@ A dihomotopy in P(X)(a, b) is a map H ;7x I — X such
that H; € P(X)(a, b), t € I;ie a pathin P(X)(a, b).

Aim:
Description of the homotopy type of P(X)(a, b) as explicit finite
dimensional (prod-)simplicial complex.

In particular: its path components, ie the dihomotopy classes of
d-paths (executions).

y

Martin Raussen Spaces of directed paths as simplicial complexes




Tool: Subspaces of X and of P(X)(0,1)
X =1"\F, F=U_,R:R =]a’ b'[;0,1 the two corners in /".

Q X,-j:{xeX|x§b":>x,-§aj’f}—
direction j restricted at hole i

© M abinary I x n-matrix: Xy = -1 Xjj =
Which directions are restricted at which hole?

Examples: Two holes in 2D = One hole in 3D (dark)

M
Follo Ul ool M o eon
[ n [

H ' N |
b
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Covers by contractible (or empty) subspaces

Bookkeeping with binary matrices

Binary matrices

M, » poset (<) of binary / x n-matrices
MF:* no row vector is the zero vector —
every hole obstructed in at least one direction

A cover by contractible subspaces

o - —
P(X)(0,1) = U P(Xu)(0,1).
MeMmfr

© Every path space P(Xy)(0,1), M € MR:*, is

ILn
empty or contractible. Which is which?

Subspaces Xy, M € Mﬁ,;* are closed under Vv = l.u.b. O
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A combinatorial model and its geometric realization

First examples

. . Topology:
Com?ma}[torlcs. prodsimplicial complex
poset category T(X)(0,1) C (An1)!

Ay =ADmy X - X Ay, C
T(X)(0,1) — one simplex Ap,
for every hole

& P(Xy)(0,1) # @.

C(X)(0.1) € My € My,
M e C(X)(0,1) “alive”

Examples of path spaces

H n T o n
0 = ER o T(X)(0,1) = (3a")2
N | N |

n
— 4x
NS
1 0] ]

e T(X.)(0,1) = 3%
i &l s |
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Further examples

State spaces, “alive” matrices and path spaces

Q X:7n\jn i t
° C(X)(0.1) = @
MR*\{[ ..... 1]}, ta . t @
T(X )(0 1) =
* aanit o gre. o 0
@ x =1\ (Jpud) i +
e C(X)(0,1) =
MJ:*\ matrices t2 E
W|tha to to
[1,...,1]-row. 100 000
JULINE bol L1
Sh=2 % 82, alive dead )

Martin Raussen Spaces of directed paths as simplicial complexes



Why prodsimplicial?
rather than simplicial

@ We distinguish, for every obstruction, sets J; C [1 : n] of
restrictions. A joint restriction is of product type
Jpx-oxdc1: n]’, and not an arbitrary subset of
[1:n].

@ Simplicial model: a subcomplex of A™ — 2(") subsimplices.

@ Prodsimplicial model: a subcomplex of (A")! —2()
subsimplices.
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I:Iomotopy equivalence between path space
P(X)(0,1) and prodsimplicial complex T(X)(0,1)

Theorem (A variant of the nerve lemma)
P(X)(0,1) ~ T(X)(0,1) ~ AC(X)(0,1).

e Functors D, €, T : C(X)(0,1)°P) — Top:
D(M) = P(Xu)(0,1),
E(M) = Apy,
T(M) = x
@ colim D = P(X)(0,1), colim & = T(X)(0,1),
hocolim 7 = AC(X)(0,1).
@ The trivial natural transformations D = 7, & = T yield:
hocolim D ~ hocolim 7* ~ hocolim 7 ~ hocolim £.
@ Projection lemma:
hocolim D ~ colim D, hocolim £ ~ colim £.

DJ
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Detection of dead and alive matrices & subcomplexes

An algorithm starts with deadlocks and unsafe regions!

Allow less = forbid more!

Remove extended hyperrectangles R}
= [0, B4 [x -~ x [0,b]_4[x]a], 1] x [0, b/, [x --- x [0, b4[> R'.

=

X = X\ Upm,—1 R},

The following are equivalent:
Q@ P(Xy)(0,1) =@ < MC(X)(0,1).
Q There is a “dead” matrix N < M,N € M{;" such that
N nj=1 F?j’ # @ — giving rise to a deadlock unavoidable from
0,ie, T(Xy)(0,1) =2.
M;:¥': every column a unit vector — every direction
obstructed once. )
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Dead matrices in D(X)(0,1)

Inequalities decide

Decisions: Inequalities

Deadlock algorithm (Fajstrup, Goubault, Raussen) ~:

Theorem

o Ne M dead <
Forall1 <j<n,forall1 <k < nsuchthat3j : ngy =1:

nj=1=a < bf.

o Me MJi dead < 3N € M{;" dead, N < M.

Definition

D(X)(0,1) := {P € M;,|]3N € M5", N dead : N < P}.

lLn '

A cube with a cubical hole

e X=T1"\Jn
® D(X)(0,1) = {[1,...,1]} = M{.
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Maximal alive <+ minimal dead
Still alive — not yet dead

@ Cmax(X)(0,1) C C(X)(0,1) maximal alive matrices.

@ Matrices in Cmax(X) (0, 1) correspond to maximal simplex
products in T(X)(0,1).

@ Connection: M € Cnax(X)(0,1), M < N a succesor (a
single O replaced by a 1) = N € D(X)(0,1).

A cube with a cubical hole
oX—l”\J” D(X)(0,1) ={[1,..., 1]};
® Cmax(X)(0,1): vectors with a single 0;

0 C(X)(0,1) = MEA\{[1,....1]};
® T(X)(0,1) =aA" ",
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From C(X)(0, 1) to properties of path space

Questions answered by homology calculations using T(X)(0, 1)

Questions

@ Is P(X)(0,1) path-connected, i.e., are all (execution)
d-paths dihomotopic (lead to the same result)?

@ Determination of path-components?

@ Are components simply connected?
Other topological properties?

y

@ Implementation of T(X)(0,1) in ALCOOL at CEA/LIX-lab.:
Goubault, Haucourt, Mimram

@ The prodsimplicial structure on C(X)(0,1) +> T(X)(0,1)
leads to an associated chain complex of vector spaces
over a field.

@ Use fast algorithms (eg Mrozek’s CrHom etc) to calculate
the homology groups of these chain complexes even for
quite big complexes: M. Juda (Krakow).

@ Number of path-components: rkHy(T(X)(0,1)).

For path-components alone, there are fast “discrete”
methods, that also yield representatives in each path
component (ALCOOL).
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Open problem: Huge complexes — complexity

Huge prodsimplicial complexes

| obstructions, n processors:
T(X)(0,1) is a subcomplex of (dA" 1)/
potentially a huge high-dimensional complex.

Possible antidotes
@ Smaller models? Make use of partial order among the
obstructions R, and in particular the inherited partial order
among their extensions Ft’]f with respect to C.
@ Work in progress: yields often simplicial complex of far
smaller dimension!
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Open problems: Variation of end points

Conncection to MD persistence?

@ So far: T(X)(0,1) - fixed end points.

@ Now: Variation of 7(X)(a, b) of start and end point, giving
rise to filtrations.

@ At which thresholds do homotopy types change?

@ How to cut up X x X into components so that the
homotopy type of trace spaces with end point pair in a
component is invariant?

@ Birth and death of homology classes?

@ Compare with multidimensional persistence (Carlsson,
Zomorodian).
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Extensions

1. Obstruction hyperrectangles intersecting the boundary of /" — why?

More general linear semaphore state spaces

@ More general semaphores (intersection with the boundary
o/™ C I" allowed)

@ n dining philosophers: Trace space has 2" — 2 contractible
components!

e Different end points: P(X)(c,d) and iterative calculations

@ End complexes rather than end points (allowing processes
not to respond..., Herlihy & Cie)

Dining philosophers

e
il
ole

................................

v
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Extensions

2a. Semaphores corresponding to programs:

Path spaces in product of digraphs

Products of digraphs instead of i
I' =TI T}, state space X =T \ F,
F a product of generalized hyperrectangles R'.
@ P(T)(x,y) = [1P(T))(x; y;) — homotopy discrete!

Pullback to linear situation

Represent a path component C € /?’(I‘)(x, y) by (regular)
d-paths p; € ﬁ(l",-)(x,-,yj) — an interleaving.

Themapc: /" — T, c(t, ..., t) = (c1(t1), ..., cn(ts)) induces
a homeomorphism oc : P(1")(0,1) — C c P(T)(x,y).
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Extensions
2b. Semaphores: Topology of components of interleavings

Homotopy types of interleaving components

Pull back F via c:
X =1"\F,F =R, R = ¢ '(R') — honest hyperrectangles!
ix : P(X) — P(I).
Given a component C c P(I')(x, ).
The d-map ¢ : X — X induces a homeomorphism
co: P(X)(0,1) — ix'(C) C P(I)(x,y).
@ C“liftsto X” < P(X)(0,1) + @; if so:
@ Analyse iy '(C) via P(X)(0,1).
@ Exploit relations between various components.

Special case: T = (S')" —a torus

State space: A torus with rectangular holes in F:
Investigated by Fajstrup, Goubault, Mimram etal.:
Analyse by language on the alphabet C(X)(0, 1) of alive
matrices for a one-fold delooping of T'\ F.

vy
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Extensions
3a. D-paths in pre-cubical complexes

HDA: Directed pre-cubical complex

Higher Dimensional Automaton: Pre-cubical complex — like
simplicial complex but with cubes as building blocks — with
preferred diretions.

Geometric realization X with d-space structure. )

Branch points and branch cubes

These complexes have branch A2, R 1
points and branch cells — more

than one maximal cell with same
lower corner vertex. ° ° ° °
At branch points, one can cut up a

Ci4

. . . 2P Ci2
cubical complex into simpler
pieces. B ™ C o o
Trouble: Simpler pieces may have . & |2
higher order branch points.
0 e A

V.
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Extensions

3b. Path spaces for HDAs d-loops

Non-branching complexes

Start with complex without directed loops: After finally many
iterations: Subcomplex Y without branch points.

P(Y)(xo.%1) is empty or contractible.

Such a subcomplex has a preferred diagonal flow and a
contraction from path space to the flow line from start to
end. O

Branch category

Results in a (complicated) finite branch category M (X)(xo, X1)
on subsets of set of (iterated) branch cells.

Theorem

P(X)(xo,X1) is homotopy equivalent to the nerve
N (M (X)(xo,X1)) of that category.
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Extensions
3c. Path spaces for HDAs d-loops

Delooping HDAs

A pre-cubical complex comes with an Ly-length 1-form w
reducing to w = dxq + - - - 4 dx, on every n-cube.

Integration: Li-length on rectifiable paths, homotopy invariant.
Defines I : P(X)(xo, Xy) — Rand l; : 1(X) — R with kernel K.
The (usual) covering X | X with 71y (X) = K is a directed
pre-cubical complex without d- loops.

Theorem (Decomposition theorem)

For every pair of points Xo, X1 € X, path space l3(X )(Xo, Xq) is
homeomorphic to the disjoint union | |,ez P(X)(x3, xJ)2.

4in the fibres over xg, X4
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Case: d-paths on a punctured torus

Punctured torus and n-space
n-torus 77 = R"/zn.
forbidden region F" = ([1,2]7+2")/z: C T".
punctured torus Q"7 = T"\ F" ~ T{}H)
punctured n-space Q" =R"\ ([3.§]"+2") ~R]

with d-paths from quotient map R"” | T".

>0
with multiindex = multidegree k = (kq, ..., kn) € Z7, ki > 0.
P(k)(Q) = P(Q")(0,k) =: Z(K).
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Path spaces as colimits

Poset category of proper non-empty subsets of [1 : n] with
inclusions as morphisms.

Via characteristic functions isomorphic to the category of
non-identical bit sequences of length n: e = (eq,...€n) € J(N).
BJ(n) = oA"—1 = §n—2,

V.

Us(k) :={xeR"gg=1=x< k—1or3i:x >k}
Z.(K) := P(U,(K))(0,K).

Z.(k) ~ Z(k—¢).

Z(k) = colim,c 7(n) Ze(K) == hocolim¢ 7(n) Ze(K) =~
hocolim,c 7, Z(k — ).
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An equivalent homotopy colimit construction

Inductive homotopy colimites

Using the category 7 (n) construct for k € 2",k > 0:
@ X(k) = = if [T/ kj = 0;
@ X(k) = hocolim,c 7, X(k — €).

By construction k < 1 = X (k) € X(I); X(1) oA ".

4

Inductive homotopy equivalences
q(k) : Z(k) — X(k):
@ [[{ ki = 0 = Z(k) contractible, X (k) =
@ g(k) = hocolim,c 7 q(k — &) : Z(k) =~
hocolim,c 7, Zk—¢) — hocolim,c 7 X(k—¢) = X(k).

y
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Homology and cohomology of space Z(k) of d-paths

Definition
ol<meZl & <m1<j<n
o O"={(Im)|l<morm< I} CZ7 xZ.
@ B(k) := 2" (< k) xZ7 (< k) \ O" —unordered pairs
@ Z(k) :=<Im| (Ilm) e B(k) ><Z < Z7(<k) >.

Forn>2,H*(Z(k)) =Z < Z} (< k) > /7@
All generators have degree n — 2.
H.(Z(k)) = H*(Z(k)) as abelian groups.

Spectral sequence argument, using projectivity of the functor
H.:J(n) — Ab,, k — H.(Z(k)).
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Interpretation via cube sequences

Betti numbers

Cube sequences

]=0<a' <a® < - <a =€ A}, ,(I)

of size | € 27, length r and degree r(n— 2).

Al(x) the free abelian group generated by all cube sequences.
AN(< k) == D1k AX(D)-

Hr(n—2)(Z(k)) = A7<n72>(§ k)

generated by cube sequences of length r and size < k.

Betti numbers of Z(k)

n=2: Bo= (k‘;:kz);ﬁ/ =0,/>0;
n>2: o =1, Bina =TI (l?) pj = 0 else.

Corollary l

@ Small homological dimension of Z(k): (min; k;)(n — 2).
Q Fork= (k,.... k), Bi(Z(K)) = Bk(n-2)-i(Z(K)).
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Generalization. “Explanation”

@ The result can be stated and generalized for a complex

T(, 4y C K C T" = with universal cover R}, ;) C K c R".
Homology is generated by cube sequences
[@*] ;= [0 < a' < a® < --- < a" = I] such that the cells
@' —1,a] ¢ K.

@ A cube sequence a* is maximal if it is not properly
contained in another cube sequence with same endpoints.

@ A maximal cube sequence a* gives rise to a subspace
P(a*)(0,k) C Is(K)(O k) — concatenation of paths on
boundary of cubes [a’ — 1,a’] and contractible path
spaces.

@ Y (k) = U, P(a*)(0,k), a* maximal. Then also
Y (k) =~ hocolim,c () Y (k — &) and
Y (k) contractible if T; ki = 0.

@ Hence Y(k) ~ X(k) ~ Z(k).

° P(a )(0 k) c P(K)(0,k) induces an injection

Martin Raussen Spaces of directed paths as simplicial complexes



To conclude

@ From a (rather compact) state space model (shape of data)
to a finite dimensional trace space model (represent
shape).

@ Calculations of invariants (Betti numbers) of path space
possible for state spaces of a moderate size (measuring
shape).

@ Dimension of trace space model reflects not the size but
the complexity of state space (number of obstructions,
number of processors); still: curse of dimensionality.

@ Challenge: General properties of path spaces for
algorithms solving types of problems in a distributed
manner?

Connections to the work of Herlihy and Rajsbaum
— protocol complex etc

@ Challenge: Morphisms between HDA ~~ d-maps between
cubical state spaces ~~ functorial maps between trace
spaces. Properties? Equivalences?

y
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Thank you for your attention!
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